APP下载

肥胖儿童脂肪组织内质网应激促动脉粥样硬化研究进展

2018-12-22王明夏贾丽红翟玲玲魏薇孙琦白英龙

中国医药导报 2018年32期
关键词:动脉粥样硬化心血管疾病脂肪组织

王明夏 贾丽红 翟玲玲 魏薇 孙琦 白英龙

[摘要] 心血管疾病是当前威胁我国人民健康最严重的公共卫生问题。动脉粥样硬化是其主要病理基础,可发生于儿童时期,肥胖儿童患病风险增高。内质网应激是动脉粥样硬化发生发展的重要机制。肥胖的脂肪组织中巨噬细胞浸润增多,内质网应激加剧,脂肪细胞与巨噬细胞间交互作用也加速动脉粥样硬化进程,在动脉粥样硬化性心血管疾病的发生发展中起重要作用。本文就脂肪组织内质网应激与肥胖儿童动脉粥样硬化发生发展关系的相关机制进行综述,旨在加深人们对肥胖加速儿童患动脉粥样硬化疾病的理解,提高人们预防儿童肥胖的认识,并为肥胖引发的儿童动脉粥样硬化的治疗开拓新思路。

[关键词] 儿童肥胖;脂肪组织;内质网应激;动脉粥样硬化;心血管疾病

[中图分类号] R723.14 [文献标识码] A [文章编号] 1673-7210(2018)11(b)-0024-04

[Abstract] Cardiovascular disease is the most serious public health problem that currently threatens the health of people in our country. Atherosclerosis is the main pathological basis and can occur in childhood, and the risk of obesity in children is increasing. Endoplasmic reticulum stress is an important mechanism for the development of atherosclerosis. Macrophage infiltration in obese adipose tissue increases, endoplasmic reticulum stress aggravates, interaction between adipocytes and macrophages accelerates atherosclerotic progression, which plays an important role in the development of atherosclerotic cardiovascular disease. For deepening people′s knowledge of obesity accelerating atherosclerosis and raising awareness of preventing childhood obesity, and exploiting new ideas for treating atherosclerosis in children with obesity, this review introduced the relationship between endoplasmic reticulum stress of adipose tissue and the development of atherosclerosis in children with obesity.

[Key words] Childhood obesity; Adipose tissue; Endoplasmic reticulum stress; Atherosclerosis; Cardiovascular disease

心血管疾病(cardiovascular diseases,CVDs)是当前威胁我国人民健康最严重的公共卫生问题。动脉粥样硬化(AS)是CVDs的主要病理基础[1],且儿童肥胖是患CVDs的危险因素[2]。据WHO最新数据显示,全球有超过3.4亿名5~19岁儿童和青少年超重或肥胖[3]。儿童期肥胖与成年期CVDs的发病率和死亡率增加有关[4],尽管CVDs事件直到成年期才会发生,但CVDs的发生始于儿童期,随后一直处在进展阶段。此外,已有研究人员在3岁儿童冠状动脉中发现了脂纹[5]。

血脂异常是CVDs发生的传统危险因素之一。儿童和青少年时期肥胖的孩子发生血脂异常的情况较常见,且其成年期AS以及CVDs的发病风险也较高[6]。青春期血脂异常会增加成年期发生颈动脉内膜中层厚度(IMT)增厚的风险[7]。超聲波检测IMT是临床上诊断AS进展的一个重要指标[8]。儿童时期的低密度脂蛋白胆固醇(LDL-C)水平与成年期颈动脉IMT相关,暴露于高水平的LDL-C可能会导致成年期AS的发生与发展[9]。

1 脂肪组织中的内质网应激在AS进展中发挥重要作用

1.1 内质网应激是AS发生发展的重要机制

内质网是大多数分泌蛋白和跨膜蛋白折叠和成熟的场所。能够扰乱细胞能级、氧化还原状态或Ca2+浓度,甚至蛋白质内的突变都可能降低内质网对蛋白质的折叠能力并且阻碍其在内质网内的进一步加工或转运。当内质网的折叠能力不能适应未折叠蛋白质的负载时,内质网稳态受到破坏,这被称为内质网应激(endoplasmic reticulum stress,ERs)[10]。

