APP下载

油茶果壳化学成分研究

2017-04-10陈仕平黄燕吴磊吴静

生物化工 2017年6期
关键词:齐墩果壳果酸

陈仕平,黄燕,吴磊,吴静

(1.江西省科学院,江西南昌 330029;2.江西新世纪民星动物保健品有限公司,江西南昌 330096)

油茶果壳化学成分研究

陈仕平1,黄燕1,吴磊1,吴静2

(1.江西省科学院,江西南昌 330029;2.江西新世纪民星动物保健品有限公司,江西南昌 330096)

目的:研究油茶果壳的化学成分。方法:采用硅胶柱、半制备柱、Sephadex LH-20以及重结晶等方法从油茶果壳中分离化合物,通过理化性质和波谱学分析其化学结构。结果:分离出5种化学物质,分别鉴定为齐墩果酸(1)、皂皮酸(2)、齐墩果酸-3-O-β-D-葡萄糖苷(3)、大黄素(4)和柚皮苷(5)。结论:化合物2、3和5为首次从该植物中分离得到。

油茶果壳;化学成分;柱色谱

油茶(Camellia oleifera Abel)属于山茶科植物,是一种经济价值很高的树种,同时也是四大油料树种之一,主要分布于广西、湖南、江西等华南地区[1]。生物活性研究表明,油茶具有显著的神经保护作用、抗炎、抗菌、抗氧化以及抑制肿瘤等生物活性[2-5]。早期的研究主要集中在其根和种子,从中分离得到的化合物以三萜及三萜皂苷、黄酮和黄酮苷为主[6-7]。但对于油茶果壳的次级代谢产物研究只有极少报道[8]。在取出茶籽后,油茶果壳始终作为一种农业废弃物被丢弃而没有得到充分的利用。

本研究以油茶果壳为研究对象,采用各种柱色谱技术,分离得到了5个化合物,分别鉴定为齐墩果酸(1)、皂皮酸(2)、齐墩果酸-3-O-β-D-葡萄糖苷(3)、大黄素(4)和柚皮苷(5),其中化合物2、3、5为首次从该植物中分离得到。

1 仪器与材料

BS224 S电子分析天平(北京赛多利斯仪器系统有限公司);KQ-500B超声波清洗器(昆山市超声仪器有限公司);Vacucella 22L真空干燥箱(德国MMM公司);Direct-Q3CHAO超纯水系统(美国密理博公司);ALPHA 1-2LDPLUS冷冻干燥机(德国ALPHA公司);Thermo LCQ Advanctage液相色谱仪-质谱联用仪(美国Thermo Electron公司);Bruker Avance 400 NMR核磁共振仪[美国布鲁克(Bruker)公司];CBIO21多功能暗箱式紫外分析仪(北京赛百奥科技有限公司);Agilent 1260高效液相色谱仪(四元泵,柱温箱,UV检测器美国安捷伦公司)。

硅胶(100~200目,200~300目),均为青岛海洋化工厂生产;葡聚糖凝胶Sephadex LH-20,GE Pharmacia公司生产;硅胶板,青岛海洋生化工厂分厂生产(50mm×100mm,厚0.2~0.25mm);反相分析色谱柱:ZORBAX ODS(5μm,150mm×4.6mm)安捷伦,美国;反相半制备色谱柱:ZORBAX ODS C18(5μm,250mm×9.4mm)安捷伦,美国;色谱溶剂系统:CHCl2/MeOH,PE/EtOAc(不同比例);MeOH/H2O(不同比例);TLC显色剂;紫外灯,254~365nm;10%H2SO4乙醇溶液;所有化学试剂均为分析纯。

