APP下载

基于液相色谱串联高分辨质谱的动物源农产品兽药残留检测研究综述

2020-04-17王卉刘庆菊韩平

江苏农业科学 2020年2期
关键词:兽药液相质谱

王卉 刘庆菊 韩平

摘要:液相色谱-高分辨质谱(LC-HRMS)具有高分辨率、高通量、高精确度等优势,在动物源农产品的兽药残留检测研究中显示出极大的潜力。本文综述了2014—2018年LC-HRMS检测动物源农产品中兽药残留的应用研究进展。其中,QuEChERS方法和有机溶剂提取法是常用的兽药残留提取方法,提取液用PSA、C18和氧化铝等吸附剂净化,绿色的样品前处理方法是未来的发展趋势;液相系统和色谱柱的改良,使兽药化合物得到更好的分离,提高了质谱检测的灵敏度;HRMS分辨率和灵敏度的提高,增强了LC-HRMS定性定量分析动物源农产品中兽药残留的能力;数据处理软件的开发和应用,提高了LC-HRMS在兽药残留检测中的工作效率。尽管LC-HRMS在兽药残留检测中取得了进展,但仍存在不足和发展空间。

关键词:液相色谱(LC)-高分辨质谱(HRMS);动物源农产品;兽药残留;样品前处理;色谱分离;质谱检测;数据处理

中图分类号: TS207.5+3

文献标志码: A

文章编号:1002-1302(2020)02-0057-08

收稿日期:2018-11-08

作者简介:王 卉(1982—),女,内蒙古鄂伦春人,博士,助理研究员,主要从事农产品安全检测工作。E-mail:wangh@brcast.org.cn。

通信作者:韩 平,副研究员,主要从事农产品安全检测工作。E-mail:hanp@brcast.org.cn。

兽药残留是畜禽产品质量的主要监控指标,兽药的不科学使用会导致动物体内药物蓄积,对人类及环境产生慢性、长远和积累性的影响。兽药经畜禽代谢后,通常以原药的形式进入环境中,引起土壤污染、水污染和植物蓄积,环境中的兽药残留再通过食物链进入人体,影响人体健康[1]。当人体中的兽药残留蓄积到一定量时,会引起人体毒性反应,导致癌变、畸变、基因突变等不良后果[2]。因此,动物源农产品的兽药残留问题已经成为国际上公认的农业和环境问题[3]。

液相色谱(LC)-高分辨质谱(HRMS)检测技术是动物源农产品中兽药残留检测分析的常规技术手段[4],LC能够分离非挥发性化合物和大部分挥发性化合物[5],HRMS具有高精确度、高通量、全扫描等优势,LC与HRMS联用可全面获取样品中化合物[6]的精确分子质量和碎片离子信息,区分同分异构体和同重化合物,鉴定未知物[7]。

在LC-HRMS检测动物源农产品中兽药残留的研究中,首先通过样品前处理来提取和净化样品中的兽药化合物,前处理方法的选择直接影响检测结果。经前处理后的样品,通过液相色谱进行分离,以降低基质的复杂程度,获得高质量的质谱数据[8-9]。然后再用HRMS进行检测分析,常用HRMS有飞行时间(TOF)质谱、四级杆飞行时间(QTOF)质谱、轨道阱质谱(Orbitrap)、线性离子阱-轨道阱质谱(LTQ-Orbitrap)、四级杆-轨道阱质谱(Q-Orbitrap)等[10-13],随着HRMS分辨率和灵敏度的不断提高[14-17]和质谱采集数据量的增大,需不断开发和优化相应软件来处理数据。

本文概述了2014—2018年LC-HRMS在动物源农产品的检测研究中,涉及样品前处理、液相分离、质谱检测、数据处理等方面的研究现状,并对该技术未来的发展趋势进行展望,旨在为此类研究提供参考。

1 样品前处理

提取和净化是LC-HRMS检测动物源农产品中兽药残留的主要步骤,溶剂提取法和QuEChERS(quick,easy,cheap,effective,rugged,safe)方法是兽药残留常用的提取方法[18-26]。提取后得到的样品中可能存在共提物,会增加检测噪声,因此须进一步净化处理将其去除,以降低检测的检测限和定量限。