ERs在AS进展中具有重要作用。在人类[11]和动物[12]的AS病变细胞中,尤其是在巨噬细胞和内皮细胞中都可观察到一些ERs和未折叠蛋白反应(unfolded protein reaction,UPR)的标志物,如葡萄糖调节蛋白78(glucose-regulated protein,GRP78)、磷酸化双链RNA激活的蛋白激酶样内质网激酶(double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase,PERK)和C/EBP同源蛋白(C/EBP homologous protein,CHOP)等。值得注意的是,只有当人类血液单核细胞分化为巨噬细胞后,斑块中才会出现UPR标志物[13]。持续过度的ERs通过需求肌醇激酶1(inositol-requiring kinase 1α,IRE-1α)和CHOP可诱导巨噬细胞凋亡和晚期AS斑块坏死,并在AS的发展恶化过程中发挥关键作用[14]。一些与AS相关的ERs诱导物,包括氧化应激、饱和脂肪酸、氧化磷脂等均可促进巨噬细胞的凋亡[15],尤其在肥胖、胰岛素抵抗和糖尿病等疾病的发展中被加剧[16]。

1.2 肥胖的脂肪组织中巨噬细胞ERs导致AS

除脂质紊乱以外,巨噬细胞积聚和炎性细胞因子表达增加也是AS病理过程的重要组成部分[17]。脂肪组织不仅包含脂肪细胞,还包含许多其他类型的细胞,如前脂肪细胞、巨噬细胞和血管基质细胞。脂肪组织巨噬细胞的数量与人类肥胖程度成正比,巨噬细胞在正常个体的脂肪组织中所占比例不足10%,而在肥胖人和小鼠的脂肪组织中可达40%~50%[18]。

此外,肥胖时脂肪组织内的免疫细胞群体不仅数量增多,而且炎症表型也发生了变化。肥胖时脂肪组织中各种T-淋巴细胞的浸润性增强,并且浸润到脂肪组织中的巨噬细胞数量也增加,致使一些炎性细胞因子如白细胞介素-6(IL-6)和肿瘤坏死因子(TNF)大量释放[19-20]。依据表型特点,巨噬细胞通常被分为ATM1和ATM2两种类型。ATM1产生大量的炎性细胞因子,如TNF-α、IL-1β和IL-6等,均可以引起脂肪组织发生胰岛素抵抗;而ATM2则通过产生抗炎细胞因子来增强局部组织的胰岛素敏感性[21]。巨噬细胞浸润能够加剧脂肪组织内炎性标志物的表达[22]。饮食诱导的肥胖可引起巨噬细胞表型转变。高脂饮食诱导肥胖大鼠的白色脂肪组织炎症具有部位特异性,同时伴有ATM2表达减少[23]。AS患者的ATM1/ATM2值增高,血清中M1相关的趋化因子水平也升高。推测ATM1/ATM2比值的变化可能是导致AS发生发展的重要原因[24]。

巨噬细胞内发生ERs导致AS。巨噬细胞源性泡沫细胞位于血管壁内皮下,是AS病理改变的重要标志[25]。氧化型低密度脂蛋白(ox-LDL)可诱导巨噬细胞在形成泡沫细胞过程中发生ERs,主要是通过PERK上调CHOP的表达,进而加快巨噬细胞凋亡,最终促进AS斑块坏死[26],人群调查也证实肥胖儿童的血脂异常,其血中ox-LDL的含量显著高于正常体重同伴[27]。

巨噬细胞作为岗哨细胞,可通过各种表面受体和分泌的分子来监测和响应局部微环境信号[28]。脂肪组织是最大的内分泌器官,可分泌多种具有生物活性的脂肪因子,如TNF-α、单核细胞趋化蛋白1、脂联素和抵抗素都能在外周和内脏脂肪细胞中产生和分泌[29]。机体发生肥胖后,脂肪因子的表达和分泌被修饰,会导致脂肪细胞的分泌特征向致炎谱偏移。高脂饮食诱导肥胖动物内脏脂肪组织来源的外泌体可促进巨噬细胞源性泡沫细胞生成,并通过调节巨噬细胞极性转变来发挥致AS作用[30]。

