APP下载

东营凹陷泥页岩孔隙结构特征及其演化规律

2019-01-21蔡进功刘伟新

油气地质与采收率 2019年1期
关键词:泥质微孔泥岩

李 旭,徐 蒙,蔡进功,范 明,刘伟新

(1.同济大学海洋地质国家重点实验室,上海200092;2.中国石化石油勘探开发研究院无锡石油地质研究所,江苏无锡214151)

页岩油气的发现促使人们探索泥页岩中烃的赋存特征,这对页岩油气资源评价、页岩储层性质评价具有重要意义。据孔径大小、吸附性质和毛细管凝聚现象,将泥页岩孔隙分为微孔、介孔和大孔[1],在不同类型的孔隙中烃的赋存与运移均存在差异[2],甚至会对地球化学反应和物质迁移产生影响[3]。从成因角度可将孔隙划分为矿物基质孔、有机质孔和裂缝等,其孔隙性质也存在差异[4-6]。总之,泥页岩孔隙的孔径跨度大,而孔径分布特征影响泥页岩的渗透率[7-8]。

泥页岩是多种无机矿物和有机组分的复杂集合体,这对泥页岩孔隙的发育具有控制作用,如板状黏土矿物颗粒构成的孔隙通常呈裂缝形[6]。微孔和介孔多与黏土矿物和有机质具有重要关系[5,9-11],不同类型的有机质对孔隙发育也有影响[11-13],如Ⅲ型干酪根更易发育微孔且吸附能力更强[13]。泥页岩的孔隙类型和孔径分布等随埋藏演化不断变化[14],随有机质成熟度的增加,有机质孔增加且不断变化[11,15-17];孔隙度在埋藏过程中会出现减小—增加—再减小的演化过程[18],具有弹性屈曲压力的纳米孔隙会越来越多等[5]。由此看来,不同物质组成对孔隙发育和演化具有较大的影响。

在泥页岩孔隙结构研究中常采用压汞法、吸附法等定量方法,以获取孔隙形态、孔隙度、孔径分布等特征参数[2,4,6,15,19-21],但由于泥页岩孔径跨度大(纳微米级次),采用单一的表征方法难以全面定量地描述其复杂的孔隙结构特征,故常用能反映介孔和大孔特征的压汞法与反映微孔和介孔特征的氮气吸附法联合处理,定量表征泥页岩全孔径分布特征[19]。为此,选取东营凹陷S井为研究对象,采用氮气吸附-压汞联合测孔法分析泥页岩全孔径分布特征,进而获取微孔、介孔和大孔体积等特征参数。分析泥页岩孔隙与无机矿物组成和有机质特征之间的关系,探讨孔隙结构发育的影响因素及泥页岩埋藏过程中孔隙演化规律,这对深刻认识泥页岩复杂的孔隙结构特征,指导页岩油气勘探均具有重要意义。

1 区域地质概况

济阳坳陷东营凹陷位于渤海湾盆地东南部,是中、新生代裂谷盆地中发育的北断南超、北深南浅的箕状凹陷,东西长度约为90 km,南北宽度约为62 km,面积约为5 850 km2,由北向南发育北部陡坡带、洼陷带、中央背斜带和南部缓坡带,其中洼陷带又分为利津、民丰、牛庄和博兴4个洼陷。东营凹陷构造演化经历了中生代前的前断陷阶段、中生代和古近纪断陷阶段以及新近纪拗陷阶段,发育古近系沙四段上亚段和沙三段中亚段以及下亚段2套优质泥质烃源岩[22],具有良好的页岩油勘探潜力。S井位于东营凹陷利津洼陷构造高部位的北李家村附近,洼陷带以深湖-半深湖、盐湖及浊积扇沉积为主,选取该井古近系泥质粉砂岩(5块)、粉砂质泥岩(4块)、泥岩(17块)样品共26块(表1),分别进行X射线、Rock-Eval6热解、常规物性、扫描电子显微镜、氮气吸附和压汞等分析测试。