当采用溶剂提取法提取动物源农产品中的兽药残留时,单一溶剂提取可能无法取得满意效果,此时可采用多种溶剂混合提取,如Chiesa等用有机溶剂提取鱼中的21种抗生素时发现,单独使用浓度为70%的甲醇(含0.1%甲酸)提取,或者单独使用乙腈(含0.1%甲酸)对样品进行提取,均不能使所有目标化合物取得满意的回收率,因此将试验分为2步,首先用酸化甲醇提取,再用酸化乙腈提取,最终获得了满意的回收率[27]。此外,可以在提取过程中应用其他提取方法辅助提取来降低检测限,如2015年,Cepurnieks等用5%三氯乙酸 (TCA)溶液提取牛奶中的26种抗生素[28],检测浓度<100 ng/mL。2018年,Saluti等用0.25%TCA水溶液提取牛奶中14種抗生素时,引入超声来辅助提取,使检测限≤33 μg/kg[29]。

QuEChERS方法是一种通用的前处理方法[30],可同时提取样品中的多种兽药残留。根据化合物的不同性质,可改变QuEChERS方法中溶剂、酸、盐、吸附剂等的种类和用量,提高兽药残留提取回收率[31],除方法的改进外,QuEChERS方法提取自动前处理平台的应用是此项术进步的重要表现,自动化处理不仅减少了试剂对环境的污染,同时减少了人为因素对试验的影响,如Jia等应用QuEChERS自动前处理平台提取了鲈鱼中的24种大环内酯类药物及其代谢产物[32-45]。

净化处理是提高兽药检测灵敏度的重要方法。常用的吸附剂有N-丙基乙二胺(PSA)、C18、氧化铝和硅酸镁等。近年来,科研人员对吸附剂净化效果的研究不断细化,如Chen等用QuEChERS方法提取鸡肉中的16种β-内酰胺类药物,试验用QuEChERS净化管(150 mg C18,300 mg PSA 和900 mg 无水硫酸镁)净化提取液,上机检测的检测限(LOD)为0.01~0.35 μg/kg,定量限(LOQ)为003~1.16 μg/kg[23],Lopez-Garcia等也采用QuEChERS方法来提取鸡肉中的兽药残留[22],并评价了 PSA、硅酸镁、C18键合锆胶(Z-Sep+)、氧化铝和C18等吸附剂的净化效果,发现经硅酸镁和氧化铝净化后的检测灵敏度最好,而其他的吸附剂对目标化合物有吸附,导致灵敏度低。

动物源农产品中兽药残留提取和净化方法的选择,要基于样品基质的理化性质和研究目的,如果前处理方式不当,可能导致基质干扰严重,有些重要的化合物未被提取,或在提取过程中丢失,进而影响研究结果。

2 色谱分离

在LC-HRMS检测动物源农产品的兽药残留研究中,LC分离能够降低样品的复杂程度,利于质谱对样品进行准确全面的检测。与HRMS串联使用的LC,已经从高效液相色谱(HPLC)改进为超高效液相色谱(UPLC),UPLC的分辨率、灵敏度和稳定性都优于HPLC。同时,色谱柱的改良也有力地推动了LC-HRMS在动物源农产品兽药残留检测中的应用。

在兽药残留的液相色谱分析研究中,以硅胶为基质的反相色谱柱在兽药检测中的应用最为广泛[46]。其中,反相C18色谱柱可保留非极性化合物,而苯基柱适合分析亲水性化合物[47]。与反相色谱柱相比,亲水相互作用色谱柱(HILIC)对极性强的兽药化合物的保留效果更好[48-49]。而且色谱柱填料的改进使色谱柱性能更加优异,具体表现在填料颗粒的体积变小,超高效液相色谱柱的填料颗粒小于2 μm,因此分离效果更好,峰宽变窄[50],色谱的峰容量得到提高,分离效果得到改善,减少了质谱中的离子抑制。液相色谱柱可承受的压力增加,高达 1 500 bar[51],对样品的洗脱速度加快,缩短了样品的分析时间[52]。Zhao等在应用LC-Q-Orbitrap测定斑石鲷中的80种兽药残留(兽残)的研究中,对6种反相色谱柱分离样品的效果进行了比较,其中色谱柱直径和填料孔径尺寸最小的亚乙基杂化桥颗粒(BEH) C18色谱柱的分离能力、效率和灵敏度优于其他5种色谱柱[36]。