油茶果壳由江西省恩泉油脂有限公司提供,经江西省科学院天然产物研究室鉴定为油茶的干燥果壳。

2 提取与分离

油茶果壳干燥样品4 523.23g经粉碎后,采用80%乙醇为溶剂,室温浸泡提取3次,每次3天。提取液合并、过滤、旋转蒸发和冷冻干燥得粗提物342.56g,粗提物用适量的水超声辅助打散,分别用正己烷、二氯甲烷、乙酸乙酯和正丁醇萃取。经冷冻干燥分别得正己烷萃取相21.35g、二氯甲烷萃取相28.56g、乙酸乙酯萃取相50.56g、正丁醇萃取相70.25g和水相156.38g。取45g乙酸乙酯萃取相进行硅胶柱色谱分离,硅胶采用100~200目,流动相采用二氯甲烷-甲醇(99∶1→49∶1→19∶1→9∶1→4∶1→1∶1,v/v)→甲醇梯度洗脱,薄层色谱跟踪,合并相同部分,得到10部分(COE-1→COE-10);其中COE-2继续使用硅胶(200~300目)进行柱色谱分离,流动相采用二氯甲烷-甲醇(50∶1→19∶1,v/v)部分进行洗脱,氮吹仪吹干,甲醇结晶得到化合物1(32.0mg);COE-3、COE-5采用与COE-2相同的方法得到化合物2(15.0mg)和化合物3(24.0mg);COE-7经过Sephadex LH-20柱色谱,用甲醇-水(4∶1→1∶1,v/v)梯度洗脱得到5部分(COE-7-1→COE-7-5),COE-7-3继续采用Sephadex LH-20柱色谱分离,得到化合物4(18.0mg);COE-8经过半制备液相色谱分离,得到化合物5(35.0mg)。

3 结构鉴定

化合物 1:白色粉末;C30H48O3;ESI-MS(m/z):455[M-H]-;1H-NMR(400MHz,CDCl3)δ:5.28(1H,s,H-12),3.22(1H,d,J=7.1Hz,H-3),2.82(1H,d,J=11.1Hz,H-12),0.90(3H,s,H-23),0.73(3H,s,CH3-24),0.75(3H,s,CH3-25),0.89(3H,s,CH3-26),1.15(3H,s,CH3-27),0.91(3H,s,CH3-29),0.97(3H,s,CH3-30);13C-NMR(100MHz,CDCl3)δ:183.24(C-28),143.61(C-13),122.64(C-12),79.05(C-3),55.3(C-5),47.65(C-9),46.53(C-17),45.9(C-19),41.61(C-14),40.99(C-18),39.02(C-8),38.5(C-1),37.10(-C-10),33.81(C-21),33.01(C-29),32.51(C-22),32.54(C-7),30.67(C-20),28.71(C-23),27.7(C-15),27.3(C-2),25.40(C-27),23.81(C-30),23.40(C-16),22.93(C-11),18.30(C-6),17.30(C-26),15.50(C-25),15.30(C-24)。以上数据与文献[9]报道对照基本一致,故鉴定该化合物齐墩果酸。

化合物 2:白色粉末;C30H46O5;ESI-MS(m/z):487[M+H]+;1H-NMR(400MHz,CDCl3)δ:9.43(1H,s,H-23),5.45(1H,t,J=3.4Hz,H-12),4.46(1H,t,J=4.4,2.9Hz,H-16),3.80(1H,dd,J=5.4,9.5Hz,H-3),3.00(1H,dd,J=4.1,14.2Hz,H-18),2.24(1H,t,J=14.2Hz,H-19),1.38(3H,s,CH3-27),1.08(3H,s,CH3-24),1.02(3H,s,CH3-25),0.93(3H,s,CH3-30),0.86(3H,s,CH3-29),0.82(3H,s,CH3-26);13C-NMR(100MHz,CDCl3)δ:209.23(C-23),180.24(C-28),145.61(C-13),123.14(C-12),74.05(C-16),71.05(C-3),58.32(C-4),47.65(C-10),47.02(C-8),46.53(C-17),45.9(C-19),41.61(C-14),40.99(C-18),40.54(C-7),38.5(C-1),37.10(C-9),36.41(C-15),34.81(C-21),32.82(C-6),31.51(C-22),30.67(C-20),27.31(C-2),26.96(C-30),26.96(C-29),26.40(C-27),22.93(C-11),21.30(C-5),17.30(C-26),15.50(C-25),10.30(C-24)。以上数据与文献[10]报道的皂皮酸数据相一致,故鉴定化合物2为皂皮酸。

