APP下载

下丘脑-垂体-肾上腺轴与重度抑郁症关系的研究进展

2017-01-17张晓杰费洪新

中国老年学杂志 2017年11期
关键词:下丘脑垂体皮质

张晓杰 费洪新

(齐齐哈尔医学院,黑龙江 齐齐哈尔 161006)

下丘脑-垂体-肾上腺轴与重度抑郁症关系的研究进展

张晓杰 费洪新

(齐齐哈尔医学院,黑龙江 齐齐哈尔 161006)

下丘脑-垂体-肾上腺轴;重度抑郁症;糖皮质激素

重度抑郁症(MDD)主要表现为情绪低落、活动减少、思维减退、认知功能障碍、双相情感障碍等〔1〕。世界卫生组织(WTO)专家预测2020年后MDD将会成为现有疾病中致残和死亡的第二大疾病之一,其终身患病率可以达到15%以上〔2,3〕,这将会给全球国家、社会和家庭带来沉重的心理负担和经济负担〔4〕。尽管中医药和西药治疗MDD的研究文献很多,但是仍然缺乏抗MDD的特效药物,同时西药抗MDD的治疗效果还存在一定的局限性。MDD的病因和发病机制也是极其复杂的,涉及遗传〔5,6〕、肥胖〔7〕、应激〔8〕、心理、环境、内分泌、神经、社会等多种因素。近几年来关于MDD的神经内分泌系统紊乱逐渐成为研究热点,例如机体下丘脑-垂体-肾上腺(HPA)轴的活性上调机制逐渐引起了抗MDD研究者的高度重视〔9,10〕。30%~50%的MDD患者血清伴有糖皮质激素(GC)、促肾上腺皮质激素(ACTH)、促肾上腺皮质激素释放激素(CRH)含量增加〔11〕,且伴有雌激素含量降低,海马GC受体(GR)减少,并影响GR和盐皮质激素(MR)比值,造成海马神经元损伤并抑制HPA轴活性,同时可以使GC对HPA轴反馈抑制减弱,造成HPA轴亢奋,加重MDD病情。可见MDD脑内神经元损伤机制与HPA轴失调密切相关。本文主要介绍HPA轴与MDD关系的研究进展。

1 HPA轴简介

HPA轴包括下丘脑、垂体、肾上腺和下游相应的靶器官等。下丘脑分泌的激素称为下丘脑激素,下丘脑激素包括CRH、促甲状腺激素释放激素(TRH)〔12〕、促黄体激素释放激素(LHRH)〔13〕、生长素释放激素(GHRH)〔14〕、促卵泡激素释放激素(FSHRH)、催乳素释放因子(PRF)、促黑素细胞激素释放因子(MRF)和部分释放激素相关的抑制因子等。CRH通过垂体门脉系统运输到垂体的腺垂体部位,刺激腺垂体分泌ACTH,参与下游信号肾上腺分泌GC、MR、雌激素和雄激素等激素水平的调控,结合于相应的靶器官上受体而发挥作用。

1.1 下丘脑 下丘脑位于大脑的腹侧面,丘脑的下方也称为丘脑下部,主要包括视上部、结节部、乳头部。CRH参与HPA轴的神经、精神、内分泌和免疫等方面的综合性应激反应,还可以参与应急反应。CRH引起HPA轴兴奋,而肾上腺分泌GC、MR、雌激素和雄激素等可以反馈抑制HPA轴。

1.2 垂体 垂体位于丘脑下部腹侧面的垂体窝内,呈现椭圆形,主要分为腺垂体和神经垂体。腺垂体主要分泌ACTH、促甲状腺激素(TSH)〔15〕、卵泡刺激素(FSH)〔16〕、黄体生成素(LH)〔17〕、催乳素〔18〕、生长激素(GH)〔19〕、黑色素细胞刺激素(MSH)〔20〕;只神经垂体并不分泌激素,只是暂时贮存下丘脑视上核和室旁核分泌的抗利尿激素(ADH)〔21〕、催产素。其中腺垂体分泌的ACTH,通过机体的血液循环(体循环),ACTH到达肾脏上方肾上腺皮质的束状带、球状带、网状带。ACTH刺激肾上腺皮质束状带分泌GC,参与机体HPA轴的反馈调节和调节机体很多器官的合成和分解代谢。GC包括人类的皮质醇(CORT)和啮齿类的CORT;ACTH还能通过环磷酸腺苷(cAMP)和蛋白激酶A激活cAMP反应元件结合蛋白(CREB),进而促进醛固酮的分泌。

