APP下载

内置FRP约束混凝土的方钢管混凝土轴压承载力

2017-05-03陶毅张海镇史庆轩陈建飞

土木建筑与环境工程 2017年2期
关键词:钢管承载力构件

陶毅 张海镇 史庆轩 陈建飞

摘要:

钢管混凝土FRP混凝土(SCFC)组合柱是新近提出的一种新型组合柱形式。提出考虑外钢管与FRP的双重约束效果,采用双剪统一理论分析了SCFC组合柱外钢管、外层混凝土、FRP管以及内层混凝土的应力状态,根据静力平衡条件得到了SCFC组合柱的轴压承载力计算公式,其与试验结果能够较好吻合。分析了含钢率、FRP与钢的相对配置率、FRP径厚比以及FRP管直径对轴压承载力提高系数的影响,结果表明:随着含钢率的增加、FRP与钢的相对配置率的提高以及FRP径厚比的减小,SCFC组合柱轴压承载力提高系数都有一定程度提高;内FRP管直径与外钢管边长之比在0.65~0.75之间时,轴压承载力增益效果较好。

关键词:

组合柱;双剪统一强度理论;承载力;应力

中图分类号:TU398.9

文献标志码:A文章编号:16744764(2017)02004307

Abstract:

The sectional form of steelconcreteFRPconcrete (SCFC) column, as a novel composite column, has a steel tube as the outer layer and a circular FRP tube as the inner layer, and concrete filled between these two layers and within the FRP tube. Considering the confinements from both outer steel and inner FRP layers, the twin shear unified strength theory and force equilibrium condition are utilized to develop an analytical model of bearing capacity of SCFC column. The accuracy of the proposed model is evidenced through being compared with experimental data. The parametrical study is conducted in order to evaluate the confinements affected by the sectional steel proportion, ratio of FRP to steel, ratio of diameter to thickness of FRP and FRP diameter itself. The results indicate that the greater sectional steel proportion, the larger ratio of FRP to steel, and smaller ratio of diameter to thickness of FRP have positive contributions on the confinements of SCFC. The ratio of FRP diameter to steel side length locates between 0.650.75 can lead to a better confinement.

Keywords:

composite column; twin shear unified strength theory; bearing capacity; stress

随着建筑结构高度与跨度的不断增加,普通钢筋混凝土难以达到结构所需的强度和刚度要求,钢、纤维增强复合材料(FRP)与混凝土的组合应用理念应运而生。目前,应用较为广泛的组合柱类型为:钢管约束混凝土柱(CFST)[12]、FRP约束混凝土柱(CFFT)[35]、复合钢管混凝土柱[67]以及钢管FRP混凝土组合柱等。内置FRP约束混凝土的钢管混凝土组合柱(SteelConcreteFRPConcrete Column,简称SCFC Column)是新近提出的一种钢管FRP混凝土组合柱形式,即钢管混凝土柱内填充FRP约束混凝土。李帼昌等[810]、冯鹏等[11]、Cheng等[12]较早地对这一组合柱进行了研究。这些学者设计的组合柱截面形式为:外管选择方钢管,内管选择FRP圆管,两管间及FRP内管填充混凝土。SCFC组合柱的制作方式有两种:一是先制作并布置好内外两管,最后浇筑内外层混凝土;二是先制作内层混凝土柱,再缠绕FRP以施加约束,将约束混凝土柱置于钢管中,最后浇筑夹层混凝土。内外层混凝土宜采用细石混凝土或自密实混凝土,并采用振动棒贴壁和插入振捣,以保证浇筑质量。此外,FRP管表面的凹凸和粗糙可不作处理,以保证FRP与内外层混凝土的粘结性能。传统的方钢管混凝土组合柱通常由于混凝土侧向变形导致钢管发生屈曲变形,从而削弱了方钢管对混凝土的约束作用[13],SCFC中FRP圆管对核心混凝土提供有效环向约束,降低了核心混凝土的横向变形,由此降低了对方钢管的侧压力,减缓了应力集中现象,从而提高了约束效果,使得构件的承载能力有效提高。文献[8]基于统一理论提出了SCFC的轴压承载力公式,研究了试件的含钢率及CFRP圆管与方钢管的相对配置率对构件轴压承载力的影响。但目前对于SCFC受力机理的研究还比较少,笔者基于双剪统一强度理论,考虑外钢管与内FRP管对混凝土的双重约束作用,对SCFC的轴压承载力进行研究,根据极限平衡原理得出轴压承载力计算公式,并且將计算结果与实验数据进行对比,验证了轴压承载力计算公式的准确性。

