APP下载

董志塬沟头溯源侵蚀过程及崩塌中孔隙水压力变化

2019-11-08史倩华王文龙郭明明陈卓鑫冯兰茜

农业工程学报 2019年18期
关键词:水流量坡度径流

史倩华,王文龙,,郭明明,陈卓鑫,冯兰茜,赵 满

董志塬沟头溯源侵蚀过程及崩塌中孔隙水压力变化

史倩华1,王文龙1,2※,郭明明1,陈卓鑫1,冯兰茜2,赵 满1

(1. 西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,杨凌 712100;2. 中国科学院水利部水土保持研究所,杨凌 712100)

为研究董志塬沟头溯源侵蚀过程及孔隙水压力变化规律,采用模拟降雨+放水冲刷的方法,研究集水区坡度(1°、3°、5°、7°)和放水流量(3.0、3.6、4.8、6.0、7.2 m3/h)对董志塬沟头溯源侵蚀过程和孔隙水压力特征值的影响。结果表明:1)崩塌发生频率由试验初期0~30 min时的6.29%增加到150~180 min时的27.48%。2)放水流量为3.0~7.2 m3/h时,产沙率随试验时间呈对数函数减小。产沙量随坡度和放水流量的增加而加大,建立了产沙量与二者间的多元线性回归方程。3)坡度为1°~7°时,崩塌会增加22.75%~324.59%的产沙率,产沙率突变点出现时间相较于崩塌而言存在“滞后”现象。4)孔隙水压力随试验时间呈显著线性或对数函数关系,孔隙水压力的上升是影响溯源侵蚀崩塌发生的关键因素。研究结果可为黄土高塬沟壑区生态治理提供参考。

侵蚀;崩塌;沙;溯源;孔隙水压力;黄土高塬沟壑区;模拟降雨及冲刷试验

0 引 言

黄土塬为顶面平坦开阔的黄土高地,其顶面中心部位平坦,边缘倾斜3°~5°,周围被沟谷切割,代表黄土的最高堆积面,是黄土高原地区主要的粮食生产基地。主要黄土塬包括董志塬、早胜塬、宫河塬、洛川塬、长武塬等[1]。其中,陇东董志塬以其面积最大、黄土层最厚,而享有“天下第一塬”的美称。然而,由于长期的溯源侵蚀,沟头至塬面中心距离不断缩小,塬面面积逐渐萎缩,给当地生态建设与经济社会可持续发展造成严重威胁[1]。

溯源侵蚀是指与地表径流运动方向相反的侵蚀,是沟蚀的一种形式[2],其发生强度主要受降雨和径流,地形,土壤,植被和人类活动影响[3-8]。其中,雨滴动能和径流动能是引起溯源侵蚀的主要动力,一般而言,降雨量越大,径流冲刷能力越强,土壤侵蚀量也越大。坡度和坡长主要通过影响坡面的受雨面积及雨量来影响坡面径流及入渗过程,进而影响土壤侵蚀。此外,土壤和植被通过影响土壤抗蚀性影响土壤侵蚀强度。以往国内外学者虽然对溯源侵蚀过程机理做了一定研究,并得出了相关结论,但黄土塬区沟头溯源侵蚀研究相对滞后,研究文献较少,严重制约了对该区沟头溯源侵蚀的深入认识,关于孔隙水压力对溯源侵蚀的影响更是少有涉及。

目前,国内外学者对孔隙水压力的的研究主要集中在泥石流预警[9]、崩塌及滑坡监测[10]、边坡稳定性分析[11-17]以及孔隙水压力对岩土力学参数的影响[18]方面,研究方法主要是人工模拟降雨试验[13,19-21],此外,运用Geo-slope[19]、Flac[20]、Geostudio[21]和PLAXIS[16]等有限元软件进行数值模拟也是研究的热点之一。Rockwell[22]发现地下水通过增大土壤孔隙水压力和降低土壤对地表径流的抗剪切力来影响可蚀性沟头的形成。溯源侵蚀过程中往往伴随着崩塌的发生,定量描述孔隙水压力变化对崩塌的影响,对于深刻认识沟头溯源侵蚀规律,促进溯源侵蚀模拟技术的发展具有重要的意义。故本文采用野外模拟降雨+放水冲刷相结合的方法,研究董志塬沟头在不同塬面坡度和放水流量下的溯源侵蚀过程和孔隙水压力变化情况,以期丰富关于溯源侵蚀的基础研究,为黄土高塬沟壑区的沟蚀治理提供参考。