1.3 肾上腺 肾上腺位于机体两侧肾脏的上方,左右各一,主要分为肾上腺周围部分的皮质和肾上腺中央部分的髓质,肾上腺皮质又分为球状带、束状带和网状带3个部分。肾上腺皮质主要分泌GC、MR〔22〕、雌激素〔23〕、雄激素〔24〕。肾上腺髓质主要分泌作用于心肌的肾上腺素(A)〔25〕、作用于小动脉的去甲肾上腺素(NA)。GC分泌受到机体生物节律和应激刺激的影响,当GC浓度快速升高可以作用于脑组织海马区域的GR,减少脑组织垂体ACTH的释放。另外GC的浓度慢速升高还可以作用于垂体和肾上腺的GR受体,减少脑组织垂体ACTH的释放,以此阻断ACTH的兴奋作用。

2 HPA轴与MDD的关系

2.1 下丘脑和MDD的关系 在HPA轴中,下丘脑分泌的CRH是参与MDD发病非常重要的内分泌激素之一。研究表明,急性或者慢性应激可以诱发MDD,促进下丘脑分泌CRH。CRH促进腺垂体分泌ACTH,ACTH促进肾上腺皮质束状带分泌GC(CORT),CORT与下丘脑GR结合进一步损伤MDD海马的基本结构,促进MDD的病情恶化〔26〕。GR可以介导下丘脑的内分泌应激反应,若GR基因突变,可以干扰下丘脑CRH上调〔27〕。CRH受体(CRHR)1突变会促进MDD的发生发展〔28〕,CRH多态性还会影响抗抑郁药物对MDD的治疗评价〔29〕。MDD出现脑组织HPA失调伴有下丘脑CRH分泌增加,促进中枢性或者周围性胰岛素抵抗(IR),进而引发2型糖尿病(T2DM)或者3型糖尿病(T3DM)〔30〕。女性妊娠期间也可以出现脑组织HPA失调伴有下丘脑CRH分泌增加〔31〕,通过产前和产后测定下丘脑CRH水平对MDD产后女性患者尤为重要〔32〕。倘若亲代患有MDD,那么子代患有MDD的概率也会明显增加,这与脑组织HPA轴的CRHR1突变有关〔33〕,而MDD伴有严重的精神疾患时CRHR1也可以出现突变〔34〕。MDD患者多伴有运动量减少、下丘脑CRH水平上调,而经过特殊的运动方式例如瑜伽锻炼或使用非典型抗精神病药喹硫平(QUE)可以促进MDD患者下丘脑CRH水平下调〔35,36〕。临床研究显示,与133例健康人相比,77例MDD患者下丘脑CRH水平上调,若改善下丘脑CRH水平则有利于MDD的基础治疗〔37〕。

2.2 垂体和MDD的关系 在HPA轴中,腺垂体分泌的激素ACTH参与MDD的调控。临床研究显示,MDD患者与健康人相比,血清ACTH含量明显增加,降低血清ACTH水平则有利于HPA轴的调控〔38,39〕,这种调控可以使用地塞米松抑制实验(DST)进行测定评价〔40〕。另外经过40年18 454例MDD患者的血清ACTH含量测定,总结显示MDD患者出现情绪低落等典型症状且伴有血清ACTH水平增加〔41〕,可见腺垂体分泌的激素ACTH在HPA轴中扮演重要的角色。动物实验显示,通过测定大鼠血清ACTH水平,可以评价食品添加剂味精对新生大鼠MDD的行为学指标,进而评价出腺垂体分泌的激素ACTH在HPA轴中的作用〔42〕。使用抗抑郁药物可以降低血清ACTH含量、减弱雌激素受体(ER)β表达,进而抑制HPA通路〔43〕。通过观察15例复发MDD与健康人的影像学和血清ACTH测定实验显示,MDD与HPA轴失调密切相关〔44〕。MDD经过神经肽(NP)Y治疗后,血清ACTH水平下调,提示脑组织NPY对HPA轴失调的调节效果较好〔45〕。观察雄性MDD猕猴测定ACTH/CORT的比值显示,MDD与HPA轴失调也是密切相关,MDD猕猴血清ACTH含量增加〔46〕。通过观察54例MDD患者,2年后进行随访显示MDD患者血清ACTH水平下调,预示HPA轴的功能恢复正常,也预示血清ACTH是MDD治疗评价的重要指标之一〔47〕。另外,谷氨酸能系统在MDD中也发挥重要作用,N-甲基-D-天冬氨酸(NMDA)受体拮抗剂美金刚可以降低大鼠血清ACTH水平,改善脑组织HPA轴失调,进而改善MDD动物模型的抑郁样行为学,以此治疗MDD〔48〕。