近年来,微流液相色谱(μLC)、毛细管液相色谱(CLC)及纳升液相色谱(nano LC)与HRMS的联用提高了HRMS的检测灵敏度[53-54],是未来LC-HRMS检测发展的重要方向。Alcantara-Duran等应用nano LC-HRMS定量检测蜂蜜、牛奶、牛肉和鸡蛋等样品中的87种兽药,将前处理后的样品稀释100倍,nano LC-HRMS仍能够检测到溶液中的目标化合物[37],极大地提高了检测灵敏度。Mirabelli等用nano LC-HRMS检测杀虫剂的检测限可达到10 pg/mL[55]。

3 质谱检测

电喷雾电离(ESI)源是液相色谱-质谱(LC-MS)应用中最常用的接口之一。ESI电离是一种软电离方式,电离效率高。Araceli等采用ESI、大气压化学电离(APCI)和大气压光电离(APPI)3种电离方式对5种化合物的电离效果进行比较研究,结果表明,化合物经ESI电离后,产生的峰面积和信噪比明显高于APCI和APPI[56]。在LC-MS的应用研究中,超过80%的研究选用了ESI离子源,而APCI和APPI電离方式报道较少[57]。

样品经离子源电离后,进入质谱检测。HRMS具有高分辨率,能提供高精确度的全扫描数据,有良好的定性能力[11,58-60]。特别是当检测的同分异构体或同重化合物的保留时间和精确质量数相同而无法区分时,可以通过碎片离子信息的差异作进一步的区分。因此,碎片离子信息采集的是否全面,是评价高分辨质谱性能的重要评价指标。目前,常用的HRMS数据采集模式主要分为数据依赖型采集(DDA)和数据非依赖型采集(DIA)。DDA采集时,质谱自动从全扫描一级质谱(FS MS)转换成全扫描二级质谱(FS MS/MS),后者是在前者的基础上开发出来的,包括离子碎片采集(AIF)和MSE采集模式等,能够获得所检测质量范围内所有的母离子和碎片离子信息。此外,离子淌度技术也是HRMS分离同分异构体和同重化合物的重要技术,该技术在电场中根据离子的大小、结构和电荷对其进行分离[61-62]。

HRMS的分辨率随硬件的发展不断提高。如Qtof是四级杆与飞行时间质谱串联的仪器,它在实际检测中的分辨率<30 000,主要用来做定性试验,可提供一级和二级质谱数据作为定性判断依据,Nacher-Mestre等用UPLC- Xevo G2 Qtof定性筛查了动物加工副产品中的150种兽药,当基质加标量为0.2 mg/kg时可检测出75%兽药,当基质加标量为0.1 mg/kg 时可检测出65%的兽药,当加标量为0.02 mg/kg时可检测出30%的兽药[42]。而 LTQ-Orbitrap 的分辨率高于Qtof,分辨率设置范围为7 500~100 000,可以提供多级质谱数据作定性定量研究。Saito-Shida等对146种化合物进行定量测定时,比较了应用LC-Orbitrap-MS建立的方法和应用LC-QTOF-MS建立方法的线性、回收率、精密度和基质效应,结果表明Orbitrap-MS的选择性和灵敏度优于QTOF-MS[63],而且LTQ-Orbitrap的多级质谱(MSn)数据采集模式可以为兽药及其代谢物的鉴定提供更丰富的碎片离子信息。比LTQ-Orbitrap性能更好的Q-Orbitrap分辨率可以达到140 000,Jia等应用UHPLC-Q-Orbitrap对鲈鱼中的24种大环内酯类药物及其代谢产物做定性定量检测,其中确定限(CCα)为 0.12~3.61 μg/kg,检测容量(CCβ)为0.20~6.02 μg/kg[32],具体检测结果见表1。