1 材料与方法

1.1 研究区概况

本研究于甘肃省庆阳市西峰区的南小河沟流域(图1)进行(35°41′~35°44′N, 107°30′~107°37′E,海拔1 050~1 423 m),该流域为黄河水利委员会西峰水土保持科学试验站的试验流域,主要土壤类型为黄绵土和黑垆土[23]。试验用地选择南小河沟塬面农户休闲地(35°42′49″N,107°32′44″E)。南小河沟流域面积36.3 km2,其中塬面面积20.5 km2,占总土地面积的56.5%,沟壑面积15.8 km2,占总土地面积的43.5%[24]。流域总长度13.6 km,沟道平均比降2.8%,沟道密度2.7 km/km2,流域内有大小支毛沟183条,土壤侵蚀模数4 350 t/(km2·a)[25]。沟谷和塬面分别是南小河沟泥沙和径流的主要来源,地貌类型属黄土高塬沟壑区[26]。根据西峰气象站50 a降雨资料统计分析,该地多年平均降水量为557.7 mm,降水年际变化大,主要集中在5-10月,其中7-9月占全年降水量的63.0%,年平均气温8.7 ℃,蒸发量1 475 mm,无霜期155 d,干燥度1.3~1.8。

图1 试验区地理位置示意图

1.2 沟头模型建立及仪器布设

沟头溯源侵蚀试验小区位于南小河沟岘子村塬面休闲地,休闲地规格为60 m×12 m。试验前用装载机将表土剥离,在宽度方向上修建4个砖砌实体溯源侵蚀模型,由集水区、沟头和沟床3部分组成(图2a)。其中集水区为裸地,长5 m、宽1.5 m、坡度设置为1°、3°、5°和7°共4个梯度;沟头高0.9 m、宽1.5 m;沟床长1 m、宽1.5 m、坡度与集水区坡度一致。填土过程中分层控制容重填实,填土完成后将孔隙水压力计分层钻入。其中沟壁人工一致修整为“平整、陡立、无内凹洞”的初始侵蚀形态。小区高2.05 m处搭建自制降雨器,以保证雨滴降落到地面时能达到最大雨强。稳流槽采用半开口设计,集水区和沟床部位采用浅V型设计,以模拟集中径流冲刷过程。孔隙水压力采用北京瑞恒常泰科技有限公司生产的型号为的HC-25的孔隙水压力计进行测量,量程范围为−50~50 kPa。沿斜坡走向以及倾向上分别距沟头30、60和100 cm处钻设60 cm深的孔道,水压力传感器埋设方式为垂直于坡向30和60 cm布设(图2b)。在埋设前将孔隙水压力计放入清水中浸泡4~5 h,以排除孔隙水压力计空腔及透水石内的空气,提高测试精度。试验过程中通过配套的数据采集仪,将孔隙水压力值实时传入笔记本电脑。孔隙水压力数据采集频率设置为10次/s。

注:1~6为孔隙水压力探头编号,下同。

1.3 试验过程与数据观测

通过野外调研,发现塬面坡度较为平缓,多集中在1°~7°,结合当地气象站多年自然降雨气象资料分析,将本试验主要指标设计为:降雨强度(0.8 mm/min)、放水流量(3.0、3.6、4.8、6.0、7.2 m3/h)、集水区坡度(1°、3°、5°、7°)。试验用水由50 m3水池供应;流量采用安装在供水管上的阀门和流量计进行控制和率定。径流进入试验小区前先通过稳流槽,可以保证径流进入小区时的初始流速基本一致。各小区连续冲刷6次,每次试验时间为30 min,整个试验过程持续180 min。试验开始前,在小区内进行降雨强度为20 mm/h的预降雨,直至表面充分湿润但又无地表径流产生。率定雨强时前将6个规格相同的盛雨容器均匀放置,待降雨稳定后,掀开盛雨容器同时计时,记录2 min内降雨量以率定降雨强度,多次率定值间的误差不超过5%,此外,降雨均匀度要达到85%。放水试验开始后,每隔2 min在急流槽出口处接取径流泥沙样,试验过程中实时记录崩塌发生的时间和位置。试验过程中观测孔隙水压力变化,记录探头出露时间。试验结束后,将径流泥沙样静置后放入105℃烘箱烘干48 h至恒质量。

