APP下载

黄土高原不同土地利用类型有机碳和黑碳的储量及意义

2017-03-15涂夏明周家茂曹军骥韩永明沈振兴

地球环境学报 2017年1期
关键词:玉米地黄土高原土壤有机

涂夏明,周家茂,曹军骥,韩永明,沈振兴

1.中国科学院地球环境研究所,西安 710061

2.上海伊尔庚环境工程有限公司,上海 200433

3.西安交通大学 环境科学与工程系,西安 710049

4.西安交通大学 全球环境变化研究院,西安 710049

黄土高原不同土地利用类型有机碳和黑碳的储量及意义

涂夏明1,2,周家茂1,曹军骥1,4,韩永明1,沈振兴3

1.中国科学院地球环境研究所,西安 710061

2.上海伊尔庚环境工程有限公司,上海 200433

3.西安交通大学 环境科学与工程系,西安 710049

4.西安交通大学 全球环境变化研究院,西安 710049

以黄土高原为研究对象,研究三种不同利用方式的表层土壤样品(0 — 20 cm),分析其有机碳(soil organic carbon,简称SOC)和黑碳(black carbon,简称BC)的含量、分布特征及其储量变化及意义。研究表明,黄土高原不同利用方式土壤有机碳和黑碳含量的平均值分别为:玉米地8.01 g · kg−1和1.01 g · kg−1,林地6.80 g · kg−1和0.59 g · kg−1,未利用地5.01 g · kg−1和0.43 g · kg−1,有机碳和黑碳的含量均为玉米地最高,未利用地最低;耕地和自然土壤表土有机碳储量分别为0.796 Pg和0.710 Pg,表土黑碳储量分别为0.0858 Pg和0.0730 Pg,耕地相对于自然土壤有机碳和黑碳的储量分别增大12.1%和17.5%;说明黄土高原耕地是一个碳汇,起着固定碳的作用;采用推荐的管理实践活动和合理的土地利用方式,能够增加土壤碳储量,提高土壤质量和农作物产量,抵消部分二氧化碳的排放。

黄土高原;土地利用类型;黑碳;碳储量

土壤碳库是陆地生物圈有机碳储量最大的碳库,其储量为大气碳库的2倍(Post et al,1990),受到人为因素影响,土地利用通过将植被土壤转化为耕地已经成为一个重要的碳源(Wu et al,2003),但通过改进管理方式,又可将其转变为碳汇(Yu et al,2009),因此土地利用和人为活动导致土壤有机碳库的变化将会对碳循环和全球气候效应产生重要影响。黑碳是生物质和化石燃料不完全燃烧产生的一类含碳物质(Kuhlbusch,1998;Schmidt and Noack,2000;Koelmans et al,2006),普遍分布于大气、土壤和各种陆地沉积物中,并通过水流作用和大气运输进入海洋(Schmidt and Noack,2000;Forbes et al,2006;Koelmans et al,2006)。据估算全球每年来自于生物质和化石燃料燃烧形成的黑碳分别为50 — 260 Tg和12 — 24 Tg(Penner et al,1993;Kuhlbusch and Crutzen,1995;Masiello and Druffel,1998),大部分黑碳储存于原地土壤中,其余以烟尘形式扩散。黑碳的高度惰性,使其能在土壤中长期停留和作为大气-生物短期碳循环转化为大气生物地质长期循环的载体(Czimczik and Masiello,2007)。

中国作为一个有着长期耕作历史的国家,研究土地利用对土壤碳库的影响是很有意义的。目前国内对于土地利用方式对土壤碳库的影响集中在国家和区域尺度上(Wu et al,2003;Song et al,2005;Yang et al,2008;Yu et al,2009),但对黄土高原的研究比较少,黄土高原及其他地区的黑碳研究更少(胡卫国等,2010;涂夏明等,2010),特别是不同利用方式对土壤黑碳影响的研究尚鲜见。本文的主要目的是:(1)分析不同土地利用方式对土壤有机碳和黑碳含量的影响及其变化特征,(2)估算黄土高原耕作地和未耕作地有机碳和黑碳储量及意义。