2.3 肾上腺皮质和MDD的关系 在HPA中,肾上腺皮质主要分泌的激素包括GC、盐皮质激素、雄激素和雌激素。MDD伴有GC、脑源性神经营养因子(BDNF)、胰岛素等失调,提示GC与MDD密切相关〔49〕。GC水平增加可以破坏BDNF和酪氨酸羟化酶(TH)等靶蛋白的表达〔50〕,从而干扰神经元的基本结构和功能。MDD伴有CORT水平增加,同时MR表达下调,影响了GR/MR的比值,干扰了糖、脂肪、蛋白质、水、盐等代谢,促进了MDD的发生发展〔51〕。MDD在女性产后出现较多,这与生殖激素之一雌激素在产后水平下降密切相关,通过脑组织HPA轴间接反馈而促进MDD的病情加重〔52〕。

动物实验显示,GC诱导小鼠出现MDD行为学异常,小鼠体内活性氧(ROS)水平增加,超氧化物歧化酶(SOD)1和SOD2可以通过脑组织HPA通路逆转小鼠MDD行为学异常〔53〕,慢性的高水平GC可以活化细胞周期蛋白依赖性激酶(CDK)5,通过磷酸化的方式调节脑组织GR,诱导大鼠出现MDD〔54〕。大鼠产后给予高水平的CORT,依据此法建立产后MDD模型,实验结果显示行为学检测强迫游泳试验(FST)和形态学检测脑组织海马CA3区锥体细胞均出现异常〔55〕。

体外实验表明,依据HPA轴在MDD的作用机制,采用CORT诱导PC12细胞建立MDD细胞损伤模型,探索到MAPK信号转导是GC影响MDD细胞损伤模型神经元细胞活力和树突生长的关键信号靶点〔56〕。另外,CORT诱导HT-22海马神经元也可以建立MDD海马HT-22细胞损伤模型,雌激素通过HPA轴可以上调GR的表达,显示雌激素在MDD中具有重要作用〔57〕。抗MDD药物丁螺环酮是5-羟色胺(5-HT)1A受体的激动剂,丁螺环酮除了通过5-HT1A发挥抗MDD作用外,还可以通过降低机体HPA轴的活性,减少GC水平来,以此来发挥抗MDD的积极作用〔58〕。

临床研究显示,依据抗MDD药物的HPA轴通路机制,目前GR是抗MDD治疗的重要靶点蛋白之一〔59〕,CORT使用过多可以诱导MDD的发生,并导致MDD患者出现应激障碍和人格障碍〔60〕。MDD伴有边缘性人格障碍时,通过机体HPA轴观察到GC对T细胞功能的敏感性较差〔61〕,长效GC的DST显示MDD青少年可以出现自我伤害等等极端行为〔62〕。MDD伴有心血管疾病(CVD)时女性的致残风险比男性高,尤其是女性绝经期后,伴有女性激素水平明显下降的时候致残风险会更高〔63〕。MDD伴有创伤后应激障碍(PTSD)时DST显示50例住院患者血清C反应蛋白(CRP)升高,进而加快MDD的病情发展〔64〕;具有复发性的73例MDD患者唾液CORT与脂肪酸(FA)变化趋势同步〔65〕。通过837例MDD患者与正常人进行比较显示唾液CORT水平增加且伴有睡眠障碍、焦虑等MDD典型症状〔66〕,MDD可以出现GC水平增加且伴有血清炎症介质白细胞介素(IL)-6、IL-1水平上调,进而预示GC和炎症反应均参与MDD的发病机制当中〔67〕。门诊87例MDD患者DST和CRH实验显示CORT和CRH的变化趋势高度相关〔68〕。基于机体HPA通路,长效GC之一地塞米松可以抑制脑组织BDNF诱导的神经元树突生长和突触形成,促进MDD的病情发展〔69〕。通过选择64例MDD患者和49例健康人的DST进行对比,显示MDD与机体HPA也是高度相关的,且DST显示经过2 w后GC水平的变化与MDD病情的好转正相关,但是随着时间的进一步延长,DST显示GC水平的变化与MDD病情的相关系数则就会变小〔70〕。