2 结果与分析

2.1 溯源侵蚀过程

2.1.1 溯源侵蚀崩塌特性

各试验过程中崩塌发生时间及频率如表1所示,由表可知,崩塌发生次数随试验场次呈现逐渐增加的变化趋势,当模拟降雨+放水冲刷试验从开始进行到第180 min时的各时段内,崩塌发生次数占总崩塌次数的频率由0~30 min内的6.29%递增到150~180 min内的27.48%。

表1 不同集水区坡度小区各时段崩塌频度

在试验初期,试验沟道以下切溯源和沟壁扩张为主,导致崩塌频率较低。当沟道持续发育,受径流持续冲刷作用,沟壁两侧土壤向沟道内部崩塌,增大了崩塌频率。此外,坡面集中径流沿集水区进入沟头时,坡面径流转化为贴壁流(on-wall flow)和射流(jet flow)2种形式[5],其中,沟头底部经过贴壁流冲掏后形成临空面,受重力和水力双重作用,易导致土体失稳发生大规模沟头整体崩塌。

2.1.2 溯源侵蚀产沙特性

不同集水区坡度和放水流量下产沙率随时间变化如图3所示,由图可知:各放水流量条件下产沙率随时间呈现先波动减小后渐趋稳定的变化趋势。产沙率S随试验历时呈极显著对数函数相关(S=-·ln+,=0.64~5.10,=4.51~30.09,2=0.39~0.89,=90,<0.01),与Zhang等[8]对干热河谷地区冲沟含沙量的研究结果相似。常数和随坡度和放水流量的增加整体呈增大趋势,说明平均产沙率与集水区坡度和放水流量呈正相关。

图4为不同试验条件下产沙量变化。各塬面坡度(1°、3°、5°、7°)下侵蚀量分别为325.66~454.13、471.13~787.71、737.34~1 044.18和1 073.16~1 533.60 kg。产沙量随坡度和放水流量的增加基本呈增加的趋势。在坡度不变的情况下,流量每增加1.2 m3/h,产沙量增加16.17~141.18 kg;流量每增加1倍,产沙量增加36.18~319.27 kg。当放水流量不变时,坡度增加2°,产沙量增加145.46~489.42 kg,增加幅度介于29.16%~60.26%。经多元回归分析,建立了产沙量与坡度和放水流量的二元一次方程:S=150.98+66.95−136.58(2=0.96,=20,<0.01)。式中S为产沙量,kg,为坡度,(°),为放水流量,m3/h。放水流量越大,地表径流紊动性越强;随着坡度增加,径流所具有的势能增加,动能加大,造成产沙量增大。覃超等[27]对黄土坡面细沟沟头溯源侵蚀的研究亦表明,坡面产沙随流量和坡度的增加而增大。在相同试验历时下,大坡度和大流量的试验处理崩塌频率更高,沟头长度更长,下切侵蚀、沟道侧蚀和溯源侵蚀均更为剧烈,土壤侵蚀更为严重。

2.1.3 崩塌对产沙率的影响

将崩塌发生时段与产沙率突变值产生时间进行对比分析可知(图3),坡度为1°、3°、5°和7°时,崩塌会增加34.12%%~97.48%,22.75%~166.48%,48.36%~324.59%和36.55%~131.76%的含沙率。含沙率突变点的出现时间相较崩塌时间而言存在“滞后”现象,即崩塌发生后一段时间,产沙率才出现突变甚至无明显变化。这主要是由于集水区和沟头部位由于崩塌或滑塌产生的泥沙,经重力作用进入沟床。此外,沟床处淤积的泥沙还包括射流产生的跌水潭侵蚀[28](plunge pool erosion)。当径流冲刷及搬运能力较强,沟床处的泥沙被一次性搬运或者大部分被搬运时,含沙率会出现突增。当径流搬运能力较弱时,崩塌堆积在沟床的土体无法直接被搬运,在径流连续冲刷下,崩塌土体逐渐被破坏剥蚀,造成含沙率变化较小。