1.3 脂肪细胞与巨噬细胞间交互作用加速ERs以及AS进程

脂肪因子和趋化因子是脂肪细胞和巨噬细胞的交互作用中的关键角色,在调节脂肪组织炎症中起到重要作用。由脂肪细胞和巨噬细胞组成的体外共培养系统是研究这两种细胞间发生交互作用分子机制的良好模型。来源于巨噬细胞的TNF-α是脂肪细胞中的主要炎症介质,而来源于脂肪细胞的游离脂肪酸(free fatty acids,FFA)可能是巨噬细胞中的主要炎症介质。因此,推测在脂肪细胞和巨噬细胞之间存在旁分泌环,TNF-α和FFA构成了一个恶性循环,进而加重脂肪组织的炎性反应[31]。

为了解肥胖脂肪组织内脂肪细胞与巨噬细胞浸润间相互作用的分子基础,Yanaka团队在体内和3T3-L1脂肪细胞与RAW264.7巨噬细胞共培养的体外体系中筛选了脂肪细胞基因,Ras相关结构域家族6(Ras association domain family 6,RASSF6)被鉴定出来,在肥胖小鼠体内脂肪细胞中和体外与活化的巨噬细胞共培养的脂肪细胞中RASSF6 mRNA的表达均减少,提示脂肪细胞与巨噬细胞交互作用可影响RASSF6的细胞功能。肥胖脂肪组织中RASSF6表达的显著下降可能参与控制了脂肪细胞分化状态和/或数量[32]。此外,脂肪细胞通过与活化巨噬细胞的相互作用可上调IKK-ε的表达[33]。IKK-ε是IKK(inhibitor of nuclear factor kappa-B kinase,IκB激酶)家族中的新成员,IKKε主要介導核转录因子κB(nuclear factor-kappa B,NF-κB)途径,可显著刺激NF-κB活性,超活化NF-κB途径加速ERs,并且还可能通过调节血管中一氧化氮和超氧化物的释放来影响血管内皮功能[29,34]。

2 脂肪组织ERs可作为治疗AS的关键靶点

内脏脂肪组织分泌的丝氨酸蛋白酶抑制剂(vaspin)是研究的焦点之一。它是一种具有潜在的胰岛素致敏性的脂肪因子[35]。肥胖和T2D患者的血清中vaspin浓度升高[36-37]。最初,人们借助免疫沉淀实验,在发生ERs的内皮细胞表面看到vaspin与GRP78形成电压依赖性阴离子通道复合物,其具有抑制内皮细胞凋亡、保护糖尿病患者血管损伤的作用[38]。其后,发现vaspin可以明显抑制体外培养巨噬细胞的ATF6、CHOP和JNK1/2的表达,并且可以显著减少vaspin转染apoE-/-小鼠的AS斑块中CHOP的表达和坏死面积,表明vaspin可以通过抑制ERs诱导的巨噬细胞凋亡来缓解AS的进展[39]。

3 结论与展望

综上所述,鉴于目前儿童肥胖在全球范围流行以及随之带来的代谢紊乱风险增加,人们正面临着新的挑战。在过去的几十年中,人们已经认识到脂肪组织中的ERs在AS的发生和恶化中被加剧。作为最大的内分泌器官,脂肪组织将成为治疗肥胖相关代谢性疾病的关键靶点。基因工程动物模型和体外脂肪细胞-巨噬细胞共培养体系已经证明了脂肪细胞与巨噬细胞之间的相互作用,人们还需深入探索ERs在AS的病理生理进展中的作用机制。此外,脂肪组织内的其他细胞如前体脂肪细胞和血管基质细胞也可以分泌大量的信号分子和与炎性细胞因子。为了有效地治疗肥胖引发的儿童AS,未来需投入更多的精力来研究减轻脂肪组织中ERs的方法和有效药物。

[参考文献]

[1] Clarke R,Du H,Kurmi O,et al. Burden of carotid artery atherosclerosis in Chinese adults:Implications for future risk of cardiovascular diseases [J]. Eur J Prev Cardiol,2017, 24(6):647-656.

