APP下载

不同氮水平下橡胶树氮素贮藏及翌年分配利用特性

2019-01-09张永发吴小平王文斌陈艳彬罗雪华薛欣欣王大鹏赵春梅

热带作物学报 2019年12期
关键词:氮素橡胶树树体

张永发 吴小平 王文斌 陈艳彬 罗雪华 薛欣欣 王大鹏 赵春梅

摘  要  以2年生幼齡橡胶树为试材,采用落叶期换土移栽法,利用15N同位素示踪技术,研究了少量施氮(N28)、适量施氮(N56)和过量施氮(N84)3个氮素水平下幼树的生长差异及氮吸收、利用和分配特性。结果表明:适量施氮肥利于树体生长。以N28处理为对照,N56和N84处理均通过促进根系生长进而促进地上部生长,且N56处理对地上部生长的促进作用较N84更为显著。N28、N56和N84处理橡胶树当年氮肥利用率分别为47.55%、46.83%、39.09%,在第2年春季第一蓬叶稳定期后,各处理氮肥利用率分别为44.49%、43.79%、38.17%。橡胶树氮素的主要贮藏部位为主干和根系,其15N分配率为59.58%左右,主干木质部的15N分配率最高,N28、N56和N84处理分别为24.65%、28.69%和25.50%;3个处理地上部枝干中的15N分配率为76.85%(N28)、78.24%(N56)和75.51%(N84)。经过春季的重新再利用,第1年吸收贮藏的氮素由枝干和根系向新生器官(新梢木质部、新梢皮部、叶片及叶柄)大量运转,满足其生长发育的需要;N28、N56和N84处理新生器官中的Ndff%较高,分别为9.60%~11.31%、18.39%~21.43%和31.67%~34.04%,而主干木质部中的Ndff%较低,分别为3.86%、7.90%和13.77%。贮藏氮在橡胶树春季器官的生长发育中起到重要作用,3个处理新生器官中的15N分配率为50.60%(N28)、53.98%(N56)和53.28%(N84)。适量施氮水平下15N在地上部枝干中的贮藏比例较高,翌年新生器官中的分配率也高,有利于橡胶树氮素的季节性循环利用及生长发育的需要。

关键词  幼龄橡胶树;15N-尿素;贮藏;分配利用中图分类号  S794.1      文献标识码  A

Effects of Different N Rates on Storage and Remobilization of Urea-15N by Rubber Tree

ZHANG Yongfa1,3,4,5, WU Xiaoping1,3,4,5, WANG Wenbin1,3,4,5*, CHEN Yanbin1,2, LUO Xuehua1,3,4,5,XUE Xinxin1,3,4,5, WANG Dapeng1,3,4,5, ZHAO Chunmei1,3,4,5

1. Rubber Research Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, Hainan 571101, China; 2. Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China; 3. Soil and Fertilizer Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; 4. Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, Hainan 571101, China; 5. State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou, Hainan 571101, China

Abstract  Two-year old young rubber trees were used as the materials. The soil transfer in leaf fall periods method and15N isotope tracer technique were used to study the growth difference, nitrogen absorption, utilization and distribution characteristics of young rubber trees using three levels of N: less nitrogen (N28), proper nitrogen (N56) and over-dose nitrogen (N84). Results showed that the rational application rate of nitrogen fertilizer could promote the growth of young rubber trees in the current and following year. The N56and N84treatments promoted root growth and then above ground growth, and the N56treatment had a better promotion effect than the N84treatment on the shoot growth. The nitrogen use efficiency of rubber trees treatments with N28, N56and N84was 47.55%, 46.83% and 39.09%, respectively. After the first leaf stabilization period in the spring of the second year, the nitrogen use efficiency of each treatment was 44.49%, 43.79% and 38.17%, correspondingly. The main storage sites of nitrogen in young rubber trees were trunks and roots, with the15N distribution rate of about 59.58%, and the15N distribution rate in the xylem of trunks was the highest. That for the N28, N56and N84treatment was 24.65%, 28.69% and 25.50%, respectively. The15N distribution rate of the ground shoots of the three treatments was N2876.85%, N5678.24% and N8475.51%. After reuse in spring, the nitrogen absorbed and stored in the first year was transported to new organs (xylem of new shoots, bark of new shoots, leaves and petioles) in large quantities through branches and roots, meeting the needs of growth and development of seedlings. Among them, Ndff% of new growth organs of treatments with N28, N56and N84was the highest, 9.60%-11.31%, 18.39%-21.43% and 31.67%-34.04% respectively. However, Ndff% in the xylem of trunks was the lowest, 3.86%, 7.90% and 13.77% respectively. Nitrogen storage played an important role in the growth and development of the organs of young rubber trees in spring. The15N distribution rates in the new growth organs of the three treatments was N2850.60%, N5653.98% and N8453.28%. Under the appropriate nitrogen application level, the storage ratio of15N in trunks and roots were higher, and the distribution ratio in new growth organs in the following year was also higher. This had a very important role in the seasonal recycling of nitrogen in young rubber trees and their growth and development.