1 材料和方法

1.1 样品采集与方法

黄土高原,年均气温6—14℃,年均降水量200—700 mm。从东南向西北,气候依次为暖温带半湿润气候、半干旱气候和干旱气候。土壤样品采集于2009年10月,共51个表层(0—20 cm,以下土壤样品均为表土样品)土样,根据采样点的土地利用方式,结合黄土高原土地不同利用形式(主要为玉米、小麦、林区和未利用的黄土荒地),选取玉米、林地和未利用地作为本文的研究对象,采集的样品主要分布在陕西和山西一带的黄土和粘黄土,主要的地貌类型是塬和梁,土质疏松,土壤颜色主要为浅黄色和灰黄色。

采用便携式GPS定位采样点,样品包括:17个玉米地土样,14个林地样品和20个未利用土地样品,林地主要包括山西偏西北的退耕还林和吕梁山附近的林地,具体的采样点见图1。采样时将上层枯枝落叶去除,后用不锈钢钢铲采集表层土壤。样品室内自然风干,剔除大于2 mm的石子、根茎等杂物。

图1 黄土高原采样点的分布Fig.1 Distribution of samplings in Loess Plateau

采用遵守IMPROVE-A协议(Chow et al,2007)的Model 2001热光碳分析仪(TOR)进行碳组分分析,方法的详细过程见文献Han et al(2007),Han et al(2007)定义BC = EC1 + EC2 + EC3 − POC。每天都用已知的标准气体对碳分析仪进行校准(Chow et al,1993),每10个样品做1个复检,两重复样品之间使用元素分析仪(Vario ELⅢ German)对土壤有机碳进行测定,具体过程为:称取研磨烘干后的样品于50 mL的塑料离心管中,加HCl静置24小时,倒掉上清液,加去离子水离心直至溶液呈中性,将样品烘干,用仪器测量。

1.2 有机碳和黑碳储量的估算

(1)表层土壤有机碳密度计算模型如下:

SOCD为土壤碳密度(kg · m−2),SOC为有机碳含量(g · kg−1),γ为土壤容重(g · cm−3),土壤容重数据取自黄土平均值1.22 g · cm−3(徐香兰等,2003),H为土层厚度(cm),δ2mm是土壤颗粒尺寸大于2 mm的百分数,因为黄土土壤的颗粒尺寸大部分都低于2 mm,在这里忽略不计。

表层土壤有机碳储量计算如下:

SOCD为土壤碳密度(kg · m−2),S为土壤的面积,土壤面积数据取自《黄土与环境》(刘东生,1985)。

根据Wu et al(2003)定义未耕作地为未受到任何人为活动的干扰,现在植被在生态学上与现在气候条件相一致的原则,本文将未利用地定义为未耕地,将玉米地和林地定义为耕地,现有土壤包括玉米地、林地和未利用地三者的综合。耕地的有机碳和黑碳含量以玉米地和林立的有机碳和黑碳的平均值表示。同理,以未利用地的有机碳和黑碳的含量作为未耕地的相应值;黄土高原现有土壤的有机碳和黑碳含量以这三种不同利用方式的有机碳和黑碳的平均值表示。

采用SPSS13.0软件分析数据,运用方差分析检验不同土地利用方式黑碳的差异性,用Pearson相关分析来描述有机碳和黑碳之间的关系。

2 结果与讨论

2.1 BC与SOC的统计描述

不同土地利用方式黑碳和有机碳含量的变化特征见表1。由统计分析和表1可知,黑碳和有机碳的变异系数在耕地中均呈现中等变异(>50%),在未耕地中同样呈现中等变异(< 36%),但耕地黑碳和有机碳的变异系数显著高于未耕地黑碳和有机碳的变异系数。表明人为活动对土壤黑碳和有机碳的含量及分布产生一定影响。

表1 不同土地利用类型土壤黑碳和有机碳含量的特征Tab.1 BC contents and percentage of black carbon in soil organic carbon in different land use types