2 矿物及有机质特征

2.1 矿物特征

X射线分析结果显示,泥页岩由黏土(高岭石、伊利石、伊/蒙混层等)、碎屑(石英、钾长石、斜长石)、碳酸盐类矿物(方解石、白云石、菱铁矿)及其他矿物(黄铁矿等)组成,不同类型泥页岩的矿物组分差异显著。由表1和图1可知:泥质粉砂岩主要分布在全岩矿物三角图右上角,以碎屑矿物为主,含量高达72%~94%,碳酸盐类矿物含量极低,均不超过3%;粉砂质泥岩碎屑矿物含量也较高,均高于50%,除S10样品碳酸盐类矿物含量达26%外,其余样品均不超过6%;泥岩中碎屑矿物含量均低于50%,而黏土和碳酸盐类矿物含量差异较大,尤其是后者含量差异很大,但其均值则显著高于泥质粉砂岩和粉砂质泥岩。由黏土矿物平均含量(图1b,1c)可知:泥岩伊/蒙混层含量最低,伊利石含量最高;而泥质粉砂岩则恰好相反。不同类型泥页岩的矿物组成是导致泥质粉砂岩、粉砂质泥岩及泥岩孔隙结构差异的重要原因。

2.2 有机质特征

不同类型岩石的有机质特征具有明显差异。由有机质丰度(表1,图2a)可知:泥岩总有机碳含量(TOC)最高,均值为1.53%,其次为粉砂质泥岩,TOC均值为0.55%,最低为泥质粉砂岩,TOC均值仅为0.03%。由于泥质粉砂岩热解基本不含游离烃,TOC均值极低,因此未进行有机质类型和成熟度分析;泥岩和粉砂质泥岩的有机质类型主要为Ⅱ型和Ⅲ型干酪根,其中泥岩以Ⅱ型干酪根为主,粉砂质泥岩则以Ⅲ型干酪根为主(图2b)。由于氢指数-最高热解峰温(HI-Tmax)图上估计的镜质组反射率(Ro)为0.5%~1.1%,因此,泥岩和粉砂质泥岩的有机质均处于成熟的生油阶段。

表1 东营凹陷S井不同类型泥页岩矿物、有机质及孔隙结构参数Table1 Mineral,organic matter and pore structure characteristics of different types of mud shale of Well S in Dongying Sag

图1 东营凹陷S井不同类型泥页岩矿物组成特征Fig.1 Mineral composition of different types of mud shale of Well S in Dongying Sag

图2 东营凹陷S井不同类型泥页岩有机质丰度及HI-Tmax图Fig.2 TOC and HI-Tmaxof different types of mud shale of Well S in Dongying Sag

3 孔隙结构特征

3.1 成像特征

扫描电镜成像显示,泥页岩孔隙结构特征差异较大(图3)。泥质粉砂岩发育方形及柱形的粒间孔(图3a),且孔隙的孔径较大,可达数十到数百微米,长石粒内溶蚀孔或溶蚀缝也较发育(图3b,3c),粒间孔内充填蒙皂石、高岭石、绿泥石等黏土矿物以及含硫、铁、钙等元素的矿物,粒间孔内矿物的充填会形成孔径较小孔隙的发育(图3d—3g)。粉砂质泥岩既发育丝状伊利石充填形成的狭缝孔(图3h),也发育柱形粒间孔,孔径明显小于泥质粉砂岩,约为十几微米,粒间孔内部分可见粒状黄铁矿充填(图3i)。泥岩发育片状伊/蒙混层及黄铁矿晶间孔和片状伊/蒙混层及铁白云石等构成的粒间狭缝孔(图3j,3k),仅发育少量的方形孔、柱状孔及粒状黄铁矿与黏土矿物形成的细小晶间孔(图3j,3l),孔隙的孔径也明显小于粉砂质泥岩。分析不同岩性岩石孔隙与矿物间的关系,表明泥质粉砂岩孔隙的发育主要与石英、长石等碎屑矿物有关,而粉砂质泥岩和泥岩除发育有碎屑矿物构成的粒间孔外,还广泛发育黏土矿物等构成的孔径较小的孔隙,孔隙结构特征更为复杂。