全氮含量和15N丰度测定:用百万分之一天平称样1~3 mg,样品用锡纸杯包裹后,挤压紧实。釆用元素分析仪(Thermo Flash EA1112)-稳定性同位素质谱联用仪(GV IsoPrime JB312)测定植株样品中全氮含量和15N丰度。

1.3数据处理

植株器官的Ndff%是指器官从肥料氮中吸收分配到的氮量对该器官全氮量的贡献率,它反映了植株器官对肥料氮的吸收征调能力[18]

Ndff%=(植株中15N丰度%?自然丰度%)/(肥料中15N丰度%?自然丰度%)×100;

总氮量(g)=干物重(g)×N%;

15N吸收量(mg)=总氮量(g)×Ndff%×1000;

氮肥分配率=[各器官15N吸收氮量(mg)/15N总吸收氮量(mg)]×100%;

氮肥利用率=15N吸收量(g)/施氮量(g)×100%。

所有数据均采用Microsoft Excel 2016软件进行图表绘制,LSD法进行差异显著性比较,SPSS 25.0软件进行单因素方差分析。

2  结果与分析

2.1施氮水平对幼龄橡胶树生长的影响

由表1可知,在落叶期,不同施氮水平对树体生长影响显著(P<0.05),随着施氮水平增加树体干重有增加趋势,N56处理树体干重比N28处理显著提高了33.15%,N84处理树体干重比N56处理显著降低了22.79%;稳定期,N56处理树体干重比N28处理提高了4.54%,N84处理树体干重比N56处理降低了11.32%;表明在适量施氮水平下树体生物量最大,继续增加氮素供应反而不利于树体生长,适量氮条件下才能促进树体生长。

从N28到N56,落叶期N56处理根系生长比N28处理显著提高了26.00%,但根冠比较N28处理降低了4.47%;稳定期N56处理根系生长比N28处理提高了3.76%,但根冠比较N28处理降低了3.36%;表明适量施氮水平对地上部生长的促进作用较根系更为明显。从N56到N84,落叶期N84处理根系生长比N56处理显著降低了21.84%,根冠比较N56处理降低了1.70%,表明过量施氮水平对地上部生长的促进作用较根系更为明显;稳定期N84处理根系生长比N56处理降低了3.30%,但根冠比较N56处理显著提高了14.27%,表明过量施氮水平对根系生长的促进作用较地上部更为显著。

2.2施氮水平对幼龄橡胶树氮肥利用率的影响

由表2可知,不同施氮水平对植株总氮量、15N吸收量及15N利用率影响显著(P<0.05)。落

叶期N56处理植株总氮量比N28处理提高了10.28%,N84处理植株总氮量比N56处理显著降低了23.32%;稳定期N56处理植株总氮量比N28处理提高了3.83%,N84处理植株总氮量比N56处理显著降低了21.13%;表明在适量氮条件下植株总氮量最大,继续增加氮素供应不利于植株总氮量的积累。落叶期N56处理氮肥利用率比N28处理降低了1.51%,N84处理氮肥利用率比N56处理显著降低了16.53%;稳定期N56处理氮肥利用率比N28处理降低了1.57%,N84处理氮肥利用率比N56处理显著降低了12.83%;表明超过适量氮条件下,树体氮肥利用率随着氮肥施用量的增加而降低。

2.3施氮水平对落叶期贮藏15N的影响

从表3可以看出,落叶期不同施氮处理对植株各器官中的Ndff%影响显著(P<0.05)。3个不同施氮处理均以细根中的Ndff%最大,一年生枝皮部次之,主根中的Ndff%最小。肥料氮素在地上部各器官中的Ndff%隨各器官生理年龄的增加而减小,且枝干皮部均高于其木质部;地下部细根中的Ndff%最大,其次是粗根,主根中的Ndff%最小。N84处理各器官中的Ndff%(13.00%~ 46.64%)差异较大,且显著高于N28处理(5.54%~ 26.65%)和N56处理(8.73%~35.79%)的对应器官。因此,氮肥供应主要用于树体当年生长发育的需要,过量施氮水平对各器官中的Ndff%影响较大,细根对肥料氮素的吸收征调能力最强。

王文斌, 郭海超, 罗雪华, 等. 早期施用氮肥在乙烯利刺激割胶胶乳中的动态分布研究[J]. 热带作物学报, 2015, 36(6): 1013-1018.

