APP下载

电动汽车车载电源LLC谐振变换器滑模控制

2020-04-22刘宇博王旭东

电机与控制学报 2020年3期

刘宇博 王旭东

摘 要:为了增强电动汽车车载电源对负载扰动的鲁棒性,有效抑制系统输出电压的过冲,将一种改进的滑模控制策略应用于电动汽车车载电源控制系统中。为减少系统开关损耗,提高系统效率,车载电源采用 LLC 谐振变换器拓扑结构。利用扩展描述函数法建立LLC谐振变换器的非线性模型,并在此基础上设计滑模控制方法。选取全局积分滑模面,通过动态的非线性滑模面,设计了整个运动过程中的滑动模态运动,显著地改善了对负载扰动的动态响应。通过仿真和实验证明了所提出的滑模控制策略有效解决了传统PI控制器在负载扰动较大情况下输出电压过冲过大的问题,提高了电动汽车车载电源控制系统动态品质。

关键词:LLC谐振变换器;扩展描述函数法;滑模控制;全局积分滑模面;车载电源

DOI:10.15938/j.emc.2020.03.016

中图分类号:TM 315文献标志码:A文章编号:1007-449X(2020)03-0131-07

Abstract:Aiming at the application of LLC resonant converter in electric vehicles, a sliding mode controller is proposed to improve the robustness of load disturbance and restrain the output voltage overshoot of the system. In order to improve the efficiency of the system, the LLC resonant converter used in the vehicle power supply reduced the switching loss of the system. The nonlinear model of LLC resonant converter was established by means of extended description function method. On this basis, a sliding mode control method was designed. The sliding mode motion of the whole motion of the system was realized by selecting the appropriate global integral sliding surface, and the dynamic quality was improved significantly by using the dynamic nonlinear sliding surface. Simulation and experiment show that the proposed controller can restrain the overshoot of the system more effectively than the conventional PI controller.

Keywords:LLC resonant converter; extended description function method; sliding mode control; global integral sliding mode surface; vehicle power supply

0 引 言

随着新能源汽车的发展,车载电源高性能的需求也不断提高。电源变换器经常会受到大负载扰动,其变换器拓扑不仅要满足负载需求,而且要具有高效率、高功率密度、高可靠性和低成本的特性[1-3]。LLC变压器初级侧可以实现全负载范围内开关管的ZVS,对于外界的电磁干扰较小,具有较高变换效率,适合车载电源应用场合[4-7]。

LLC谐振变换器是一个多输入、强耦合、非线性时变系统。传统PI控制的参数设计在不同的工作条件下,也不可能始终保持良好的增益与相位裕度。提高控制系统的鲁棒性和对特定动态需求的瞬态响应是十分必要的。滑模控制(sliding mode control,SMC)可以提高系统的运行性能,被广泛应用到DCDC变换器领域[8]利用滞环函数实现Buck变换器的滑模控制,有效的控制系统开关频率。文献[10]通过引入自适应前馈控制改变滞环宽度,消除输入电压变化对开关频率的影响。文献[11]提出将电感电流、输出电压及其积分设计Buck变换器的组合型滑模面,相比传统的双环PI控制,有很好的动态响应,鲁棒性强,但是它没有将其应用于LLC谐振变换器中。文献[12]分析了运行参数的滑模严格存在条件,给出了滑模控制移相全桥等效PWM信号函数,并加入切换控制律提升鲁棒控制效果。文献[13]建立了移相全桥的动态空间模型,讨论了状态空间中的滑动运动、稳态运行条件和PWM控制函数。文献[14]通过输入输出线性化的概念推导系统滑模面,以优化LLC谐振变换器输出电压动态响应。

本文提出一种基于全局积分滑模面的LLC谐振变换器滑模控制策略,并用于电动汽车车载电源DC/DC变换器恒压模式控制系统中[15-16]。详细研究LLC谐振变换器工作原理。通过扩展函数描述法建立系统模型,选取全局积分滑模面,设计了整个运动过程中的滑动模态运动,实现系统整体稳定性控制。所提出的SMC策略不僅能较好地处理LLC谐振变换器的模型中的高阶非线性特性,而且对恒压模式下系统大负载变化有较强的鲁棒性,提高了系统的动态性能。

1 变换器工作过程分析

针对电动汽车车载电源高电压输入,低压大电流输出的工作特点,选取全桥LLC谐振变换器的拓扑结构,实现降低高压输入电路对开关管的耐压要求。谐振变换器变压器副边采用全波整流,实现零电流关断,满足低电压、大电流的高效率要求。LLC谐振变换器工作模态等效电路如图1所示。电路中存在4个储能元件:Lr,Lm,Cr,Co。其中Lr为变换器谐振电感,Lm为变换器励磁电感,Cr为变换器谐振电容,Co为变换器输出电容。

6 结 论

LLC谐振变换器在全负载条件下工作在软开关状态,可以提高电源系统工作效率,因此被选作电动汽车车载电源的拓扑结构。本文提出一种基于全局积分滑模面的滑模控制技术,并将其应用于电动汽车车载电源恒压模式充电控制系统中。在通过扩展函数描述的方法建立系统模型,设计滑模控制器。通过全局积分滑模的非线性滑模面实现系统的整体滑模运动,有效地增强了系统稳定性,提高了控制系统的动态跟踪效果。仿真与实验表明,所设计的控制器有效地解决了传统PI控制器在负载扰动较大的情况下过冲过大的问题,提高了电动汽车车载电源控制系统动态品质。

参 考 文 献:

[1] SHEN Yanxia, ZHAO Wenhui, CHEN Zhe,et al.Fullbridge LLC resonant converter with seriesparallel connected transformers for electric vehicle onboard charger[J]. IEEE Access, 2018, 6: 13490.