3 结论与展望

综上所述,HPA轴失调是MDD非常重要的病理生理机制之一,CRH、ACTH、GC参与调控MDD的发病进程,且可作为MDD的生物学检测靶点蛋白。推测调控HPA轴或许是治疗MDD的新策略之一。随着MDD研究的不断深入,必将进一步揭示MDD的病理生理机制,这会为MDD的治疗和干预策略提供理论依据。

1 Muneer A.The neurobiology of bipolar disorder:an integrated approach〔J〕.Chonnam Med J,2016;52(1):18-37.

2 Ng M,Fleming T,Robinson M,etal.Global,regional,and national prevalence of overweight and obesity in children and adults during 1980-2013:a systematic analysis for the Global Burden of Disease Study 2013〔J〕.Lancet,2014;384(9945):766-81.

3 Ching-Lopez A,Cervilla J,Rivera M,etal.Epidemiological support for genetic variability at hypothalamic pituitary adrenal axis and serotonergic system as risk factors for major depression 〔J〕.Neuropsychiatr Dis Treat,2015;22(11):2743-54.

4 Rosenblat JD,Gregory JM,Carvalho AF,etal.Depression and disturbed bone metabolism:a narrative review of the epidemiological findings and postulated mechanisms〔J〕.Curr Mol Med,2016;16(2):165-78.

5 Hamm AO,Richter J,Pane-Farre C,etal.Panic disorder with agoraphobia from a behavioral neuroscience perspective:applying the research principles formulated by the research domain criteria (RDoC) initiative〔J〕.Psychophysiology,2016;53(3):312-22.

6 Grabe HJ,Wittfeld K,Van der Auwera S,etal.Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample〔J〕.Hum Brain Mapp,2016;37(4):1602-13.

7 Lee SH,Paz-Filho G,Mastronardi C,etal.Is increased antidepressant exposure a contributory factor to the obesity pandemic〔J〕?Transl Psychiatry,2016;15(6):e759.

8 Dieleman GC,Huizink AC,Tulen JH,etal.Stress reactivity predicts symptom improvement in children with anxiety disorders〔J〕.J Affect Disord,2016;15(196):190-9.

9 Kim LU,Dorsogna MR,Chou T.Onset,timing,and exposure therapy of stress disorders:mechanistic insight from a mathematical model of oscillating neuroendocrine dynamics〔J〕.Biol Direct,2016;11(1):13.

10 Saiyudthong S,Mekseepralard C.Effect of inhaling bergamot oil on depression related behaviors in chronic stressed rats 〔J〕.J Med Assoc Thai,2015;98(19):S152-9.

11 Naughton M,Dinan TG,Scott LV.Corticotropin-releasing hormone and the hypothalamic pituitary adrenal axis in psychiatric disease〔J〕.Handb Clin Neurol,2014;124:69-91.

12 Meena CL,Thakur A,Nandekar PP,etal.Synthesis and biology of ring-modified l-Histidine containing thyrotropin-releasing hormone (TRH) analogues〔J〕.Eur J Med Chem,2016;111:72-83.

13 Iversen P,Damber JE,Malmberg A,etal.Degarelix monotherapy compared with luteinizing hormone releasing hormone (LHRH) agonists plus anti-androgen flare protection in advanced prostate cancer:an analysis of two randomized controlled trials〔J〕.Ther Adv Urol,2016;8(2):75-82.

14 Zhang L,Cao J,Wang Z,etal.Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks〔J〕.Acta Histochem,2016;118(3):286-92.

15 Ozemir IA,Gurbuz B,Bayraktar B,etal.The effect of thyroid-stimulating hormone on tumor size in differentiated thyroid carcinoma〔J〕.Indian J Surg,2015;77(Suppl 3):967-70.

16 Bramble MS,Goldstein EH,Lipson A,etal.A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure:a fertility application of whole exome sequencing〔J〕.Hum Reprod,2016;31(4):905-14.