方差分析的结果均表明,从土壤黑碳含量来看,玉米地与林地及玉米地与未利用地之间呈显著差异(p< 0.05),而林地与未利用地之间并无显著差异(p> 0.05),这主要受到土地利用方式(何跃等,2007)和人为管理活动(Bumpel et al,2006)的强烈影响。表2主要描述了不同土地利用类型黑碳和有机碳的相关性,由表可知,BC与SOC在未利用土地中具有很好的线性关系,在未利用土地中,方程的确定系数达到极显著水平(p< 0.0001),BC的形成与SOC有密切关系,可能存在着特殊的结合机制;林地和玉米地中,并没有达到显著水平,相关系数也较小(分别为0.51和0.32),表明黑碳含量并不完全取决于土壤有机碳含量(戴婷等,2009),这主要与人类管理土地的措施有关;在黄土高原地区,大部分玉米收获后秸秆直接通过燃烧的方式去除,在原地产生大量的燃烧残留物(Skjemstad et al,2002),同时土壤中黑碳的降解非常缓慢,从而导致玉米地中黑碳的积累(Czimczik and Masiello,2007);林地黑碳和有机碳的相关系数不大,可能与所采林地中包含人工林地有关,受到人为活动影响;说明黑碳的含量不仅与土壤有机质相关,还与外部条件有关。

表2 不同利用类型黑碳与有机碳的关系Tab.2 Relationships between BC and SOC in different land use types

图2主要是对黄土高原土壤有机碳和黑碳数据所做的回归分析。由图可知,有机碳和黑碳的回归系数并不高(0.511),这印证了上文所说的,黑碳的含量不仅与有机质相关,还与人为活动有关。

图2 黄土高原土壤中SOC和BC的回归分析Fig.2 Regression of SOC and BC contents in Loess Plateau

2.2 耕作地与自然土壤中SOC与BC的储量变化

不同利用类型的土壤有机碳和黑碳含量不同(见表1),黄土高原土壤有机碳和黑碳含量的总体变幅分别为1.54 — 19.46 g · kg−1和0.18 — 2.49 g · kg−1,平均值分别为:玉米地8.01 g · kg−1和1.01 g · kg−1,林地6.80 g · kg−1和0.59 g · kg−1,未利用地5.01 g · kg−1和0.43 g · kg−1,有机碳和黑碳的含量变化均是玉米地>林地>未利用地,耕地>未耕地。

图3描述了BC含量和BC/SOC的分布。由图可知,未利用地BC/SOC值较小且分布集中,玉米地中的BC/SOC与林地和未利用地相比,值较大且分布较为分散,主要与玉米地受人为活动(主要为秸秆燃烧)(Lal,2004a)影响有关;而林地相对于未利用地BC/SOC值的分布较为分散,主要是所采林地样品包含人工林地,林地需要人工经营维护也会受到人为活动影响;未利用地BC/SOC值分布较集中且小,这与其所处环境有关。

图3 不同土地利用类型黑碳含量和黑碳与有机碳值的分布图Fig.3 Distribution of BC contents and BC/SOC ratios in different land use types

根据本文研究,黄土高原耕地和现有土壤的表土有机碳含量分别为7.41 g · kg−1和6.61 g · kg−1,其有机碳密度分别为1.81 kgC · m−2和1.61 kgC · m−2,相对应的储量分别为0.796 Pg和0.710 Pg,由于人为活动的影响使得土壤有机碳密度增加了0.2 kg C · m−2,但耕地有机碳密度1.81 kg C · m−2仍低于全国平均耕地土壤(0—20 cm)有机碳密度2.77 kg C · m−2(Yu et al,2009);所引起表土有机碳的增加量为0.086 Pg,贡献全国表土耕地有机碳储量(5.37 Pg)(Yu et al,2009)的1.6%,黄土高原表土耕地的有机碳储量占全国表土耕地的有机碳储量(5.37 Pg)(Yu et al,2009)的14.8%。

同理,黄土高原耕地和现有土壤黑碳的含量0.8 g · kg−1和0.68 g · kg−1,其黑碳密度分别为0.195 kgC · m−2和0.166 kgC · m−2,相对应的储量分别为0.0858 Pg和0.0730 Pg,耕地相对于自然土壤黑碳含量增加17.5%。