化合物 3:白色粉末;C36H58O8;ESI-MS(m/z):619[M+H]+;1H-NMR(400MHz,CDCl3)δ:5.41(1H,s,H-1'),5.29(1H,s,H-12),0.92(3H,s,H-23),0.74(3H,s,CH3-24),0.76(3H,s,CH3-25),0.90(3H,s,CH3-26),1.16(3H,s,CH3-27),0.92(3H,s,CH3-29),0.98(3H,s,CH3-30);13C-NMR(100MHz,CDCl3)δ:180.26(C-28),144.10(C-13),123.01(C-12),103.44(C-1'),79.05(C-3),76.99(C-5'),76.47(C-3'),73.68(C-2'),70.46(C-4'),61.18(C-6'),55.30(C-5),47.66(C-9),-46.53(C-17),45.91(C-19),41.61(C-14),40.99(C-18),39.04(C-8),38.52(C-1),37.11(C-10),33.82(C-21),33.03(C-29),32.51(C-22),32.54(C-7),30.67(C-20),28.72(C-23),27.71(C-15),27.32(C-2),25.40(C-27),23.82(C-30),23.41(C-16),22.95(C-11),18.32(C-6),17.34(C-26),15.51(C-25),15.30(C-24)。以上数据与文献[11]报道对照基本一致,故鉴定该化合物为齐墩果酸-3-O-β-D-葡萄糖苷。

化合物 4:黄色粉末;C15H10O5;ESI-MS(m/z):269[M–H]–;1H-NMR(400MHz,DMSO)δ:12.01(1H,s,1-OH),11.93(1H,s,3-OH),7.38(1H,s,H-5),7.07(1H,s,H-7),7.03(1H,d,J=2.2Hz,H-4),6.53(1H,d,J=2.2Hz,H-2),2.36(3H,s,CH3);13C-NMR(100MHz,DMSO)δ:190.07(C-9),181.65(C-10),166.02(C-3),164.90(C-1),161.86(C-8),148.63(C-6),135.46(C-4a),133.17(C-10a),124.50(C-7),120.87(C-5),113.72(C-9a),109.32(C--8a),109.22(C-4),108.34(C-2),21.96(6-CH3)。以上数据与文献[12]报道对照基本一致,故鉴定该化合物为大黄素。

化合物5:白色固体;C27H31O14;ESI-MS(m/z):579[M-H]–;1H-NMR(400MHz,DMSO)δ:12.06(1H,s,5-OH),9.62(1H,s,4'-OH),7.33(2H,dd,J=8.5,2.8Hz,H-2',6'),6.80(2H,d,J=8.0Hz,H-3',5'),6.18(2H,m,H-6,8),5.50(1H,td,J=13.6,2.3Hz,H-2),4.71(2H,dd,J=22.9,4.4Hz,H-1''),4.58(1H,d,J=4.4Hz,H-1'''),4.50(d,J=5.7Hz,1H),3.18–3.68(10H,m,H-2''–6'',H-2'''–5'''),3.20(2H,td,J=9.4,4.5Hz,H-3),1.16(3H,d,J=5.9Hz,H-6''');13C-NMR(100MHz,DMSO)δ:197.70(C-4),165.28(C-7),163.51(C-5),163.2(C-9),158.30(C-4'),129.00(C-1'),128.9(C-2',6'),115.70(C-3',5'),103.80(C-10),100.88(C-1'''),97.87(C-1''),96.76(C-6),95.63(C-8),79.18(C-2),77.61(C-2''),77.33(C-3''),76.65(C-5''),72.32(C-4'''),70.91(C-2''',3'''),70.08(C-4''),68.75(C-5'''),60.94(C-6''),42.4(C-3),18.49(C-6''')。以上数据与文献[13]报道一致,故鉴定化合物5为柚皮苷。

[1]邬靖宇,曹清明,钟海雁.油茶叶黄酮类化合物研究进展[J].食品与机械,2014(6):243-246.