[2] Mendizabal B,Urbina EM. Subclinical atherosclerosis in youth:relation to obesity,insulin resistance,and polycystic ovary syndrome [J]. J Pediatr,2017,190:14-20.

[3] WHO. Obesity[EB/OL].(2017-10)[2018-5-30]. http://www.who.int/topics/obesity/en/.

[4] Yan Y,Hou D,Liu J,et al. Effect of childhood adiposity on long-term risks of carotid atherosclerosis and arterial stiffness in adulthood [J]. Zhonghua Yu Fang Yi Xue Za Zhi,2016,50(1):28-33.

[5] Olson M,Chambers M,Shaibi G. Pediatric markers of adult cardiovasculardisease [J]. Curr Pediatr Rev,2017,13(4):255-259.

[6] Nuotio J,Pitkanen N,Magnussen CG,et al. Prediction of adult dyslipidemia using genetic and childhood clinical risk factors:the cardiovascular risk in young finns study [J]. Circ Cardiovasc Genet,2017,10(3):pii:e001604.

[7] Unal E,Akin A,Yildirim R,et al. Association of subclinical hypothyroidism with dyslipidemia and increased carotid intima-media thickness in children [J]. J Clin Res Pediatr Endocrinol,2017,9(2):144-149.

[8] Wendell CR,Waldstein SR,Evans MK,et al. Distributions of subclinical cardiovascular disease in a socioeconomically and racially diverse sample [J]. Stroke,2017,48(4):850-856.

[9] Li S,Chen W,Srinivasan SR,et al. Childhood cardiovascular risk factorsand carotid vascular changes in adulthood:the bogalusa heart study [J]. JAMA,2003,290(17):2271-2276.

[10] Choy KW,Murugan D,Mustafa MR. Natural products targeting ER stresspathway for the treatment of cardiovascular diseases [J]. Pharmacol Res,2018,132:119-129.

[11] Saksi J,Ijas P,Mayranpaa MI,et al. Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease and increased plaque stability [J]. Circ Cardiovasc Genet,2014,7(5):588-598.

[12] Rabar S,Harker M,O′Flynn N,et al. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease:summary of updated NICE guidance [J]. BMJ,2014,349:g4356.

[13] Dickhout JG,Lhotak S,Hilditch BA,et al. Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions [J]. FASEB J,2011,25(2):576-589.

[14] Go AS,Mozaffarian D,Roger VL,et al. Executive summary:heart disease and stroke statistics--2013 update:a report from the American Heart Association[J]. Circulation,2013,127(1):143-152.

[15] Kang PP,Yao ST,Guo TT,et al. Activating transcription factor 6-C/EBP homologous protein pathway mediates advanced glycated albumin-induced macrophage apoptosis [J]. Sheng Li Xue Bao,2017,69(6):767-774.

[16] Sun J,Cui J,He Q,et al. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes [J]. Mol Aspects Med,2015,42:105-118.

[17] Wakana N,Irie D,Kikai M,et al. Maternal high-fat diet exaggerates atherosclerosis in adult offspring by augmenting periaortic adipose tissue-specific proinflammatory response [J]. Arterioscler Thromb Vasc Biol,2015,35(3):558-569.

[18] Weisberg SP,McCann D,Desai M,et al. Obesity is associated with macrophage accumulation in adipose tissue [J]. J Clin Invest,2003,112(12):1796-1808.

[19] Wensveen FM,Valentic S,Sestan M,et al. The "Big Bang" in obese fat:Events initiating obesity-induced adipose tissue inflammation [J]. Eur J Immunol,2015,45(9):2446-2456.

[20] Liu Y,Chen Y,Zhang J,et al. Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress [J]. J Biol Chem,2017,292(34):13 959-13 969.

[21] Chylikova J,Dvorackova J,Tauber Z,et al. M1/M2 macr-ophage polarization in human obese adipose tissue [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2018.