王文斌, 王大鹏, 潘中耀, 等. 橡胶树幼苗对不同品种氮肥的吸收、利用与分配[J]. 热带作物学报, 2015, 36(5): 836-840.

杜海燕, 王大鹏, 王文斌, 等. 應用15N示踪技术研究橡胶树幼苗对不同氮肥的吸收和分配[J]. 热带作物学报, 2015, 36(6): 1019-1024.

陆行正, 何向东, 吴小平. 海南省主要胶园土壤配比施肥对胶树生长的影响-橡胶小苗盆栽试验报告[J]. 热带农业科学, 1990(4): 14-18.

顾曼如. 15N在苹果氮素营养研究中的应用[J]. 中国果树, 1990(2): 46-48.

徐季娥, 林裕益, 吕瑞江, 等. 鸭梨秋施15N-尿素的吸收与分配[J]. 园艺学报, 1993, 20(2): 145-149.

沙建川, 葛顺峰, 丰艳广, 等. 不同硝态氮供应水平对平邑甜茶生长及氮素吸收利用和分配特性的影响[J]. 中国农学通报, 2018, 34(3): 98-103.

彭  玲, 董林水, 陈印平, 等. 等量分次施氮对冬枣15N和13C利用与分配特性的影响[J]. 应用生态学报, 2019, 30(4): 1380-1388.

Zhang S, Yu H J, Jiang W J. Seedling effects of corncob and bagasse composting substrates in cucumber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 236-242.

姜琳琳, 韩立思, 韩晓日, 等. 氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(1): 247-253.

巨晓棠, 潘家荣, 刘学军, 等. 北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J]. 植物营养与肥料学报, 2003, 9(3): 264-270.

陈  倩, 丁  宁, 彭  玲, 等. 供氮水平对矮化苹果15N-尿素吸收、利用、损失及产量和品质的影响[J]. 应用生态学报, 2017, 28(7): 2247-2253.

Guarda G, Padovan S, Delogu G. Grain yield, nitrogen use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels[J]. European Journal of Agronomy, 2004, 21(2): 181-192.

Schjoerring J K. Ammonia emission from the foliage of growing plants[M]//Sharkey T D. Trace gas emission by plants. New York: Academic Press, 1991: 267-292.

Hunted S, Schjoerring J K. Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity[J]. Plant Physiology, 1996, 112(1): 67-74.

Francisd D, Schepers J S, Vigil M F. Post anthesis nitrogen loss from corn[J]. Agronomy Journal, 1993, 85(3): 659-663.

Simpson R J, Dulling M J. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.): IV. Development of a quantitative model of the translocation of nitrogen to the grain[J]. Plant Physiology, 1983, 71: 7-14.

Titus J S. Kang S M. Nitrogen metabolism, translocation, and recycling in apple trees[J]. Horticultural Reviews, 1982, 4: 204-246.

孙  俊, 章  镇, 盛炳成, 等. 果梅对秋施15N-硫铵的吸收与利用[J]. 园艺学报, 2000, 29(4): 317-320.

Khemira H, Righetti T L, Azarenko A N. Nitrogen partitioning in apple as affected by timing and tree growth habit[J]. The Journal of Horticultural Science and Biotechnology, 1998, 73(2): 217-223.

Tagliavini M, Millard P, Quartieri M, et al. Timing of nitrogen uptake affects winter storage and spring remobilisation of nitrogen in nectarine (Prunus persica var. nectarina) trees[J]. Plant and Soil, 1999, 211(2): 149-153.

Millard P. Ecophysiology of the internal cycling of nitrogen for tree growth[J]. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1996, 159(1): 1-10.

赵登超, 姜远茂, 彭福田, 等. 不同施肥时期对冬枣15N贮藏及翌年分配利用的影响[J]. 中国农业科学, 2006, 39(8): 1626-1631.

刘国锋, 董星晨, 樊  亮, 等. 陇东红富士果树养分回流对土壤表层管理的响应[J]. 生态学报, 2015, 35(11): 3862-3870.

Toselli M, Flore J A, Zavalloni C, et al. Nitrogen partitioning in apple trees as affected by application time[J]. HortTechnology, 2000, 10(1): 136-141.

猜你喜欢

氮素橡胶树树体
不同氮肥用量对小麦氮素吸收分配及利用效率的影响
贺兰山东麓不同产区酿酒葡萄氮素变化分析
天然橡胶种植管理技术研究
不同砧木对沃柑树体及果实品质的影响
湖北省小麦氮素高效利用种质的筛选及相关性分析
生如橡胶树
蓝莓栽培过程中的简易修剪方法
中国热科院在橡胶树低温应答机制研究中取得重要进展
苹果发生冻害怎样补救
橡胶树开割季在5月已经开始