3.2 孔径分布特征

经氮气吸附-压汞联合测孔,可获取泥页岩的全孔径分布曲线,反映了不同类型泥页岩孔径分布特征的差异。从全孔径分布曲线及中值孔径和平均孔径分布箱状图(图4,图5)可以看出,泥质粉砂岩孔隙的孔径明显大于粉砂质泥岩和泥岩,泥质粉砂岩孔隙的孔径以大于100 nm为主,其中值孔径和平均孔径分别为6 891.29和98.26 nm;粉砂质泥岩孔隙的孔径一般为10~100 nm为主,其中值孔径和平均孔径分别为9.40和9.48 nm;泥岩孔隙的孔径一般小于40 nm,其中值孔径和平均孔径平均分别为4.96和29.76 nm。

从全孔径分布曲线可以获取总孔体积,并计算不同类型孔隙的孔体积及含量,结果表明不同类型泥页岩的总孔体积以及大孔、介孔和微孔体积及含量等孔隙构成也存在较大差异(图5)。

图3 东营凹陷S井典型扫描电镜照片Fig.3 SEM photos of typical mud shale of Well S in Dongying Sag

图4 东营凹陷S井不同类型泥页岩全孔径分布曲线Fig.4 Pore size distribution curves of different types of mud shale of Well S in Dongying Sag

从总孔体积上来看,泥质粉砂岩的总孔体积最大,平均为0.174 cm3/g,其次为粉砂质泥岩,平均为0.033 cm3/g,泥岩的总孔体积最低,平均为0.021 cm3/g。从大孔、介孔和微孔体积等孔隙构成上来看,泥质粉砂岩大孔体积平均为0.138 cm3/g,占总孔体积的比例达80.57%;粉砂质泥岩的微孔和介孔的平均体积分别为0.002和0.025 cm3/g,占总孔体积的比例分别为5.74%和74.86%,而泥岩微孔和介孔的平均体积分别为0.001和0.015 cm3/g,占总孔体积的比例分别为5.32%和69.75%;表明粉砂质泥岩主要发育大孔,而粉砂质泥岩和泥岩则主要发育介孔,且发育可观数量的微孔。总之,不论从总孔体积,还是孔隙构成上来看,泥质粉砂岩最好,而粉砂质泥岩与泥岩相近。进一步分析不同类型岩石中不同类型孔隙结构与孔隙度的关系(图6),发现泥质粉砂岩孔隙发育与大孔体积具有较好的正相关性,与微孔和介孔体积不相关或具有弱的负相关性,也表明大孔体积控制泥质粉砂岩孔隙发育;而粉砂质泥岩和泥岩孔隙发育与介孔、微孔和大孔体积均具有较好的正相关性,且与介孔的相关性最好,表明介孔体积是控制粉砂质泥岩和泥岩孔隙发育的主要因素,微孔和大孔体积是次要因素。对比泥质粉砂岩、粉砂质泥岩和泥岩,发现三者之间最显著的差别在于物质组成不同,表明孔隙结构的发育与物质组成密切相关。

图5 东营凹陷S井不同类型泥页岩不同类型孔隙的孔体积、百分含量及孔径对比Fig.5 Comparison of the pore volume and its percentage,and the pore diameter of different types of mud shale of Well S in Dongying Sag

图6 东营凹陷S井不同类型泥页岩的孔隙度与孔隙结构关系Fig.6 Relationships between porosity and pore structure of different types of mud shale of Well S in Dongying Sag

4 孔隙结构发育影响因素

4.1 矿物组分

分析不同类型岩石中黏土矿物含量与孔隙结构关系(图7a―7f),发现泥质粉砂岩中黏土矿物含量与总孔体积基本不相关,与介孔含量、微孔含量呈正相关,与大孔含量、中值孔径和平均孔径呈负相关,表明黏土矿物含量控制泥质粉砂岩中微孔和介孔发育。粉砂质泥岩中黏土矿物含量与总孔体积和中值孔径不具有明显相关性,与微孔和大孔含量呈正相关,与介孔含量和平均孔径呈负相关,结合图4和图5,分析表明黏土矿物含量控制粉砂质泥岩中微孔和大孔发育。泥页岩中黏土矿物含量与孔隙结构的关系非常复杂,与总孔体积、大孔含量呈弱正相关,与介孔含量、平均孔径呈负相关,与微孔含量不相关或呈微弱的正相关。这是由于泥岩具有较高有机质丰度,孔隙的发育不仅与黏土矿物含量有关,还受有机质及其生烃演化等因素的影响[5,11]。