1双剪统一强度理论

俞茂宏在双剪强度理论的基础上,考虑作用于双剪单元体上的两个较大剪切应力及其面上的正应力,建立了一种全新的考虑中主应力影响的适用于各种不同材料的双剪统一强度理论,其数学表达式为

σ2≤σ1+aσ3[]1+a,

F=σ1-a[]1+b(bσ2+σ3)=σt(1a)

σ2≥σ1+aσ3[]1+a,

F′1[]1+b(σ1+bσ2)-aσ3=σt(1b)

式中:σ1、σ2和σ3分别为3个主应力;a=σt/σc为材料的拉压强度比;σt和σc分别为材料的拉伸强度和压缩强度;b为反应中间主应力效应的材料参数,也是反应不同强度理论的参数。

约束混凝土轴压承载力提高的原因在于混凝土在受压时产生侧向变形,随着荷载的不断增加,核心混凝土及夹层混凝土的侧向变形开始增大,而FRP及钢管限制了混凝土的膨胀,由于变形协调而产生了相互作用[8]。李帼昌等[8]及Feng等[11]的试验研究都表明,对于SCFC组合柱而言,当构件进入弹塑性阶段时,混凝土的侧向变形因为微裂缝发展而增大,FRP管处于环拉和径向受压的两向应力状态,外钢管处于轴压、环拉和径向受压的三向应力状态,内外的混凝土处于三向受压的应力状态。FRP环向拉力逐渐增大至FRP断裂强度而退出工作,此时,构件达到极限承载力,在此过程中,FRP有效约束了内层混凝土的变形。此后,钢管与混凝土发生应力重分布,钢管由主要承担竖向力转为承担环向力。同时,由于钢管、混凝土、FRP管之间的相互作用,导致随着含钢率的增加(即钢管厚度的增加),钢管的套箍作用增强,试件的承载力得到明显提升,也证明了内层混凝土的约束作用来自于FRP管及外钢管两部分。因此,对于SCFC而言:夹层混凝土受到外钢管的约束力po,而内层混凝土的约束力由两部分组成:一部分是FRP管对其的约束力pi和外钢管传递过来的约束力p′o。其受力模型如图1所示。

2.3混凝土应力分析

由于钢管和FRP的约束作用使得核心混凝土处于三向受压状态,而此时三向受压混凝土的强度相比于无约束混凝土的强度有明显的提高,因此,受钢管和FRP约束的混凝土的轴压承载力大大高于核心混凝土和钢管以及FRP各自的轴压承载力之和。在SCFC结构中,钢管和FRP的贡献主要体现在对混凝土的约束上,约束后的混凝土强度是影响钢管混凝土轴压承载力的决定性因素。

2.3.1外层混凝土应力分析

方钢管通过面积等效原则简化为圆钢管,其对核心混凝土产生约束作用,使其处于三向受力状态。对于夹层混凝土而言,除了钢管的约束作用,还受到内侧FRP的紧箍作用。假设外层混凝土受到内外均匀的约束力作用,取钢管和FRP约束中的较小值,此时,外层混凝土的应力状态为0>σ1=σ2>σ3,取σ1=po,混凝土处于三向受压状态,应用双剪统一强度理论,并用混凝土凝聚力c和内摩擦角φ表示为