HRMS最初主要被应用于定性筛查研究中,目前随着HRMS硬件的不断进步,HRMS的分辨率和灵敏度得到提高,使基质干扰问题得以解决[5,64],HRMS在全扫描模式下的选择性与三重四级杆在选择反应监测(selected reaction monitoring,SRM)模式下的选择性一样好,因此被越来越多地应用于兽药定量研究中。4 数据分析

在LC-HRMS检测动物源农产品兽药残留的研究中,根据研究目的不同,可分为靶向检测数据处理和非靶向检测数据处理。在靶向检测研究中,数据处理步骤包括原始数据采集、生成参考数据库(自建数据库或在线数据库)、化合物的分离鉴定、数据的标准化和量化、数据分析步骤一体化(自动处理工具)。其中,数据的采集主要采用仪器供应商提供的软件[39-41,44],如Thermo Fisher Scientific公司的Xcalibur软件、Waters公司的MassLynx软件、AB公司的Multiquant软件、Agilent公司的Mass Hunter等,常用的数据处理软件见表2。数据分析所用数据库主要有2类,一类是由科研人员自己建立的数据库,另一类是在线数据库,如Chemspider、Metlin、Drug Bank等。通过搜索化合物的精确质量数,可以得到与之对应的化合物,但是存在以下问题:数据库中所含化合物不够全面;对给定的精确质量数不能提供准确的分子结构;或对同一精确质量数给出多个化合物。因此,须根据元素组成,对化合物分子式进行推断,并结合特征碎片离子信息鉴定化合物,最后通过检测标准品来确证。在使用数据处理软件时,参数设置会影响研究结果,例如,若质量提取窗口设置范围过宽,可能有假阳性检出。为避免假阳性或假阴性,须要对质量提取窗口的宽度范围进行试验,如Jia等试验了质量提取窗口设置成1~10 μg/kg时,数据处理软件对罗非鱼中兽药及其代谢物的选择性,发现当质量提取窗口为3 μg/kg时,目标分析物的提取效果最好[39]。

在动物源农产品的非靶向检测研究中,数据分析步骤为原始数据采集、数据保存和转化、数据导入、数据压缩和矩阵建立、数据归一化、特征检测、生物标志物筛查、鉴定。多元统计分析方法如主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)等可识别动物源样品中的兽药及其代谢产物,通用的商业软件可能无法直接处理LC-HRMS检测的原始数据,因此须要对原始数据进行格式转换,转换成开放性的数据格式之后便可进行数据处理[65-66]。近年来,随着数据处理软件的升级,自动化处理的程度越来越高。如Morales-Gutierrez等应用UPLC-LTQ-Qrbitrap MS检测鸡的肉、肝、肾中的阿莫西林及其代谢产物时,用PCA方法对数据进行处理,获得了区分用药组和非用药组的化合物,试验测得的原始数据首先经Xcalibur软件转化成mzXML文件,再用MzMine软件和XCMS软件来处理此数据,得到可以用Matlab处理的数据矩阵,最后用PCA法处理的数据矩阵,得到组间差异化合物[35]。而在Arias等用OPLS-DA模型识别用药猪与未用药猪之间差异的研究[67]中,数据前处理仅使用了TransOmics软件[沃特世科技(上海)有限公司],经归一化、标准化的数据直接导入SIMCA软件(德国赛多利斯集团)进行多元统计分析。自动处理软件的开发,简化了处理过程,缩短了处理时间。

5 展望

动物源农产品中的兽药残留直接危害公众健康,因此受到消费者和监管部门的重视。高效准确地检测动物源农产品中的兽药残留情况,对保证动物源农产品的质量安全具有重要意义。基于LC-HRMS的兽药残留检测方法已经发展成为一项非常重要的检测手段,绿色、高效的提取方法是未来 LC-HRMS 前处理方法的发展方向,色谱系统和色谱柱填料的进步,特别是将新型的色谱分离技术如nanoLC、μLC和CLC等与HRMS相结合是减少基质效应、提高分离效率的发展方向,HRMS分辨率的不断提高以及应用软件的优化会进一步促进LC-HRMS技术在动物源农产品兽药残留检测中的应用研究。

参考文献:

[1]王小平. 兽药残留对生态环境的影响及人体的危害[J]. 山东畜牧兽医,2016(6):47-48.