图7 东营凹陷S井不同类型泥页岩孔体积与全岩矿物组分的关系Fig.7 Relationships between pore volume and mineral composition of different types of mud shale of Well S in Dongying Sag

分析不同类型泥页岩中碎屑矿物含量与孔隙结构关系(图7g―7l),发现泥质粉砂岩中碎屑矿物含量最高且与总孔体积不相关,与微孔和介孔含量呈负相关,而与大孔含量、中值孔径和平均孔径具有较好的正相关性,表明碎屑矿物含量主要影响泥质粉砂岩大孔的发育。粉砂质泥岩中碎屑矿物含量也较高,与总孔体积和微孔含量具有较弱的负相关性,与其他参数基本不相关,因此,碎屑矿物含量对粉砂质泥岩孔隙发育的影响较弱。泥岩中碎屑矿物含量与总孔体积、介孔含量呈较弱的正相关,与大孔含量呈负相关,与微孔含量和孔径无明显相关性,表明碎屑矿物含量对泥岩孔隙发育影响弱,表明碎屑矿物含量对泥页岩的孔隙结构影响相比于黏土矿物属于次要因素。

泥质粉砂岩和粉砂质泥岩中碳酸盐类矿物含量普遍较低(图7m―7r),表明碳酸盐类矿物含量对这两类岩石的孔隙发育基本无影响。泥岩中碳酸盐类矿物含量与总孔体积和微孔含量呈微弱的负相关,与平均孔径呈弱的正相关,与介孔和大孔含量、中值孔径等不相关。当碳酸盐类矿物含量为20%~40%时,大孔含量和中值孔径具有高值,介孔含量则较低,介孔含量均值,既有较高值也有较低值,总体偏低(图7m―7r),反映了碳酸盐类矿物含量对泥岩孔隙结构影响的复杂性。前人研究发现,泥页岩中的碳酸盐类矿物有2种,一种是由原始沉积而成的隐晶质碳酸盐类矿物[23],对微孔和比表面积有贡献;另一种是由成岩作用而成的微晶或细晶质碳酸盐类矿物[22,24],比表面积小并充填孔隙,破坏泥页岩孔隙结构[25],从而导致碳酸盐类矿物对孔隙结构影响的复杂性,因此,在分析碳酸盐类矿物对岩石孔隙结构影响时,需考虑矿物含量、结构及成因等因素。

进一步分析不同类型泥页岩中不同黏土矿物含量与其孔隙结构的关系(图8),发现泥质粉砂岩中伊/蒙混层和伊利石含量与孔隙结构均无相关性,这是由于泥质粉砂岩中伊/蒙混层和伊利石含量较低导致。粉砂质泥岩中伊/蒙混层含量仅与总孔体积正相关,与其他孔隙结构参数不相关;伊利石含量与总孔体积呈负相关,与介孔体积和平均孔径呈正相关,与其他孔隙结构参数不相关;其他黏土矿物含量与总孔体积呈负相关,与其他孔隙结构参数不相关;由于随埋藏演化程度的增加,伊/蒙混层逐渐向伊利石转化,因此,粉砂质泥岩的总孔体积随埋藏演化逐渐减小,黏土矿物类型对其孔隙结构发育影响较小。泥岩中伊/蒙混层含量与总孔体积、微孔和介孔含量呈正相关,与大孔含量、平均孔径呈负相关;伊利石含量与孔隙结构的关系则与此恰好相反,这是由于随着埋藏演化的进行,伊/蒙混层逐渐向伊利石转化,进而影响孔隙结构的发育;其他黏土矿物包括绿泥石和高岭石等,具有不同成因和演化过程,因此其总体含量与孔隙结构无明显关系。总的来看,黏土矿物含量对泥页岩的孔隙结构,特别是较小孔径孔隙的影响较大;此外,黏土矿物随埋藏过程发生成岩演化,导致黏土矿物类型变化[26],进一步造成黏土矿物与孔隙结构间关系的复杂化。