陆地生态系统土壤有机碳库的变化对于区域碳平衡和大气二氧化碳浓度起着非常重要的作用(Yu et al,2009)。黄土高原耕地有机碳库相对于自然土壤有机碳库的增加,说明黄土高原耕地是一个碳汇,能够通过碳吸收的方式转移大气中的二氧化碳,抵消一部分人为活动排放的二氧化碳,从而影响碳循环和全球气候变化。对于黄土高原耕地有机碳库增加的原因可能有以下方面:改进农业管理(Wu et al,2003;Song et al,2005;Yu et al,2009),传统肥料的输入(Wu et al,2003)和庄稼收获后的秸秆还田(Yu et al,2009)。

人为活动所造成的黄土高原耕地黑碳储量的增加,同样可以作为短期大气-生物地球碳循环的碳汇,降低大气二氧化碳的浓度;通过碳吸存的方式将二氧化碳转化为更为稳定的黑碳,起着稳定碳库的作用,对全球碳循环产生间接影响。

2.3 耕地碳吸存的意义

Lal(2004b)指出由于风和流水作用所造成的侵蚀过程能够降低土壤有机碳含量。黄土高原由于受到长期自然和人为活动影响,造成当地环境的恶化,严重的水土流失和集中的人为干扰,已经使得黄土高原成为碳储量最低的地方(Li et al,2004),因此,合理利用土地对于维持土壤的可持续利用和提高土壤质量具有重要作用。

经过中国政府的不懈努力,大量的防护工程和生态规划得到实施(徐香兰等,2003),黄土高原环境得到有效改善,耕地有机碳储量增大,但相比于全国耕地有机碳密度,黄土高原耕地有机碳含量仍较低,这说明黄土高原耕地仍然存在巨大的有机碳吸收潜力(Lal,2004a)。

彭文英等(2006)指出黄土高原退耕还林地区表土(0 — 20 cm)有机碳含量均有不同程度的增加,段华平等(2009)指出秸秆还田能够显著增加土壤(0 — 21 cm)有机碳含量,万运帆等(2009)指出施用农家肥能显著提高土壤有机碳含量和生物量。Lal(2004b)指出土壤有机碳储量每增加1 t,每公顷玉米地产量增加10 — 20 kg,采用推荐的经营管理方式能够减少10% — 40%的现在农业能量需求(Sauerbeck,2001),如果耕地全部以玉米地来计算,黄土高原耕地增加的0.086 Pg有机碳,相当于增加了8.6×105— 1.72×106t的玉米,既带来了环境效益,又带来了经济效益。土地的合理利用,采用推荐的管理实践活动,不仅能够增加黄土高原土壤碳吸存,提高农作物产量,而且抵消部分大气二氧化碳,减少农业能量需求,从而到达双赢的目的。从更大的国家或世界范围来考虑,增加土壤有机碳储量,能够提高土壤质量,同时也能为人类赢得时间来寻找替代化石燃料的新能源。

3 结论

黄土高原不同土地利用方式有机碳和黑碳含量的变化特征均为:玉米地>林地>未利用地,耕地>未耕地;受人为活动的影响,使黄土高原耕地有机碳和黑碳储量增加,土壤有机碳的增加表明黄土高原碳储量和土壤质量得到提高,维持了土壤的可持续利用,黑碳储量的增加说明土地利用和人为活动能够将大气中的二氧化碳转化为稳定的黑碳碳库,降低大气二氧化碳的浓度。因此,合理利用土地和改善农业管理水平对碳循环和全球气候变化起着重要作用,也可为人类寻找新能源争取时间。

戴 婷,李艾芬,章明奎.2009.浙北平原农业土壤中黑碳分布特征的研究[J].土壤通报,40:1321 – 1324.[Dai T,Li A F,Zhang M K.2009.Distribution characteristics of black carbon in agricultural soils of northern Zhejiang Plain [J].Chinese Journal of Soil Science,40:1321 – 1324.]