3.2影响因素分析

为了更好地表征SCFC组合柱中钢管与FRP约束对承载力增益效果,定义轴压承载力提高系数η=N/N0,式中N为通过式(18)和(19)计算而得的承载力值,N0为不考虑钢管和FRP约束作用时钢管与混凝土承载力之和。

3.2.1材料配置参数的影响

试验研究表明,影响SCFC组合柱承载力的主要因素为:含钢率As/Ac、FRP与钢管的相对配置率β=Af/As和FRP管的径厚比d/tf。对文献[10]中构件在截面尺寸不变的情况下,变化材料参数,研究各参数变化对于承载力提高系数的影响。

1)含钢率As/Ac,即钢管截面面积与混凝土截面面积之比。在SCFC组合柱截面大小与内部配置的FRP大小一定时,组合柱承载力提高系数随着含钢率的变化如图4所示。随着钢管厚度增大,构件含钢率变大,承载力提高系数变大,说明含钢率越大,钢管对内部混凝土的约束作用越明显,且截面宽度较小时含钢率的变大导致承载力的增益效果更明显,这与文献[1011]的试验结论是一致的。

2)FRP与钢管的相对配置率β=Af/As,FRP截面面积与钢管截面面积比。在含钢率不变的情况下,组合柱承载力提高系数随相对配置率的变化如图5所示,对于含钢率相同的构件,相对配置率越大,FRP所占比重越大,相应的承载力提高越多,这是由于在构件轴心受压时,FRP对核心混凝土的约束作用会随着FRP层数的增加,即Af/As的增加而增加。

3)FRP管的径厚比d/tf,即FRP管直径与厚度的比值。在含钢率不变的情况下,组合柱承载力提高系数随FRP管径厚比的变化如图6所示,随着径厚比的增大,承载力提高系数降低。径厚比的增大可以表现为FRP厚度相同时,其直径增大。由式(5)可知,直径增大将导致约束效果降低,从而导致承载力增益效果下降。

3.2.4内FRP管参数的影响

在含钢率与β不变的情况下,通过变化参数,得到了承载力提高系数与内FRP径厚比、内外管直径边长比d/D的关系,如图7和图8所示。由图7可以看出,含钢率不变的情况下,随着FRP径厚比的变大,承载力提高系数先增加后减小,存在最优值。此外,由图8可知,内FRP直径d为0.65D~0.75D,轴压承载力增益效果较好。

4结论

1)将内置FRP约束混凝土的方钢管混凝土组合柱(SCFC)分为外钢管、外层混凝土、FRP管以及内层混凝土4个部分,考虑外钢管与FRP的双重约束效果,采用双剪统一理论分析了构件的应力状态,得到了轴压承载力计算公式,对比了文献中的试验数据,具有较好的精度。

2)含钢率As/Ac、FRP与钢管的相对配置率β=Af/As和FRP管的径厚比d/tf都对SCFC轴压承载力提高系数的具有一定的影响,随着含钢率的增加、β的提高以及徑厚比的减小,SCFC轴压承载力提高系数都有一定程度提高。

3)内FRP直径d为0.65D~0.75D时,轴压承载力增益效果较好。

参考文献:

[1] ELLOBODY E, YOUNG B, LAM D. Behaviour of normal and high strength concretefilled compact steel tube circular stub columns [J]. Journal of Constructional Steel Research, 2006, 62(7): 706715.

[2] CHEN J, JIN W L. Experimental investigation of thinwalled complex section concretefilled steel stub columns [J]. ThinWalled Structures, 2010, 48(9): 718724.

[3] HEECHEUL K, HUN L K, HAK L Y, et al. Axial behavior of concretefilled carbon fiberreinforced polymer composite columns [J]. Structural Design of Tall & Special Buildings, 2012, 21(3): 178193.

[4] WU Y F, JIANG C. Effect of load eccentricity on the stressstrain relationship of FRPconfined concrete columns [J]. Composite Structures, 2013, 98(3): 228241.

[5] LAM L, TENG J G. Designoriented stressstrain model for FRPconfined concrete [J]. Construction & Building Materials, 2003, 17(6): 471489.