总之,不同类型岩石孔隙结构与矿物组分的关系具有差异性,主要影响着泥页岩不同类型孔隙含量。总的来说,平均孔径均与黏土矿物含量呈负相关,与碳酸盐类矿物含量呈正相关,这一结果与前人的小孔主要与黏土矿物和有机质有关的认识相吻合[5,11,26]。由于不同黏土矿物的性质(形态、比表面积、颗粒大小等)存在显著的差异[27],碳酸盐类矿物具有不同成因,进而造成泥页岩孔隙结构与矿物组分的关系更为复杂。

4.2 有机组分

分析不同类型泥页岩中TOC值与孔隙结构关系(图9a―9f),发现泥质粉砂岩TOC值(平均为0.03%)很低,其孔隙结构与TOC值无明显关系。而粉砂质泥岩和泥岩的TOC值与总孔隙体积、微孔和介孔含量等呈良好的负相关,与平均孔径呈良好正相关,表明增加有机质丰度有利于改善孔隙结构。粉砂质泥岩和泥岩中HI值与孔隙结构表现出与TOC值类似的关系(图9g―9l),而HI值越高反映有机质类型越好,孔隙结构越好。由于粉砂质泥岩和泥岩Tmax值范围较窄,与孔隙结构的相关性不明显(图9m―9r)。

有机质还包含多种显微组分,如无定型、木质和藻质体有机质等[28],而不同显微组分的有机质对孔隙发育的影响具有极大的差异[11,29-30]。如无定型有机质,属于絮凝状有机质,可以有机质自身絮凝,可以与黏土矿物等结合絮凝,进而抑制较小孔隙和表面的发育,也是造成TOC和HI值与微孔和介孔体积等呈负相关的原因之一,有机溶剂抽提前后孔隙结构的差异证实了这种可能性[31];结构有机质由大量的纤维结构物质组成,其自身具有较大的比表面积或微孔体积[11]。此外,有机质在演化过程中伴随着分子的断裂和氢与氧的损失,进而有机质富碳且发生芳构化,对比表面积和孔隙的贡献将会增大。综上所述,研究区内有机组分对泥页岩孔隙结构发育的影响比矿物组分更大。

图8 东营凹陷S井不同类型泥页岩孔隙结构与不同类型黏土矿物含量的关系Fig.8 Relationships between pore structure and clay mineral content of different types of mud shale of Well S in Dongyin Sag

图9 东营凹陷S井不同类型泥页岩孔隙结构与有机组分的关系Fig.9 Relationships between pore structure and organic matter properties of different types of mud shale of Well S in Dongying Sag

5 孔隙结构演化规律

泥页岩孔隙结构随着埋藏演化不断地发生变化,并具有明显的阶段性(图 10a—10f)[18,25]。随着泥页岩埋深的增加,泥质粉砂岩和粉砂质泥岩的总孔体积不断减小;泥岩在埋深为2 500~2 700 m处总孔体积略有增加,而后减小,当埋深达到3 300 m后总孔体积再次增加,在3 550 m之后开始减小(图10a)。从孔隙结构构成看(图10d—10f),泥质粉砂岩中的微孔和介孔含量均为先增加后减小;粉砂质泥岩中的微孔和大孔含量先增加后减小;泥岩孔隙结构演化存在多阶段变化的特点,微孔含量先增加(2 500~2 700 m)、后减小(2 700~3 300 m)、再增加,介孔含量先减小(2 500~2 700 m)、后增加(2 700~3 300 m)、再减小(3 300~3 550 m)、又略有增加,大孔含量先增加(2 500~2 700 m)、后略微减小(2 700~3 100 m)、再增加(3 100~3 550 m)、又快速减小,表明泥页岩不同类型孔隙结构演化的差异性。