[2]童建军,孙稳平,朱育红. 兽药残留危害分析与管控[J]. 中国畜禽种业,2017(4):34-37.

[3]汤晓艳,郑 锌,王 敏,等. 畜禽產品兽药残留限量标准现状与发展方向[J]. 食品科学技术学报,2017(4):8-12.

[4]Kaufmann A. The current role of high-resolution mass spectrometry in food analysis[J]. Analytical and Bioanalytical Chemistry,2012,403(5):1233-1249.

[5]Masia A,Suarez-Varela M M,Llopis-Gonzalez A,et al. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry:a review[J]. Analytica Chimica Acta,2016,936:40-61.

[6]Rochat B. From targeted quantification to untargeted metabolomics:why LC-high-resolution-MS will become a key instrument in clinical labs[J]. Trends in Analytical Chemistry,2016,84(suppl1):151-164.

[7]Rathahao-Paris E,Alves S,Junot C A. High resolution mass spectrometry for structural identification of metabolites in metabolomics[J]. Metabolomics,2016,12(1):10.

[8]Gao P,Xu G W. Mass-spectrometry-based microbial metabolomics:recent developments and applications[J]. Analytical and Bioanalytical Chemistry,2015,407(3):669-680.

[9]Rainville P D,Theodoridis G,Plumb R S. Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping[J]. Trends in Analytical Chemistry,2014,61:181-191.

[10]Delatour T,Racault L,Bessaire T A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges[J]. Food Additives and Contaminants Part A(Chemistry Analysis Control Exposure & Risk Assessment),2018,35(4):632-645.

[11]Fu Y Q,Zhao C X,Lu X,et al. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography-high resolution mass spectrometry[J]. Trends in Analytical Chemistry,2017,96(SI):89-98.

[12]Kaufmann A,Walker S. Comparison of linear intrascan and interscan dynamic ranges of orbitrap and ion-mobility time-of-flight mass spectrometers[J]. Rapid Communications in Mass Spectrometry,2017,31(22):1915-1926.

[13]Fu Y,Zhou Z,Kong H,et al. Non-targeted screening method for illegal additives based on ultra high performance liquid chromatography-high resolution mass spectrometry[J]. Analytical Chemistry,2016,88(17):8870-8877.

[14]Kaufmann A,Butcher P,Maden K,et al. Quantitative and confirmative performance of liquid chromatography coupled to high-resolution mass spectrometry compared to tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2011,25(7):979-992.

[15]Morin L P,Mess J N,Garofolo F. Large-molecule quantification:sensitivity and selectivity head-to-head comparison of triple quadrupole with Q-TOF[J]. Bioanalysis,2013,5(10):1181-1193.

[16]Grund B,Marvin L,Rochat B. Quantitative performance of a quadrupole-orbitrap-MS in targeted LC-MS determinations of small molecules[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,124:48-56.

[17]Kaufmann A,Butcher P,Maden K,et al. Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry[J]. Analytica Chimica Acta,2015,862:41-52.

[18]Moretti S,Dusi G,Giusepponi D A,et al. Screening and confirmatory method for multiclass determination of 62 antibiotics in meat[J]. Journal of Chromatography A,2016,1429:175-188.

[19]Cotton J,Leroux F,Broudin S,et al. High-resolution mass spectrometry associated with data mining tools for the detection of pollutants and chemical characterization of honey samples[J]. Journal of Agricultural and Food Chemistry,2014,62(46):11335-11345.

[20]Turnipseed S B,Lohne J J,Storey J M,et al. Challenges in implementing a screening method for veterinary drugs in milk using liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2014,62(17):3660-3674.

[21]Lopez-Garcia M,Romero-Gonzalez R,Garrido F A. Determination of rodenticides and related metabolites in rabbit liver and biological matrices by liquid chromatography coupled to orbitrap high resolution mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,137:235-242.

[22]Lopez-Garcia M,Romero-Gonzalez R,Garrido F A. Determination of steroid hormones and their metabolite in several types of meat samples by ultra high performance liquid chromatography-orbitrap high resolution mass spectrometry[J]. Journal of Chromatography A,2018,1540:21-30.