[2]Hu J L,Nie S P,Huang D F,et al.Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity[J].International journal of food science &technology,2012,47(8):1676-1687.

[3]淦永鉴,李旭,杨莉琳,等.油茶籽壳提取物抗氧化及抗癌活性研究[J].食品工业科技,2015,36(8):171-174.

[4]Cheng Y T,Wu S L,Ho C Y,et al.Beneficial effects of camellia oil(Camellia oleiferaAbel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF[J].Journal of agricultural and food chemistry,2014,62(3):642-650.

[5]李红冰,陈跃龙,石海峰,等.油茶种子抗肿瘤有效部位群化学成分含量的分析方法[J].时珍国医国药,2008,19(7):1610-1612.

[6]陈跃龙,冯宝民,唐玲,等.油茶叶的化学成分[J].沈阳药科大学学报,2010,27(4):292-294,324.

[7]鄢庆伟,钟瑞建,周国平,等.油茶茎化学成分研究[J].中药材,2015(10):2102-2104.

[8]王玲琼,徐巧林,董丽梅,等.油茶果壳化学成分研究[J].热带亚热带植物学报,2017,25(1):81-86.

[9]Yong J,Wu X,Lu C.Chemical constituents isolated from the fruits ofLonicera maackii[J].Chemistry of Natural Compounds,2014,4(50):765-766.

[10]Jia Z,Koike K,Kudo M,et al.Triterpenoid saponins and sapogenins fromVaccaria segetalis[J].Phytochemistry,1998,48(3):529-536.

[11]Umbetova AK,Choudhary MI,Burasheva GS,et al.Biologically active substances fromCamphorosma monspeliacum[J].Chemistry of natural compounds,2005,41(6):726-727.

[12]Yang L,Zeng S,Li Z H,et al.Chemical Components of the Leaves ofSiraitia grosvenorii[J].Chemistry of Natural Compounds,2016,52(5):891-892.

[13]许有瑞,张可锋,谢亲建,等.沙田柚幼果化学成分研究[J].中药材,2015(9):1879-1881.

Chemical Constituents from Fruit Shells of Camellia oleifera

Chen Shi-ping1,Huang Yan1,Wu lei1,Wu Jing2
(1.Jiangxi Academy of Sciences,Jiangxi Nanchang 330029;2.Jiangxi New Century Animal Health Products Co.,Ltd.,Jiangxi Nanchang 330096)

Objective:To study the chemical constituents of Camellia oleifera Abel.fruit shells.Methods:The compounds were isolated and purified from C.oleifera fruit shells by various column chromatographic techniques.Their chemical structures were elucidated on the basis of spectroscopic data analysis and physicochemical properties.Results:Five compounds were isolated and identified as oleanolic acid (1),quillaic acid (2),oleanolic acid -3-O-β-D-glucopyranoside (3),emodin (4),and naringoside (5).Conclusion:Compounds 2,3,5 were isolated for the first time from C.oleifera.

Camellia oleifera Abel.fruit shells;Chemical constituents;column chromatographic

R284 文献标志码:A

2096-0387(2017)06-0021-03

国家自然基金(31260400)。

陈仕平(1977—),男,江西万年人,硕士,助理研究员,研究方向:科技管理。

猜你喜欢

齐墩果壳果酸
齐墩果酸固体分散体的制备
山竹果壳的化学成分及其药理活性研究进展
齐墩果酸对自然衰老大鼠睾丸DNA损伤保护作用及机制研究
空果壳
齐墩果酸衍生物的合成及其对胰脂肪酶的抑制作用
身陷果壳,心游宇宙
熊果酸对肺癌细胞株A549及SPCA1细胞周期的抑制作用
水线草熊果酸和齐墩果酸含量测定