图3 产沙率随试验时间变化

图4 不同坡度及放水流量条件下产沙量变化

2.2 孔隙水压力变化过程

分析孔隙水压力(突增值产生前)与试验时间的关系可知(为减少数据量,产流后每30 s求1次平均值,即300个数据取1次平均值,孔隙水压力随试验时间逐渐减小,二者呈显著线性或对数函数关系(表2)。=−·ln+(=0.01~0.74;=0.51~2.64,=48~180,<0.01);=−·+(=0.01~0.04;=0.38~1.97,2=0.50~0.98,=60~165,<0.01)。马超[9]通过分析蒋家沟原型监测对2013年3场降雨激发泥石流土体孔隙水压力变化,亦得出孔隙水压力与时间存在对数关系的结论。此外,王俊光等[20,29]认为随着降雨的持续进行,孔隙水压力逐渐增加。这种现象存在的原因可能是本试验开始前进行了预降雨,使得表层土壤水分趋于饱和。填土容重较大且孔隙水压力埋设较深,使得在土壤裂缝产生前,孔隙水压力计埋设处的含水量呈减小的状态,此外,试验每30 min暂停1次引起的土壤水分变化亦会对孔隙水压力造成影响。因此,孔隙水压力随试验时间呈现减小的趋势。而其他学者主要监测的是降雨条件下松散堆积层边坡的孔隙水压力变化情况,在降雨前土壤含水率较低,降雨过程中,土壤水分充分入渗,随着降雨历时的延长,土壤含水量增加,孔隙水压力呈上升趋势,最终造成滑坡等灾害。分析距离沟头30 cm纵断面上的1和2号探头孔隙水压力数据可知,孔隙水压力随埋设深度的加深呈减小的趋势,即埋深60 cm处2号探头的孔隙水压力值小于埋深30 cm处1号探头的孔隙水压力值,这主要是由于入渗特性,土壤入渗率随土层深度的增加而降低。因此,埋设深度越深,土壤入渗量越小,孔隙水压力也就更小。

2.3 孔隙水压力对崩塌的影响

沟头溯源侵蚀过程中,孔隙水压力变化曲线存在2种类型。第1种类型为沟头在溯源侵蚀过程在不断发育并形成跌坎,径流沿沟头跌落,造成沟头处含水率增加,孔隙水压力出现突增点,引起崩塌的产生。以塬面坡度1°,放水流量3.0 m3/h(即1°-3.0)为例(图5),产流后0~12 min时,1~6号探头处的水压力变化范围分别在0.86~1.29、0.72~1.39、1.00~1.28、0.52~1.47、0.67~1.35和0.62~1.19 kPa之间,均值分别为1.01、0.95、1.15、0.98、1.03和0.98 kPa。在此阶段,孔隙水压力随试验时间呈波动减小的趋势。试验12′时孔隙水压力骤增至8.0 kPa,沟头发生崩塌,此时沟头长度达到38 cm;试验24′18″时,孔隙水压力增至2.30 kPa,沟头底部冲掏至60 cm深处。比较发现,1和2号探头孔隙水压力值分别增加3.19和9.09倍后崩塌发生,4~6号探头分别增加3.43、3.82和3.68倍后崩塌发生。这主要是由于试验过程中,在降雨径流的冲刷作用下,坡面沿程具有裂缝发育,地表径流沿着裂缝进入土体,造成孔隙水压力突增,引起土体崩塌。Collison[30]亦认为当张力裂隙存在时,很小的径流即可产生很大的静水压力,促发沟头前进。分析各场试验孔隙水压力值可知,孔隙水压力骤增伴随着崩塌的发生,即孔隙水压力的上升是影响溯源侵蚀崩塌的关键因素之一。土壤水分的能量由动能和势能组成,由于水分在土壤孔隙中移动很慢,故可以忽略动能,因此,土壤水分运动主要由势能决定[31]。径流携带泥沙颗粒沿坡面向沟头运动,造成沟头处土壤含水率较集水区顶部更大,且重力势减小。根据能量守恒定理,重力势的减小会压力势增加,孔隙水压力增大,土体的抗剪强度由于有效应力的减小而降低,进而诱发土体的崩塌失稳[12,32-33]。