[22] Suzuki T,Gao J,Ishigaki Y,et al. ER stress protein CHOP mediates insulin resistance by modulating adipose tissue macrophage polarity [J]. Cell Rep,2017,18(8):2045-2057.

[23] Wang N,Guo J,Liu F,et al. Depot-specific inflammation with decreased expression of ATM2 in white adipose tissues induced by high-margarine/lard intake [J]. PLoS One,2017,12(11):e0188007.

[24] Williams H,Cassorla G,Pertsoulis N,et al. Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease [J]. Int Angiol,2017,36(2):145-155.

[25] Shirai T,Hilhorst M,Harrison DG,et al. Macrophages in vascular inflammation--From atherosclerosis to vasculitis [J]. Autoimmunity,2015,48(3):139-151.

[26] Seimon TA,Nadolski MJ,Liao X,et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress [J]. Cell Metab,2010,12(5):467-482.

[27] Santanam N,Elitsur Y,Stanek R,et al. Association between retinol binding protein 4 with atherosclerotic markers in obese children [J]. Minerva Endocrinol,2016,41(3):291-297.

[28] Dutta P,Nahrendorf M. Regulation and consequences of monocytosis [J]. Immunol Rev,2014,262(1):167-178.

[29] Engin A. The Pathogenesis of Obesity-Associated adipose tissue inflammation [J]. Adv Exp Med Biol,2017,960:221-245.

[30] Xie Z,Wang X,Liu X,et al. Adipose-Derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization [J]. J Am Heart Assoc,2018,7(5):e007442.

[31] Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity [J]. Adv Exp Med Biol,2017,960:327-343.

[32] Sanada Y,Kumoto T,Suehiro H,et al. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages [J]. PLoS One,2013,8(4):e61931.

[33] Sanada Y,Kumoto T,Suehiro H,et al. IkappaB kinase epsilon expression in adipocytes is upregulated by interaction with macrophages [J]. Biosci Biotechnol Biochem,2014,78(8):1357-1362.

[34] Chen J, Zhang M,Zhu M,et al. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1alpha/NF-kappaB signalingpathway [J]. Food Funct,2018,9(4):2386-2397.

[35] Hida K,Wada J,Eguchi J,et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity [J]. Proc Natl Acad Sci USA,2005,102(30):10 610-10 615.

[36] Chang HM,Lee HJ,Park HS,et al. Effects of weight reduction on serum vaspin concentrations in obese subjects:modification by insulin resistance [J]. Obesity (Silver Spring),2010,18(11):2105-2110.

[37] Hida K,Poulsen P,Teshigawara S,et al. Impact of circulating vaspin levels on metabolic variables in elderly twins [J]. Diabetologia,2012,55(2):530-532.

[38] Nakatsuka A,Wada J,Iseda I,et al. Visceral adipose tissue-derived serine proteinase inhibitor inhibits apoptosis of endothelial cells as a ligand for the cell-surface GRP78/voltage-dependent anion channel complex [J]. Circ Res,2013,112(5):771-780.

[39] Lin Y,Zhuang J,Li H,et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE/ mice [J]. Mol Med Rep,2016,13(2):1509-1516.

(收稿日期:2018-06-08 本文編辑:任 念)

猜你喜欢

动脉粥样硬化心血管疾病脂肪组织
高脂肪饮食和生物钟紊乱会影响体内的健康脂肪组织
双源CT对心脏周围脂肪组织与冠状动脉粥样硬化的相关性
扩大的血管周围间隙与脑小血管病变关系的临床研究
短暂性脑缺血发作患者ABCD2评分与血浆同型半胱氨酸水平的关系
长期有氧运动对高血压的影响
山楂水煎液对高脂血症大鼠早期动脉粥样硬化形成过程的干预机制
他汀类药物序贯疗法治疗心血管疾病效果分析
新确诊老年糖尿病患者降糖过快诱发心血管疾患22例临床分析
白色脂肪组织“棕色化”的发生机制
苦瓜降低脂肪组织炎性改善肥胖小鼠糖脂代谢紊乱