段华平,牛永志,李凤博,等.2009.耕作方式和秸秆还田对直播稻产量及稻田土壤碳固定的影响[J].江苏农业学报,25(3):706 – 708.[Duan H P,Niu Y Z,Li F B,et al.2009.Effects of tillage styles and straw return on soil carbon sequestration and crop yields of direct seeding rice [J].Jiangsu Journal of Agricultural Sciences,25(3):706 – 708.]

何 跃,张甘霖,杨金玲.2007.城市化过程中黑碳的土壤记录及其环境指示意义[J].环境科学,28:2369 – 2375.[He Y,Zhang G L,Yang J L,et al.2007.Soil record of black carbon during urbanization and its environmental implications [J].Environment Science,28:2369 – 2375.]

胡卫国,曹军骥,韩永明.2010.青海湖流域六类土壤表土有机碳黑碳含量特征及其储量[J].地球环境学报,1(3):213 – 218.[Hu W G,Cao J J,Han Y Y.2010.The characteristic of organic carbon and black carbon content and its storage in six types topsoil of Qinghai Lake basin of China [J].Journal of Earth Environment,1(3):213 – 218.]

刘东生.1985.黄土与环境[M].北京:科学出版社.[Liu T S. 1985.Loess and environment [M].Beijing:Science Press.]

彭文英,张科利,杨勤科.2006.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发,25(3):94 – 99.[Peng W Y,Zhang K L,Yang Q K.2006.Forecast of impact of the returning farms to forests on soil organic carbon of loess plateau [J].Areal Research and Development,25(3):94 – 99.]

涂夏明,曹军骥,韩永明,等.2010.黄土高原表土焦炭和烟炱的含量分布与意义[J].地球环境学报,1(2):126 – 132.[Tu X M,Cao J J,Han Y M,et al.2010.Variations and implication of Char-BC and Soot-BC in the surface soil of Loess Plateau,China [J].Journal of Earth Environment,1(2):126 – 132.]

万运帆,李玉娥,高清竹,等.2009.田间管理对华北平原冬小麦产量土壤碳及温室气体排放的影响[J].农业环境科学学报,28(12):2495 – 2500.[Wan Y F,Li Y E,Gao Q Z,et al.2009.Field managements affect yield,soil carbon,and greenhouse gases emission of winter wheat in North China Plain [J].Journal of Agro-Environment Science,28(12):2495 – 2500.]

徐香兰,张科利,徐宪立.2003.黄土高原地区土壤有机碳估算及其分布规律分析[J].水土保持学报,17(3):13 – 15.[Xu X L,Zhang K L,Xu X L.2003.Spatial distribution and estimating of soil organic carbon on loess plateau [J].Journal of Soil and Water Conservation,17(3):13 – 15.]

Bumpel C,Alexis M,Chabbi A,et a1.2006.Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture [J].Geoderma,130:35 – 46.

Chow J C,Watson J G,Pritchett L C,et al.1993.The DRI thermal/optical reflectance carbon analysis system:description,evaluation and applications in U.S.air quality studies [J].Atmospheric Environment,27:1185 – 1201.

Chow J C,Watson J G,Chen L W A,et al.2007.The IMPROVE_A temperature protocol for thermal/optical carbon analysis:maintaining consistency with a longterm database [J].Journal of Air amp; Waste Management Association,57:1014 – 1023.

Czimczik C I,Masiello C A.2007.Controls on black carbon storage in soils [J].Global Biogeochemical Cycles,21(3):249 – 259.

Forbes M S,Raison R J,Skjemstad J O,et al.2006.Formation,transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems [J].Science of the Total Environment,370:190 – 206

Han Y M,Cao J J,An Z S,et al.2007.Evaluation of the thermal/ optical reflectance method for quantification of elemental carbon in sediments [J].Chemosphere,69:569 – 574.

Koelmans A A,Jonker M T O,Gerard C,et al.2006.Black carbon:The reverse of its dark side [J].Chemosphere,63:365 – 377.