表2 孔隙水压力(P)与试验时间(t)回归分析

注:1°和7°指坡度;3.0和3.6指流量,m3·h-1。

第2种类型为整个试验过程中孔隙水压力随时间呈现稳定减小的变化趋势,造成崩塌频率较低。以塬面坡度7°,放水流量3.6 m3/h(即7°-3.6)为例(图5)。1~6号位置孔隙水压力变化范围为0.04~2.15、0.02~1.13、0.33~1.48、−0.63~1.98、−0.29~1.91和0.60~1.33 kPa之间,平均值为0.75、0.42、0.33、0.54、0.88和0.93 kPa。在产流123~125、130~133.5、134.5~137.5、140~143和147~150 min时,4号探头的孔隙水压力亦为负值。这可能是由于在产流120~122 min时,二级沟头发育,二级沟头长度为63 cm,故60 cm附近处的集水区地表在侵蚀作用下糙度不一,形成起伏的微地形,土壤颗粒随径流顺坡向下移动过程中,发生泥沙的暂时性沉积。沉积的泥沙造成土体体积压缩,导致土壤孔隙半径减小,从而产生负孔隙水压力。当沉积泥沙被径流搬运后,负孔隙水压力消散。

3 结 论

本文采用模拟降雨+放水冲刷的方法,研究在不同塬面坡度(1°、3°、5°、7°)、放水流量(3.0、3.6、4.8、6.0、7.2 m3/h)条件下董志塬沟头溯源侵蚀状况和孔隙水压力变化情况,主要结论如下:

1)崩塌发生次数随试验时间呈现递增的变化趋势,崩塌发生频率由试验初期0~30 min时的6.29%增加到150~180 min时的27.48%。

2)在放水流量为3.0、3.6、4.8、6.0和7.2 m3/h的条件下,产沙率随试验时间先波动减小后趋于稳定。产沙量与坡度和放水流量呈极显著正相关。

3)各塬面坡度下,崩塌分别会增加34.12%~97.48%,22.75%~166.48%,48.36%~324.59%和36.55%~131.76%的产沙率。产沙率突变点的出现时间于崩塌时间相比存在“滞后”现象。

4)孔隙水压力与试验时间呈显著线性或对数函数关系,埋设60 cm深处孔隙水压力值小于30 cm处。孔隙水压力值的上升是影响溯源侵蚀崩塌发生的关键因素之一。

本文对董志塬沟头溯源侵蚀特征进行了研究,但受野外自然条件限制,各试验未进行重复。为使研究结果更加科学合理,今后将在调查样地选择、调查设备应用等方面进行改善,以丰富研究内容,为黄土高塬沟壑治理提供科学依据和技术参考。

[1] 陈绍宇,许建民,王文龙,等. 黄土高塬沟壑区董志塬沟头溯源侵蚀特征及其防治途径[J]. 水土保持通报,2009,29(4):37-41.

Chen Shaoyu, Xu Jianmin, Wang Wenlong, et al. Erosion features of head-cut and its control measures on Dongzhiyuan of the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2009, 29(4): 37-41. (in Chinese with English abstract)

[2] 周健民,沈仁芳. 土壤学大辞典[M]. 北京:科学出版社,2013:212.

[3] Wells R R, Bennett S J, Alonso C V. Effect of soil texture, tailwater height, and pore-water pressure on the morphodynamics of migrating headcuts in upland concentrated flows[J]. Earth Surface Processes and Landforms, 2009, 34: 1867-1877.

[4] Guo Mingming, Wang Wenlong, Shi Qianhua, et al. An experimental study on the effects of grass root density on gully headcut erosion in the gully region of China’s Loess Plateau[J]. Land Degradation & Development, 2019: 1-19.

[5] Bennett S J. Effect of slope on the growth and migration of headcuts in rills[J]. Geomorphology, 1999, 30: 273-290.

[6] Oostwoud Wijdenes D J, Poesen J, Vandekerckhove L. Spatial distribution of gully head activity and sediment supply along an ephemeral channel in a Mediterranean environment [J]. Catena, 2000, 39: 147-167.

[7] Zhang Baojun, Xiong Donghong, Su Zhengan, et al. Effects of initial step height on the headcut erosion of bank gullies: a case study using a 3D photo-reconstruction method in the dry-hot valley region of southwest China[J]. Physical Geography, 2016, 37(6): 409-429.

[8] Zhang Baojun, Xiong Donghong, Zhang Ghuanghui, et al. Impacts of headcut height on flow energy, sediment yield and surface landform during bank gully erosion processes in the Yuanmou Dry-hot Valley region, southwest China[J]. Earth Surface Processes and Landforms, 2018, 43: 2271-2282.

[9] 马超. 基于土体含水量和实时降雨的泥石流预警指标研究[D]. 成都:中国科学院大学,2014.