17 Xia L,Wen H,Han X,etal.Luteinizing hormone inhibits cisplatin-induced apoptosis in human epithelial ovarian cancer cells〔J〕.Oncol Lett,2016;11(3):1943-7.

18 Soto L,Lagos AF,Isla A,etal.Immunostimulatory effects of prolactin on TLR1 and TLR5M in SHK-1 cells infected with Piscirickettsia salmonis〔J〕.Dis Aquat Organ,2016;118(3):237-45.

19 Singh PP,Tomar SS,Thakur MS,etal.Polymorphism and association of growth hormone gene with growth traits in Sirohi and Barbari breeds of goat〔J〕.Vet World,2015;8(3):382-7.

20 Suzuki H,Yamamoto T.Localization of amylin-like immunoreactivity in melanocyte stimulating hormone containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary 〔J〕.Acta Histochem,2016;118(3):213-8.

21 Boursiquot R,Krol D,Hanif S,etal.Syndrome of inappropriate antidiuretic hormone in a patient with leptomeningeal carcinomatosis〔J〕.J Med Case Rep,2016;10(1):73.

22 Senft RA,Meddle SL,Baugh AT.Distribution and abundance of glucocorticoid and mineralocorticoid receptors throughout the brain of the great tit (Parus major) 〔J〕.PLoS One,2016;11(2):e0148516.

23 Cacioppo JA,Koo Y,Lin PC,etal.Generation of an estrogen receptor beta-iCre knock-in mouse〔J〕.Genesis,2016;54(1):38-52.

24 Davis SR,Worsley R,Miller KK,etal.Androgens and female sexual function and dysfunction-findings from the fourth international consultation of sexual medicine〔J〕.J Sex Med,2016;13(2):168-78.

25 Hardig BM,Götberg M,Rundgren M,etal.Physiologic effect of repeated adrenaline (epinephrine) doses during cardiopulmonary resuscitation in the cath lab setting:a randomised porcine study〔J〕.Resuscitation,2016;101:77-83.

26 Wiley JW,Higgins GA,Athey BD.Stress and glucocorticoid receptor transcriptional programming in time and space:implications for the brain-gut axis〔J〕.Neurogastroenterol Motil,2016;28(1):12-25.

27 Bockmuhl Y,Patchev AV,Madejska A,etal.Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress〔J〕.Epigenetics,2015;10(3):247-57.

28 Geng LY,Ye DQ,Shi YY,etal.Influence of genetic polymorphisms involved in the hypothalamic pituitary adrenal axis and their interactions with environmental factors on antidepressant response〔J〕.CNS Neurosci Ther,2014;20(3):237-43.

29 Chang HS,Won E,Lee HY,etal.Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants〔J〕.Behav Brain Res,2015;292:116-24.

30 Yokoyama K,Yamada T,Mitani H,etal.Relationship between hypothalamic pituitary adrenal axis dysregulation and insulin resistance in elderly patients with depression〔J〕.Psychiatry Res,2015;226(2-3):494-8.

31 Gelman PL,Flores-Ramos M,Lopez-Martinez M,etal.Hypothalamic-pituitary-adrenal axis function during perinatal depression〔J〕.Neurosci Bull,2015;31(3):338-50.

32 Glynn LM,Davis EP,Sandman CA.New insights into the role of perinatal HPA-axis dysregulation in postpartum depression〔J〕.Neuropeptides,2013;47(6):363-70.

33 Woody ML,Kudinova AY,McGeary JE,etal.Influence of maternal depression on childrens brooding rumination:moderation by CRHR1 TAT haplotype〔J〕.Cogn Emot,2016;30(2):302-14.

34 Schatzberg AF.Anna-Monika Award Lecture,DGPPN Kongress,2013:the role of the hypothalamic pituitary adrenal (HPA) axis in the pathogenesis of psychotic major depression〔J〕.World J Biol Psychiatry,2015;16(1):2-11.

35 Sarubin N,Nothdurfter C,Schüle C,etal.The influence of Hatha yoga as an add-on treatment in major depression on hypothalamic-pituitary-adrenal-axis activity:a randomized trial〔J〕.J Psychiatr Res,2014;53:76-83.

36 Nothdurfter C,Schmotz C,Sarubin N,etal.Effects of escitalopram/quetiapine combination therapy versus escitalopram monotherapy on hypothalamic-pituitary-adrenal-axis activity in relation to antidepressant effectiveness〔J〕.J Psychiatr Res,2014;52:15-20.