[34]Wang J,Leung D. The challenges of developing a generic extraction procedure to analyze multi-class veterinary drug residues in milk and honey using ultra-high pressure liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Drug Testing and Analysis,2012,4(Supplement S1):103-111.

[35]Morales-Gutierrez F J,Hermo M P,Barbosa J,et al. High-resolution mass spectrometry applied to the identification of transformation products of quinolones from stability studies and new metabolites of enrofloxacin in chicken muscle tissues[J]. Journal of Pharmaceutical and Biomedical Analysis,2014,92:165-176.

[36]Zhao F,Gao X,Tang Z X,et al. Development of a simple multi-residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry[J]. Journal of Chromatography B(Analytical Technologies in the Biomedical and Life Sciences),2017,1065:20-28.

[37]Alcantara-Duran J,Moreno-Gonzalez D,Gilbert-Lopez B,et al. Matrix-effect free multi-residue analysis of veterinary drugs in food samples of animal origin by nanoflow liquid chromatography high resolution mass spectrometry[J]. Food Chemistry,2018,245:29-38.

[38]Jia W,Shi L,Chu X G. Untargeted screening of sulfonamides and their metabolites in salmon using liquid chromatography coupled to quadrupole orbitrap mass spectrometry[J]. Food Chemistry,2018,239:427-433.

[39]Jia W,Chu X G,Chang J,et al. High-throughput untargeted screening of veterinary drug residues and metabolites in tilapia using high resolution orbitrap mass spectrometry[J]. Analytica Chimica Acta,2017,957:29-39.

[40]Nunes K S,Vallim J H,Assalin M R,et al. Depletion study,withdrawal period calculation and bioaccumulation of sulfamethazine in tilapia (Oreochromis niloticus) treated with medicated feed[J]. Chemosphere,2018,197:89-95.

[41]Arsand J B,Jank L,Martins M T,et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry[J]. Talanta,2016,154:38-45.

[42]Nacher-Mestre J,Ibanez M,Serrano R,et al. Investigation of pharmaceuticals in processed animal by-products by liquid chromatography coupled to high-resolution mass spectrometry[J]. Chemosphere,2016,154:231-239.

[43]Hiba A,Carine A,Haifa A R,et al. Monitoring of twenty-two sulfonamides in edible tissues:investigation of new metabolites and their potential toxicity[J]. Food Chemistry,2016,192:212-227.

[44]Du L J,Yi L,Ye L H,et al. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent[J]. Journal of Chromatography Acta,2018,1537:10-20.

[45]Junza A,Saurina J,Barron D,et al. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry[J]. Journal of Chromatography Acta,2016,1460:92-99.

[46]Feng S X,Chiesa O A,Kijak P,et al. Determination of ceftiofur metabolite desfuroylceftiofur cysteine disulfide in bovine tissues using liquid chromatography-tandem mass spectrometry as a surrogate marker residue for ceftiofur[J]. Journal of Agricultural and Food Chemistry,2014,62(22):5011-5019.

[47]Iglesias A,Nebot C,Miranda J M,et al. Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry[J]. Environmental Science and Pollution Research,2012,19(8):3235-3249.

[48]Chung S W,Lam C H. Development of a 15-class multiresidue method for analyzing 78 hydrophilic and hydrophobic veterinary drugs in milk,egg and meat by liquid chromatography-tandem mass spectrometry[J]. Analytical Methods,2015,7(16):6764-6776.

[49]Diez C,Guillarme D,Spoerri A S,et al. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2015,882:127-139.

[50]胡海燕,朱馨樂,胡 昊,等. 超高效液相色谱简介及应用比较[J]. 中国兽药杂志,2010,44(4):48-50.

[51]la Barbera G,Capriotti A L,Cavaliere C A,et al. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages[J]. Food Research International,2017,100(1):28-52.

[52]Theodoridis G A,Gika H G,Want E J,et al. Liquid chromatography-mass spectrometry based global metabolite profiling:a review[J]. Analytica Chimica Acta,2012,711:7-16.