Kuhlbusch T A J,Crutzen P J.1995.Toward a global estimate of black carbon in residues of vegetation fi res representing a sink of atmospheric CO2and a source of O2[J].Global Biogeochemical Cycle,9(4):491 – 501.

Kuhlbusch T A J.1998.Black carbon and the carbon cycle [J].Science,280:1903 – 1904.

Lal R.2004a.Soil carbon sequestration to mitigate climate change [J].Geoderma,123:1 – 22.

Lal R.2004b.Soil carbon sequestration impacts on global climate change and food security [J].Science,304:1623 – 1627.

Li K R,Wang S Q,Cao M,et al.2004.Vegetation and soil carbon storage in China [J].Science in China Series D:Earth Sciences,47:9 – 57.

Masiello C A,Druffel E R M.1998.Black carbon in deep-sea sediments [J].Science,280:1911–1913.

Penner J E,Eddleman H,Novakav T.1993.Toward the development of a global inventory for black carbon [J].Atmospheric Environment,27A:260 – 267.

Post W M,Emanuel P J,Zinke P J,et al.1990.Soil carbon pools and life zones [J].Nature,348:232 – 234.

Sauerbeck D R.2001.CO2emissions and C sequestration by agriculture perspectives and limitations [J].Nutrient Cycling in Agroecosystems,60:253 – 266.

Schmidt M W I,Noack A G.2000.Black carbon in soils and sediments:Analysis,distribution,implication,and current challenges [J].Global Biogeochemical Cycle,14(3):777 – 793.

Skjemstad J O,Reicosky D C,Wilts A R,et al.2002.Charcoal carbon in U.S.agricultural soils [J].Soil Science Society of America Journal,66:1255 – 1949.

Song G H,Li L Q,Pan G X,et al.2005.Topsoil organic carbon storage of China and its loss by cultivation [J].Biogeochemistry,74:47 – 62.

Wu H B,Guo Z T,Peng C H,et al.2003.Land use induced changes of organic carbon storage in soils of China [J].Global Change Biology,9:305 – 315.

Yang Y H,Fang J Y,Tang Y H,et al.2008.Storage,patterns and controls of soil organic carbon in the Tibetan grasslands [J].Global Change Biology,14:1592–1599.

Yu Y Y,Guo Z T,Wu H B,et al.2009.Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000 [J].Global Biogeochemical Cycle,23,doi:10.1029/2008GB003428.

Implication and storage of soil organic carbon and black carbon in different land use types in the topsoil of Loess Plateau

TU Xiaming1,2,ZHOU Jiamao1,CAO Junji1,4,HAN Yongming1,SHEN Zhenxing3
1.Institute of Earth Environment,Chinese Academy of Sciences,Xi’an 710061,China
2.Shanghai Jokoson Environmental Engineering Co.Ltd.,Shanghai 200433,China
3.Department of Environmental Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,China
4.Institute of Global Environmental Change,Xi’an JiaotongUniversity,Xi’an 710049,China