37 Hori H,Teraishi T,Ota M,etal.Psychological coping in depressed outpatients:association with cortisol response to the combined dexamethasone/CRH test〔J〕.J Affect Disord,2014;152-154:441-7.

38 Hohne N,Poidinger M,Merz F,etal.Increased HPA axis response to psychosocial stress in remitted depression:the influence of coping style〔J〕.Biol Psychol,2014;103:267-75.

39 Sher L,Oquendo MA,Burke AK,etal.Combined dexamethasone suppression corticotrophin releasing hormone stimulation test in medication-freemajor depression and healthy volunteers〔J〕.J Affect Disord,2013;151(3):1108-12.

40 Tajima-Pozo K,Montes-Montero A,Güemes I,etal.Contributions of cortisol suppression tests to understanding of psychiatric disorders:a narrative review of literature〔J〕.Endocrinol Nutr,2013;60(7):396-403.

41 Stetler C,Miller GE.Depression and hypothalamic-pituitary-adrenal activation:a quantitative summary of four decades of research〔J〕.Psychosom Med,2011;73(2):114-26.

42 Quines CB,Rosa SG,Da Rocha JT,etal.Monosodium glutamate,a food additive,induces depressive like and anxiogenic like behaviors in young rats〔J〕.Life Sci,2014;107(1-2):27-31.

43 Kudwa AE,McGivern RF,Handa RJ.Estrogen receptor β and oxytocin interact to modulate anxiety like behavior and neuroendocrine stress reactivity in adult male and female rats〔J〕.Physiol Behav,2014;129:287-96.

44 Holsen LM,Lancaster K,Klibanski A,etal.HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression〔J〕.Neuroscience,2013;250:733-42.

45 Serova LI,Tillinger A,Alaluf LG,etal.Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats〔J〕.Neuroscience,2013;236:298-312.

46 Ferguson B,Hunter JE,Luty J,etal.Genetic load is associated with hypothalamic pituitary adrenal axis dysregulation in macaques〔J〕.Genes Brain Behav,2012;11(8):949-57.

47 Pintor L,Torres X,Bailles E,etal.CRF test in melancholic depressive patients with partial versus complete relapses:a 2-year follow-up study〔J〕.Nord J Psychiatry,2013;67(3):177-84.

48 Tokita K,Fujita Y,Yamaji T,etal.Depressive-like behavior in adrenocorticotropic hormone treated rats blocked by memantine〔J〕.Pharmacol Biochem Behav,2012;102(2):329-34.

49 Lee RS,Sawa A.Environmental stressors and epigenetic control of the hypothalamic pituitary adrenal axis〔J〕.Neuroendocrinology,2014;100(4):278-87.

50 Liu CS,Carvalho AF,McIntyre RS.Towards a metabolic subtype of major depressive disorder:shared pathophysiological mechanisms may contribute to cognitive dysfunction〔J〕.CNS Neurol Disord Drug Targets,2014;13(10):1693-707.

51 Juruena MF,Pariante CM,Papadopoulos AS,etal.The role of mineralocorticoid receptor function in treatment-resistant depression〔J〕.J Psychopharmacol,2013;27(12):1169-79.

52 Schiller CE,Meltzer-Brody S,Rubinow DR.The role of reproductive hormones in postpartum depression〔J〕.CNS Spect,2015;20(1):48-59.

53 Uchihara Y,Tanaka K,Asano T,etal.Superoxide dismutase overexpression protects against glucocorticoid induced depressive-like behavioral phenotypes in mice〔J〕.Biochem Biophys Res Commun,2016;469(4):873-7.

54 Papadopoulou A,Siamatras T,Delgado-Morales R,etal.Acute and chronic stress differentially regulate cyclin dependent kinase 5 in mouse brain:implications to glucocorticoid actions and major depression〔J〕.Transl Psychiatry,2015;9(5):e578.

55 Workman JL,Brummelte S,Galea LA.Postpartum corticosterone administration reduces dendritic complexity and increases the density of mushroom spines of hippocampal CA3 arbours in dams〔J〕.J Neuroendocrinol,2013;25(2):119-30.