以泥岩为例来分析孔隙结构参数、TOC、矿物含量与埋深的关系(图10),发现总孔体积与TOC的演化趋势相反,而与黏土矿物含量演化趋势基本相同,而3 100~3 300 m范围内演化趋势的差异可能受到伊利石含量快速增加而其他类型黏土矿物含量快速减小的影响,表明黏土矿物及其类型对孔隙发育的意义重大;碳酸盐类矿物含量的演化趋势与黏土矿物含量恰好相反,其在3 100~3 300 m范围的不一致性可能受到成岩成因碳酸盐类矿物的影响;碎屑矿物含量与总孔体积的演化趋势在3 100 m以上相反,在3 100 m以下则基本相同。从不同类型孔隙的构成来看,微孔含量与TOC的演化趋势基本相反,在3 100 m以上与黏土矿物含量演化趋势相同,3 100 m以下不具有一致性,表明TOC对微孔的发育影响更显著;介孔含量与碳酸盐类矿物含量的演化趋势相同,与黏土矿物含量相反,在3 100~3 550 m与TOC不具有一致性;大孔含量变化较小,与矿物组分和有机组分的一致性差,这是由于孔径越大,孔隙的抗屈曲强度越小,因此,大孔的演化还受压实作用较大的影响。从孔径看,平均孔径具有先减小(2 500~2 700 m)、后增加(2 700~3 300 m)、再减小的演化趋势,与TOC的演化具有很好的一致性;中值孔径的演化趋势与矿物组分和TOC一致性差。综上分析认为,由于有机质生烃、矿物成岩及埋藏压实共同作用,泥岩孔隙结构演化具有多阶段性。

图10 东营凹陷S井不同类型泥页岩有机质丰度、矿物组分与孔隙结构剖面演化特征Fig.10 TOC,mineral composition and pore structure evolution characteristics of the different types of mud shale of Well S in Dongying Sag

综合以上分析可以看出,泥页岩的孔隙演化不仅受矿物组分和有机质(TOC、类型和成熟度等)的影响,还受埋藏演化的影响,因此,在开展泥页岩的储层特征研究时,既要关注泥页岩的岩相特征(矿物和有机质特征等),还要关注埋藏演化特征,这样才能有效地确定泥页岩的有利油气富集区域。

6 结论

氮气吸附-压汞联合测孔法定量地揭示了泥页岩的全孔径分布特征以及大孔、介孔和微孔体积等孔隙结构特征,结果表明,不同类型泥页岩的孔径分布存在差异,泥质粉砂岩以大孔为主,粉砂质泥岩和泥岩以介孔和微孔为主。研究区孔隙结构发育影响因素分析表明,矿物组分对泥页岩不同类型孔隙的含量具有重要影响,其中黏土矿物含量和黏土矿物类型对泥页岩较小孔径孔隙的影响较大,碎屑矿物含量对泥页岩的孔隙结构影响较小,碳酸盐类矿物对孔隙结构的影响受其结构和成因的控制;有机组分对泥页岩孔隙结构发育的影响更大,有机质丰度越高、有机质类型越好的泥页岩孔隙结构越好。泥页岩孔隙结构的演化与矿物组分和有机组分等具有密切的关系,埋藏演化过程中矿物类型的转变、有机质生烃作用及埋藏压实作用共同导致孔隙演化的多阶段性。所以在页岩油气有利储层研究时,既要关注泥页岩的岩相差异,又要关注演化过程中孔隙、矿物、有机质间的匹配关系,这对泥页岩油气富集层段的预测意义重大。

猜你喜欢

泥质微孔泥岩
泥岩路基填料抗剪性能实验研究
严寒地区城市河道底泥泥质分析及治理技术研究
青海祁漫塔格那西郭勒泥质岩地层水敏性及其钻井液配方研究
一种打微孔改进结构的塑料编织袋
泥质夹层的三维预测与地质模型的等效粗化表征
——以加拿大麦凯河油砂储集层为例
风化泥岩地质断层水疏排工艺探讨
潘谢矿区深部裂隙发育特征的垂向测井反演分析
高孔低渗泥岩渗流-损伤耦合模型与数值模拟
强疏水性PDMS/PVDF微孔膜的制备及其性能研究
膜蒸馏用PDMS/PVDF/PTFE三元共混微孔膜制备