Background,aim,and scopeChanges in soil carbon storage have far-reaching effects on global climate change,which are mainly concentrated on the transition of landuse.The impact of different types of landuse on soil carbon storage has been investigated by reserchers around the world in regional and national scales.As a country with a long cultivation history,to study the effect of land use on soil carbon storage in China is veryimportant and meaningful.In order to gain a further understanding of the in fl uence made by different ways of land use on organic carbon (OC) and black carbon (BC) in the Loess Plateau,soil samples are collected in this study based on different landuse patterns in the Loess Plateau in Shaanxi,Shanxi region.Via chemical analysis in the lab,the impact and signi fi cance of organic carbon and black carbon and its change in carbon stocks can be studied and understood.Materials and MethodsThe samples are collected by the method called shove lacquisition which requires using a stainless steels hovel to collect the top soil sample in depth from 0 — 20 cm in the Loess Plateau.The litter on surface of the ground has been removed before sampling.Samples are dried under a natural ventilation indoor,and the grits with the diameter more than 2 mm are removed as well as roots and debris.We used portable GPS for sampling sites locating,including 17 samples of corn land,14 samples of forest land and 20 samples of unused land.Results(1) The results show that average SOC and BC concentration are 8.01 g · kg−1and 1.01 g · kg−1,6.80 g · kg−1and 0.59 g · kg−1,5.01 g · kg−1and 0.43 g · kg−1for corn,forest and unused land,respectively.The maximum and the minimum concentration appeared in corn and unused land.The SOC and BC storage under cultivated land in Loess Plateau are 0.815 Pg and 0.088 Pg,compare with the SOC and BC storage of 0.727 Pg and 0.0748 Pg under present-day soil in Loess Plateau.(2) Human activities have an impact on the quantity and distribution of soil organic carbon and black carbon.From the statistical analysis,there is a significant difference (p< 0.05) of the black carbon from the soil between the corn land and forest land,as well as between the corn land and unused land.However,there was no signi fi cant difference of black carbon between the forest land and unused land (p> 0.05).Those results can be explained by the strong influence made by the different land use patterns and human management activities.(3) In unused land,the determining factor of black carbon and soil organic carbon (SOC) equation was extremely signi fi cant (p< 0.0001).It indecated that black carbon is closely related to secondary organic carbon.So there may be a special binding formation mechanism.However,the correlation coef fi cient between BC and SOC of the forest land and corn land did not reach that signi fi cant level and it is 0.51 and 0.32,respectively which also much smaller than that in unused land.In the Loess Plateau area,most corn straw was removed by combustuion right after the harvest.Biomass burning lead to massive remains of combustion residue on site (Skjemstad et al,2002).Meanwhile,the chronic process of black carbon degradation causes the black carbon accumulation in the corn land.This is indicating that the quantity of black carbon is not only related to soil organic matter,but also to human activities.Discussion(1) Changes in organic carbon and black carbon quantity are indicated in following order:maize land > forest land > unused land,land > uncultivated land.(2) Affected by human activities, the quantities of both organic carbon and black carbon in the Loess Plateau are higher than that of natural soil.However,the density of the organic carbon in arable land is still lower than that of the national average.ConclusionsAffected by human activities,the storage of organic carbon and black carbon has been increased in the cultivated land of the Loess Plateau.The increased soil organic carbon and soil carbon storage in Loess Plateau are able to improve the soil quality in general and maintaining sustainable use of land.The increasing of the black carbon storage indicates both land use and human activities can convert the carbon dioxide in the atmospheric into a stable black carbon stocks,therefore to reduce the atmospheric concentration of carbon dioxide.Recommendations and perspectivesA rational use of land and improving agricultural management play a key role in environmental sustainability.It not only has a great effect on the carbon cycle and global climate change,but also buys us some time to fi nd new energy sources.

National Science Fund for Distinguished Young Scholars (40925009); National Natural Science Foundation of China (41073102)

TU Xiaming,E-mail:tusiming2005@163.com

Loess Plateau; land use types; BC (black carbon); carbon storage

2016-01-11;录用日期:2016-04-28

Received Date:2016-01-11;Accepted Date2016-04-28

国家杰出青年科学基金项目(40925009);国家自然科学基金项目(41073102)

涂夏明,E-mail:tusiming2005@163.com

涂夏明,周家茂,曹军骥,等.2017.黄土高原不同土地利用类型有机碳和黑碳的储量及意义[J].地球环境学报,8(1):65 – 71.

: Tu X M,Zhou J M,Cao J J,et al.2017.Implication and storage of soil organic carbon and black carbon in different land use types in the topsoil of Loess Plateau [J].Journal of Earth Environment,8(1):65 – 71.]

10.7515/JEE201701008

猜你喜欢

玉米地黄土高原土壤有机
《玉米地》
玉米地里长火山
西双版纳橡胶林土壤有机碳分布特征研究
选举 沸腾了黄土高原(下)
选举沸腾了黄土高原(上)
秸秆还田的土壤有机碳周转特征
土壤有机碳转化研究及其进展
AMDIS在土壤有机污染物鉴别中表征性统计量的探究
洒向黄土高原的爱
玉米地