56 Li M,Zhou J,Qian J,etal.Target genes involved in corticosterone-induced PC12 cell viability and neurite disorders:a potential molecular mechanism of major depressive disorder〔J〕.Psychiatry Res,2016;235:206-8.

57 Malviya SA,Kelly SD,Greenlee MM,etal.Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model〔J〕.Physiol Behav,2013;122:187-92.

58 Kirilly E,Gonda X,Bagdy G.Antidepressants,stressors and the serotonin 1A receptor〔J〕.Neuropsycho Pharmacol Hung,2015;17(2):81-9.

59 Maric NP,Adzic M.Pharmacological modulation of HPA axis in depression new avenues for potential therapeutic benefits〔J〕.Psychiatr Danub,2013;25(3):299-305.

60 Wingenfeld K,Wolf OT.Effects of cortisol on cognition in major depressive disorder,posttraumatic stress disorder and borderline personality disorder 2014 Curt Richter Award Winner〔J〕.Psychoneuro Endocrinol,2015;51:282-95.

61 Fischer A,Grundmann J,Gold SM,etal.Steroid regulation of T cell function appears unaltered in borderline personality disorder〔J〕.J Pers Disord,2015;29(2):241-7.

62 Beauchaine TP,Crowell SE,Hsiao RC.Post-dexamethasone cortisol,self-inflicted injury,and suicidal ideation among depressed adolescent girls〔J〕.J Abnorm Child Psychol,2015;43(4):619-32.

63 Goldstein JM,Handa RJ,Tobet SA.Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease〔J〕.Front Neuroendocrinol,2014;35(1):140-58.

64 Spitzer C,Wibisono D,Terfehr K,etal.C-reactive protein,pre-and postdexamethasone cortisol levels in post-traumatic stress disorder〔J〕.Nord J Psychiatry,2014;68(5):296-9.

65 Mocking RJ,Ruhe HG,Assies J,etal.Relationship between the hypothalamic pituitary adrenal-axis and fatty acid metabolism in recurrent depression〔J〕.Psychoneuroendocrinology,2013;38(9):1607-17.

66 Vreeburg SA,Hoogendijk WJ,DeRijk RH,etal.Salivary cortisol levels and the 2-year course of depressive and anxiety disorders〔J〕.Psychoneuroendocrinology,2013;38(9):1494-502.

67 Horowitz MA,Zunszain PA,Anacker C,etal.Glucocorticoids and inflammation:a double-headed sword in depression.How do neuroendocrine and inflammatory pathways interact during stress to contribute to the pathogenesis of depression〔J〕.Mod Trends Pharmacopsychiatri,2013;28:127-43.

68 Hori H,Teraishi T,Sasayama D,etal.Relationship of temperament and character with cortisol reactivity to the combined dexamethasone/CRH test in depressed outpatients〔J〕.J Affect Disord,2013;147(1-3):128-36.

69 Kunugi H,Hori H,Numakawa T,etal.The hypothalamic-pituitary-adrenal axis and depressive disorder:recent progress〔J〕.Nihon Shinkei Seishin Yakurigaku Zasshi,2012;32(4):203-9.

70 Douglas KM,Porter RJ.Associations between hypothalamic-pituitary-adrenal axis function and facial emotion processing in depressed and control participants〔J〕.Psychiatry Clin Neurosci,2012;66(5):442-50.

〔2016-12-10修回〕

(编辑 曲 莉)

国家自然科学基金 (81173576,81373777,81173599);黑龙江省自然基金 (H201354);黑龙江省教育厅 (12521624,12531790,11521323)

张晓杰(1965-),女,博士,教授,博士生导师,主要从事抑郁、阿尔茨海默病、肿瘤、痛风、肝纤维化研究。

R749

A

1005-9202(2017)11-2839-05;

10.3969/j.issn.1005-9202.2017.11.106

猜你喜欢

下丘脑垂体皮质
原发性肉芽肿性垂体炎误诊为垂体腺瘤1例
人参-黄芪与熟地-山茱萸影响肾上腺皮质瘤细胞皮质酮生成的比较研究
侵袭性垂体腺瘤中lncRNA-mRNA的共表达网络
皮质褶皱
迎秋
成人垂体柄重复畸形合并拉特克裂囊肿1例
暗香浮动
垂体柄阻断综合征MR检查方法及其表现
科学家发现控制衰老开关
中药对下丘脑作用的研究进展