[6] HASSANEIN M F, KHAROOB O F, LIANG Q Q. Circular concretefilled double skin tubular short columns with external stainless steel tubes under axial compression [J]. ThinWalled Structures, 2013, 73(4): 252263.

[7] 钱稼茹, 张扬, 纪晓东,等. 复合钢管高强混凝土短柱轴心受压性能试验与分析[J]. 建筑结构学报, 2011, 32(12):162169.

QIAN J R, ZHANG Y, JI X D, et al. Test and analysis of axial compressive behavior of short compositesectioned high strength concrete filled steel tubular columns [J]. Journal of Building Structures, 2011, 32(12): 162169. (in Chinese)

[8] 李帼昌,麻丽,杨景利,等. 内置CFRP圆管的方钢管高强混凝土轴压短柱承载力计算初探[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(1): 6266.

LI G C, MA L, YANG J L, et al. Bearing capacity of short columns of highstrength concrete filled square steel tubular with inner CFRP circular tubular under axially compressive load [J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(1): 6266. (in Chinese)

[9] 李幗昌,侯东序,李宁. 内置CFRP圆管的方钢管高强混凝土偏压短柱试验[J]. 沈阳建筑大学学报(自然科学版), 2009, 25 (5): 871876.

LI G C, HOU D X, LI N. research on highstrength concrete filled square steel tubular short columns with inner CFRP circular tubeunder eccentric load [J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(5): 871876. (in Chinese)

[10] 李帼昌,邢娜,邢忠华. 内置CFRP圆管的方钢管高强混凝土轴压短柱试验[J]. 沈阳建筑大学学报(自然科学版), 2009, 25(5):244249.

LI G C, XING N, XING Z H. experimental study on short columns of high strength concrete filled square steel tube with inner CFRP circular tube under axial compressive load [J]. Journal of Shenyang Jianzhu University (Natural Science), 2009, 25(5): 244249. (in Chinese)

[11] FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concretefilled square steel tube with FRPconfined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312324.

[12] CHENG S, FENG P, BAI Y, et al. Loadstrain model for steelconcreteFRPconcrete columns in axial compression [J]. Journal of Composites for Construction, 2016,20(5):0401617.

[13] 韩林海, 陶忠. 方钢管混凝土轴压力学性能的理论分析与试验研究[J]. 土木工程学报, 2001, 34(2): 1725.

HAN L H, TAO Z. Study on behavior of concrete filled square steel tubes under axial load [J]. China Civil Engineering Journal, 2001, 34(2):1725. (in Chinese)

[14] 李小伟, 赵均海, 朱铁栋,等. 方钢管混凝土轴压短柱的力学性能[J]. 中国公路学报, 2006, 19(4):7781.

LI X W,ZHAO J H,ZHU T D, et al. Mechanics behavior of axially loaded short columns with concretefilled square steel tube [J]. China Journal of Highway and Transport, 2006, 19(4): 7781. (in Chinese)

[15] 李天華, 魏雪英, 赵均海,等. 内置CFRP圆管的方钢管混凝土短柱力学性能研究[J]. 建筑结构学报, 2009(Sup2): 249254.

LI T H, WEI X Y, ZHAO J H, et al. Mechanical behavior of concrete filled square steel tube short columns with inner CFRP circular tube [J]. Journal of Building Structures, 2009(Sup2): 249254. (in Chinese)

[16] 江佳斐, 吴宇飞, 李奔奔. 约束混凝土内摩擦角的特性研究[C]// 第23届全国结构工程学术会议论文集(第Ⅱ册), 2014:4751.

(编辑胡英奎)

猜你喜欢

钢管承载力构件
高邮市水环境承载力分析
超大断面隧道初期支护承载力学特性及形变研究
安徽资源环境承载力综合评价
五叔
听说你低估了一辆车的承载力
基于构件的软件工程技术与理论方法探讨
浅谈钢管混凝土在高层建筑中的应用
等差数列与数表
武汉工地钢材贴上电子标签
一伞两用