[2] DUAN Chen, BAI Hua, GUO Wei,et al. Design of a 2.5 kW 400/12 V highefficiency DC/DC converter using a novel synchronous rectification contorl for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1):106.

[3] DENG Junjun, LI Siqi, HU Sideng,et al. Design methodology of LLC resonant converters for electric vehicle battery chargers[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4):1581.

[4] 吕征宇, 李嘉晨, 杨华. 新型LLC谐振变换器数字同步整流驱动方式[J]. 电机与控制学报, 2018, 22(1): 16.

L Zhengyu, LI Jiachen, YANG Hua. Digital synchronous rectification driving method for LLC resonant converter[J]. Electric Machines and Control, 2018, 22(1): 16.

[5] 刘文军, 易俊宏, 马红波. 同步整流双谐振LLCDCX悬浮控制电源研究[J]. 电机与控制学报, 2017, 21(6): 18.

LIU Wenjun, YI Junhong, MA Hongbo. Double resonant LLCDCX with synchronous rectifier based power supply for maglev control system applications[J]. Electric Machines and Control,2017, 21(6):18.

[6] 劉和平, 李金龙, 苗轶如,等. LLC谐振电路无传感器同步整流控制策略[J]. 电机与控制学报, 2014, 18(5): 49.

LIU Heping, LI Jinlong, Miao Yiru,et al.Sensorless synchronous rectifier control strategy used in LLC resonant circuit[J]. Electric Machines and Control,2014, 18(5): 49.

[7] 王懿杰, 张相军, 王卫,等.一种用于LED路灯照明的单级交直流变换器[J]. 电机与控制学报, 2010, 14(12): 68.

WANG Yijie, ZHANG Xiangjun, WANG Wei,et al. A single stage AC/DC converter for LED street lighting system[J]. Electric Machines and Control, 2010, 14(12):68.

[8] 王艳敏, 曹雨晴, 夏红伟.Buck变换器的电压电流双闭环终端滑模控制[J]. 电机与控制学报, 2016, 20(8): 92.

WANG Yanmin, CAO Yuqing, XIA Hongwei. Terminal sliding mode control for Buck converter with structure of voltage and current double closed loop[J]. Electric Machines and Control, 2016, 20(8): 92.

[9] 倪雨, 许建平, 王金平, 等. 滞环调制全局滑模控制buck变换器设计[J]. 中国电机工程学报, 2010, 30(21): 1.

NI Yu, XU Jianping, WANG Jinping, et al. Design of global sliding mode control buck converter with hysteresis modulation[J]. Proceedings of the CSEE, 2010, 30(21):1.

[10] 孟凡刚, 王琳, 高蕾, 等. 一种用于Buck变换器的自适应滞环滑模控制方法[J]. 电机与控制学报, 2018, 22(9):1.

MENG Fangang, WANG Lin, GAO Lei, et al. Adaptive hysteresis sliding mode control method for Buck converter[J]. Electric Machines and Control, 2018, 22(9):1.

[11] 黄忻, 汪健, 陈宗祥,等. 基于FPGA的比例积分滑模控制DC/DC变换器研究[J]. 电机与控制学报,2016, 20(9):67.

HUANG Xin, WANG Jian, CHEN Zongxiang,et al. Design of proportional integral sliding mode controller for DCDC converter based on FPGA[J]. Electric Machines and Control, 2016, 20(9): 67.

[12] 高明, 王大志, 李召. 移相全桥变换器的PWM全阶鲁棒性滑模控制[J]. 电工技术学报, 2018, 33(10): 2293.

GAO Ming, WANG Dazhi, LI Zhao. A PWM full order robustness sliding mode control for phaseshifted fullbridge converter[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2293.

[13] GAO Ming, WANG Dazhi, LI Zhao. Fixed frequency pulsewidth modulation based integrated sliding mode controller for phaseshifted fullbridge converters[J]. IEEE Journals & Magazines, 2018, 6(1): 2181.

[14] MA Hao, LIU Qinwei, WANG Yuxi. Discrete pulse frequency modulation control with sliding mode implementation on LLC resonant DC/DC converter via inputoutput linearisation[J]. IET Power Electronics, 2014, 7(5): 1033.

[15] HAAINAM VU, WOOJIN CHOI.A novel dual fullbridge LLC resonant converter for CC and CV charges of batteries of electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2212.

[16] HU Sideng, DENG Junjun, MI CHRIS,et al.Optimal design of line level control resonant converters in plugin hybrid electric vehicle battery chargers[J]. IET Electrical Systems in Transportation, 2014, 4(1):21.

[17] FANG Zhijian, WANG Junhua, DUAN Shanxu, et al. Control of an LLC resonant converter using load feedback linearization[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 887.

[18] BUCCELL C, CECATI C, LATAFAT H, et al. Observerbased control of LLC DC/DC resonant converter using extended describing functions[J]. IEEE Transactions on Power Electronics, 2015, 30(10):5881.

[19] ZONG Sheng, LUO Haoze, LI Wuhua, et al. The oretical evaluation of stability improvement brought by resonant current loop for paralleled LLC converters[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4170.

(編辑:贾志超)