Ma Chao. Study on Forecasting Index of Debris Flow Prediction and Forecasting Method Based on Soil Water Content and Real-Time Rainfall[D]. Chengdu: University of Chinese Academy of Sciences, 2014. (in Chinese with English abstract)

[10] 谢春庆,潘凯,廖崇高,等. 西南某机场高填方边坡滑塌机制分析与处理措施研究[J]. 工程地质学报,2017,25(4):1083-1093.

Xie Chunqing, Pan Kai, Liao Chonggao, et al. Landslide mechanism and treatment measures for high fill slope airport in southwestern China[J]. Journal of Engineering Geology, 2017, 25(4): 1083-1093. (in Chinese with English abstract)

[11] 张磊,郭海庆,谢兴华,等. 人工降雨入渗边坡破坏试验研究[J]. 水利水运工程学报,2012(6):21-27.

Zhang Lei, Guo Haiqing, Xie Xinghua, et al. Experimental study on artificial rainfall infiltration into slope [J]. Hydro-Science and Engineering, 2012(6): 21-27. (in Chinese with English abstract)

[12] 周中,傅鹤林,刘宝琛,等. 堆积层边坡人工降雨致滑的原位监测试验研究[J].中国铁道科学,2006,27(4):11-16.

Zhou Zhong, Fu Helin, Liu Baochen, et al. In-situ monitoring test study on artificial rainfall infiltration of a well-instrumented accumulation slope[J]. China Railway Science, 2006, 27(4): 11-16. (in Chinese with English abstract)

[13] 李哲,张昌军,梅华. 人工降雨条件下黄土斜坡土体孔隙水压力测试研究[J]. 公路交通科技,2013,30(12):45-52.

Li Zhe, Zhang Changjun, Mei Hua. Measurement of pore water pressure of loess slope under artificial rainfall[J]. Journal of Highway and Transportation Research and Development, 2013, 30(12): 45-52. (in Chinese with English abstract)

[14] 罗波. 降雨条件下非饱和黄土边坡稳定性分析[D]. 兰州:兰州交通大学,2014.

Luo Bo. Analysis on Stability of Unsaturated Loess Slope Under the Condition of Rainfall[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese with English abstract)

[15] Xu Jingshu, Yang Xiaoli. Effects of seismic force and pore water pressure on three dimensional slope stability in nonhomogeneous and anisotropic soil[J]. Journal of Civil Engineering, 2018, 22(5): 1720-1729.

[16] Dhanya G, Wayne R, Sivakugan N. Consolidation behavior of a cylindrical soil layer subjected to nonuniform pore water pressure distribution[J]. International Journal of Geomechanics, 2013, 13(5): 665-671.

[17] Askari F, Farzaneh O. Pore water pressures in three dimensional slope stability analysis[J]. International Journal of Civil Engineering, 2008, 6(1): 10-23.

[18] 刘琦,卢耀如,李晓昭. 孔隙水压力对岩石力学参数的影响[J]. 地球学报,2008,29(5):660-664.

Liu Qi, Lu Yaoru, Li Xiaozhao. The effect of the pore water pressure on the rock mechanics parameters[J]. Acta Geoscientica Sinaca, 2008, 29(5): 660-664. (in Chinese with English abstract)

[19] 王宝亮,李泳,苟万春,等. 降雨作用下土体细颗粒迁移特征及其对崩塌的影响[J]. 工程科学与技术,2017,49(增刊2):40-50.

Wang Baoliang, Li Yong, Gou Wanchun, et al. Fine grain migration and its impact on soil failures under rainfall infiltration[J]. Advanced Engineering Sciences, 2017, 49(Supp. 2): 40-50. (in Chinese with English abstract)

[20] 王俊光,梁冰. 降雨要素对黄土边坡渗流及稳定性的影响[J]. 水资源与水工程学报,2010,21(1):42-45.

Wang Junguang, Liang Bing. Affection of rainfall factor to seepage and stability of loess slope[J]. Journal of Water Resources &Water Engineering, 2010, 21(1): 42-45. (in Chinese with English abstract)

[21] 马陆江,盛建龙. 降雨入渗作用下排土场边坡稳定性分析及可靠度研究[J]. 化工矿物与加工,2018. http://kns.cnki.net/kcms/detail/32.1492.TQ.20180910.1613.019.html.