[53]Kim D,Kim B,Hyung S W,et al. An optimized method for the accurate determination of nitrofurans in chicken meat using isotope dilution-liquid chromatography/mass spectrometry[J]. Journal of Food Composition and Analysis,2015,40:24-31.

[54]Perez-Fernandez V,Dominguez-Vega E,Chankvetadze B,et al. Evaluation of new cellulose-based chiral stationary phases Sepapak-2 and Sepapak-4 for the enantiomeric separation of pesticides by nano liquid chromatography and capillary electrochromatography[J]. Journal of Chromatography A,2012,1234:22-31.

[55]Mirabelli M F,Wolf J C,Zenobi R. Pesticide analysis at ppt concentration levels:coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2016,408(13):3425-3434.

[56]Garcia-Ac A,Segura P A,Viglino L,et al. Comparison of APPI,APCI and ESI for the LC-MS/MS analysis of bezafibrate,cyclophosphamide,enalapril,methotrexate and orlistat in municipal wastewater[J]. Journal of Mass Spectrometry,2011,46(4):383-390.

[57]Holcapek M,Jirasko R,Lisa M. Recent developments in liquid chromatography-mass spectrometry and related techniques[J]. Journal of Chromatography Acta,2012,1259:3-15.

[58]夏 曦,李晓薇,丁双阳,等. 液相色谱-高分辨质谱在兽药残留分析中的应用进展[J]. 质谱学报,2011(6):333-340.

[59]Lehotay S J,Sapozhnikova Y,Mol H G. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry[J]. Trends in Analytical Chemistry,2015,69(SI):62-75.

[60]Perez-Ortega P,Lara-Ortega F J,Garcia-Reyes J F,et al. A feasibility study of UHPLC-HRMS accurate-mass screening methods for multiclass testing of organic contaminants in food[J]. Talanta,2016,160:704-712.

[61]Porta T,Varesio E,Hopfgartner G. Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry[J]. Analytical Chemistry,2013,85(24):11771-11779.

[62]Regueiro J,Negreira N,Hannisdal R,et al. Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry[J]. Food Control,2017,78:116-125.

[63]Saito-Shida S,Hamasaka T,Nemoto S A. Multiresidue determination of pesticides in tea by liquid chromatography-high-resolution mass spectrometry:comparison between orbitrap and time-of-flight mass analyzers[J]. Food Chemistry,2018,256:140-148.

[64]Kellmann M,Muenster H,Zomer P,et al. Full scan MS in comprehensive qualitative and quantitative residue analysis in food and feed matrices:how much resolving power is required?[J]. Journal of the American Society for Mass Spectrometry,2009,20(8):1464-1476.

[65]Orchard S,Montechi-Palazzi L W,Binz P A,et al. Five years of progress in the standardization of proteomics data 4(th)annual spring workshop of the hupo-proteomics standards initiative April 23-25,2007 ecole nationale superieure(ens),Lyon,France[J]. Proteomics,2007,7(19):3436-3440.

[66]扈 慶,方 向. mzXML在质谱数据共享中的应用[J]. 计算机与应用化学,2007,24(12):1635-1637.

[67]Arias M,Chevallier O P,Graham S F,et al. Metabolomics reveals novel biomarkers of illegal 5-nitromimidazole treatment in pigs. Further evidence of drug toxicity uncovered[J]. Food Chemistry,2016,199:876-884.华兆晖,范世航,李 俊. 甘蓝型油菜启动子pBnaC05g31880D的克隆与功能分析[J]. 江苏农业科学,2020,48(2):65-72.

猜你喜欢

兽药液相质谱
兽药残留检测中的优化与应用
高效液相色谱法测定水中阿特拉津
中兽药在家禽养殖中的作用与应用
吹扫捕集-气相色谱质谱联用测定水中18种挥发性有机物
兽药
反相高效液相色谱法快速分析紫脲酸
枣霜化学成分的色谱质谱分析
Modeled response of talik development under thermokarst lakes to permafrost thickness on the Qinghai-Tibet Plateau
超高效液相色谱法测定藻油中的DPA和DHA
兽药GSP认证后的思考