Ma Lujiang, Sheng Jianlong. Stability analysis and reliability Study of soil-discharging field slope under rainfall infiltration[J]. Industrial Minerals & Processing, 2018. http://kns.cnki.net/kcms/detail/32.1492.TQ.20180910.1613.019.html. (in Chinese with English abstract)

[22] Rockwell D L. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils[J]. Journal of Environmental Management, 2001, 92: 290-299.

[23] 郭明明,王文龙,康宏亮,等. 黄土高塬沟壑区植被自然恢复年限对坡面土壤抗冲性的影响[J]. 农业工程学报,2018,34(22):138-146.

Guo Mingming, Wang Wenlong, Kang Hongliang, et al. Effect of natural vegetation restoration age on slope soil anti-scourability in gully region of Loess Plateau [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 138-146. (in Chinese with English abstract)

[24] 毕华兴,刘立斌,刘斌. 黄土高塬沟壑区水土流失综合治理范式[J]. 中国水土保持科学,2010,8(4):27-33.

Bi Huaxing, Liu Libin, Liu Bin. Paradigm of integrated management on soil and water losses in Loess Plateau-gully Region [J]. Science of Soil and Water Conservation, 2010, 8(4): 27-33. (in Chinese with English abstract)

[25] 王志雄,赵安成. 南小河沟水土保持科技示范园建设的实践[J].中国水土保持,2011(1):37-38,54.

[26] 卞玉敏,吕海深,赵盼盼. 南小河沟土地利用变化对水文过程的影响[J]. 人民黄河,2015,37(9):88-91.

Bian Yumin, Lü Haishen, Zhao Panpan. Hydrological process responses to land use change in Nanxiaohegou[J]. Yellow River, 2015, 37(9): 88-91. (in Chinese with English abstract)

[27] 覃超,何超,郑粉莉,等. 黄土坡面细沟沟头溯源侵蚀的量化研究[J]. 农业工程学报,2018,34(6):160-167.

Qin Chao, He Chao, Zheng Fenli, et al. Quantitative research of rill head advancing process on loessial hillslope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 160-167. (in Chinese with English abstract)

[28] Flores-Cervantes J H, Istanbulluoglu E, Bras R L. Development of gullies on the landscape: A model of headcut retreat resulting from plunge pool erosion[J]. Journal of Geophysical Research-earth Surface. 2006, 111(F1): F01010.

[29] 夏元友,张亮亮. 考虑降雨入渗影响的边坡稳定性数值分析[J]. 公路交通科技,2009,26(10):27-32.

Xia Yuanyou, Zhang Liangliang. Journal of highway and transportation research and development numerical analysis on highway slope stability considering rainfall infiltration[J]. Jurnal of Highway and Transportation Research and Development, 2009, 26(10): 27-32. (in Chinese with English abstract)

[30] Collison A J C. The cycle of instability: stress release and fissure flow as controls on gully head retreat[J]. Hydrological Processes, 2001, 15: 3-12.

[31] 雷志栋,杨诗秀,谢森传. 土壤水动力学[M]. 北京:清华大学出版社,1988.

[32] 蒋中明,龙芳,熊小虎,等. 边坡稳定性分析中的渗透力计算方法考证[J]. 岩土力学,2015,36(9):2478-2486,2493.

Jiang Zhongming, Long Fang, Xiong Xiaohu, et al. Study of calculation methods of acting force of seepage in slope stability analysis[J].Rock and Soil Mechanics, 2015, 36(9): 2478-2486, 2493. (in Chinese with English abstract)

[33] 龙安发,陈开圣,季永新. 不同降雨强度下红黏土边坡干湿循环试验研究[J]. 岩土工程学报,2019,41(增刊2):193-196.

Long Anfa, Chen Kaisheng, Ji Yongxin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Supp.2): 193-196. (in Chinese with English abstract)

Headcut erosion processes and pore water pressure variation on Dongzhi tableland of China

Shi Qianhua1, Wang Wenlong1,2※, Guo Mingming1, Chen Zhuoxin1, Feng Lanqian2, Zhao Man1

(1.,712100,; 2.,712100,)

Headcut erosion has been the chief cause in reducing soil fertility and harming ecological environment and long-term serious headcut erosion has caused serious consequence to security of Dongzhi tableland. A simulated rainfall combined runoff scouring experiment was carried out to identify the headcut erosion process and pore water pressure variation on Dongzhi tableland of China. The plot was composed of upstream catchment area, gully head and downstream gully bed. The slope gradient of upstream catchment area (1.5 m×5 m) was 1°, 3°, 5° and 7°. The vertical height of gully head was 0.9 m. Besides, the slope gradient of downstream gully bed (1.5 m×1 m) was 1°, 3°, 5° and 7° which was consistent with the upstream catchment area. The constant-intensity rainfall simulator consisting of nozzles spaced 0.67 m apart, and the pure water was pumped to these nozzles, with the raindrop height of 2.05 m. The pore water pressure gauges were installed in the middle of plot, and the distance between pore water pressure gauges and gully head was 30, 60 and 100 cm with the depth was 30 and 60 cm, respectively. The results showed that the frequency of collapse increased with experimental time, which accounted for 27.48% of total amount when the experiment conducted over 150-180 min. The sediment discharge exhibited a decreased logarithmic relationship with experiment time. The sediment yield was 325.66-454.13, 471.13-787.71, 737.34-1 044.18, and 1 073.16-1 533.60 kg, respectively, under different slope gradient of 1°, 3°, 5° and 7°. There was a general tendency that sediment yield increased with increasing flow discharge and slope gradient. By multiple regression analysis, the sediment yield was found to be linearly related with slope gradient and flow discharges. The sediment yield rate increased 34.12%-97.48%, 22.75%-166.48%, 48.36%-324.59%, and 36.55%-131.76%, respectively, under 1°, 3°, 5°, and 7°. Compared to collapse time, the mutant site in sediment yield rate was delayed due to the deposit of sediment. Pore water pressure decreased with the increase in duration of runoff, and there was a significant linear or logarithmic relationship between pore water pressure and duration of test. The increase of pore water pressure was one of the key factors affecting the occurrence of collapse. When the slope gradient was 1° and the flow discharge was 3.0 m3/h, the pore water pressure was 0.86-1.29, 0.72-1.39, 1.00-1.28, 0.52-1.47, 0.67-1.35 and 0.62-1.19 kPa, respectively, of probe 1 to 6 as the tests time was 12 min, and pore water pressure decreased with buried depth. In addition, the pore water pressure at 30 cm was greater than 60 cm due to the decrease of soil infiltration. These findings hold important implications for the eco-recovery of the gully region of Loess Plateau. Study on erosion process and pore water pressure characteristics of Dongzhi tableland can further reveal the mechanism, lay an important foundation for the research on the model of gully erosion process, and provide important information for realization of land resources of Dongzhi tableland in the Loess Plateau.

erosion; collapse; sediments; headcut; pore water pressure; gully region of Loess Plateau; simulated rainfall combined runoff scouring experiment

史倩华,王文龙,郭明明,陈卓鑫,冯兰茜,赵 满. 董志塬沟头溯源侵蚀过程及崩塌中孔隙水压力变化[J]. 农业工程学报,2019,35(18):110-117.doi:10.11975/j.issn.1002-6819.2019.18.014 http://www.tcsae.org

Shi Qianhua, Wang Wenlong, Guo Mingming, Chen Zhuoxin, Feng Lanqian, Zhao Man. Headcut erosion processes and pore water pressure variation on Dongzhi tableland of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 110-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.014 http://www.tcsae.org

2019-04-03

2019-08-10

国家自然科学基金(41571275、41302199);国家自然科学基金重大项目(41790444/D0214);中国科学院西部行动计划(KZCX-XB3-13);中国科学院知识创新工程重大项目(KZZD-EW-04-03)

史倩华,博士生,主要从事土壤侵蚀研究。Email:sqianhua@163.com

王文龙,研究员,博士,主要从事土壤侵蚀与水土保持研究。Email:wlwang@nwafu.edu.cn

10.11975/j.issn.1002-6819.2019.18.014

S157.1

A

1002-6819(2019)-18-0110-08

猜你喜欢

水流量坡度径流
格陵兰岛积雪区地表径流增加研究
枯水期前婆桥村生态沟渠水体的污染指标削减状况研究
基于SWAT模型的布尔哈通河流域径流模拟研究
M701F4燃气轮机TCA系统冷却水流量异常分析
EGR冷却器液侧沸腾特性及流量参数优化研究
Aqueducts
雅鲁藏布江河川径流变化的季节性规律探索
基于远程监控的道路坡度提取方法
基于重力方向影响的低压涡轮叶片水流量测量数值计算
放缓坡度 因势利导 激发潜能——第二学段自主习作教学的有效尝试