APP下载

磁共振管壁成像在颅内动脉夹层中的应用价值

2017-01-11朱珠韩翔董强

中国卒中杂志 2017年6期
关键词:管壁管腔夹层

朱珠,韩翔,董强

动脉夹层指由于血管内膜撕裂或滋养血管破裂引起的壁内血肿,可位于内膜或外膜下,前者可继发血管狭窄闭塞,后者则易导致管腔扩张[1]。颅颈动脉夹层是导致中青年缺血性卒中和蛛网膜下腔出血(subarachnoid hemorrhage,SAH)的重要病因,研究发现,颅内动脉夹层(intracranial artery dissection,IAD)在欧洲人群中的发生率不足颈部动脉夹层(cervical artery dissection,CAD)的10%[2],但在以东亚人群为对象的研究中IAD的比例则高达67%~90%[3-4]。由于临床表现缺乏特异性,动脉夹层的诊断主要依赖影像学检查,但与颈部血管相比,颅内动脉管径细、走行迂曲,因此诊断更具挑战性[3]。数字减影血管造影(digital subtraction angiography,DSA)尽管被奉为诊断颅内血管病变的“金标准”,但由于并不能观察到管壁自身的情况,因此对表现为管腔正常或非特异狭窄、闭塞的动脉夹层诊断价值有限[5]。基于此,学者们推荐应用管壁联合管腔成像技术对动脉夹层进行诊断,并指出确诊IAD需要壁内血肿证据或影像学动态变化特点[3,6]。本文将对磁共振管壁成像(vessel wall magnetic resonance imaging,VW-MRI)在IAD中的应用进行简要综述。

1 VM-MRI技术及特点

颅内血管的诸多病变起源于血管壁,而管腔异常则是继发性改变,因此诸如计算机断层扫描血管成像(computed tomography angiography,CTA),磁共振血管成像(magnetic resonance angiography,MRA)或DSA等管腔成像对颅内血管病的诊断存在两方面不足:其一,对于非特异性的管腔改变如狭窄或闭塞难以确定病因[7];其二,某些疾病早期未引起管腔改变时很难发现异常[8]。VM-MRI则可弥补以上不足,与管腔成像互为补充,提高

颅内血管疾病的准确诊断率。1995年,有研究者首次应用VM-MRI比较了颅内段颈内动脉及椎动脉管壁强化程度与研究人群年龄的关系,并发现管壁的强化程度随着年龄的增长而增加,提示这种强化与颅内血管粥样硬化有关[9];13年后,Kuker等[10]发现了颅内血管壁增厚及强化与血管炎的关系。近年来VM-MRI技术正越来越广泛的应用于科学研究和临床实践中。

与颈部血管相比,颅内血管细小且迂曲,如大脑中动脉(middle cerebral artery,MCA)直径约3~5 mm,管壁厚度仅有0.5~0.7 mm,为清晰显示管壁结构,目前颅内血管显像所应用的几乎均为高分辨率磁共振(high resolution magnetic resonance imaging,H R-M R I)。颅内血管周围多由脑脊液(cerebral spinal fluid,CSF)围绕,有研究报道,腔内血流联合腔外CSF信号抑制能更清晰地显示管壁增厚情况,并有助于对潜在病因进行鉴别[11-15],但需要注意因抑制CSF信号导致的管壁信噪比损失。三维VM-MRI的发展显著改善了空间分辨率和(或)信噪比,增加了成像范围,并可通过多平面重建获得血管全貌信息;且因图像采集所需时间更短,降低了运动伪影对图像质量的影响;而增强技术的应用则使得更精确的病因鉴别成为可能[16]。Mossa-Basha等[8]的研究还发现,如果能够较理想地抑制血液和CSF信号,则分辨率约为0.4~0.5 mm3体素的VM-MRI可以准确显示三级分支血管的情况。

2 VM-MRI在IAD中的应用

2.1 诊断 IAD以椎动脉硬膜内段最常见[3],典型影像学表现包括壁内血肿、内膜瓣、双腔征及管腔狭窄伴扩张等,它们的发生率在不同研究中差异较大。在一项研究中,在临床症状与CTA检查怀疑IAD的患者中,90%以上在MRI成像中可见内膜瓣,而50%以上可发现壁内血肿[17],壁内血肿在VW-MRI中的典型表现为边缘锐利的“新月形”管壁增厚伴夹层血管的外径增大及真腔狭窄或闭塞。另有报道在SAH患者中,管腔扩张伴狭窄最为常见,并且在这部分患者中,节段性管腔狭窄或闭塞即高度提示IAD的诊断;相反,在无SAH的患者中,单纯的管腔狭窄或闭塞则并不具有特异性[18-21]。相似的,非分叉部位的管腔扩张伴狭窄是动脉夹层的特征性表现,但单纯的管腔扩张并不足以诊断动脉夹层。HR-MRI作为一种组织对比度和空间分辨率均较为理想的多参数成像序列,不仅可以获取管腔形态信息,更重要的是通过管壁成像可直接观察到动脉夹层所致的特征性壁内血肿、内膜瓣及双腔征[22-23],因而被推荐作为诊断动脉夹层的首选方法[3]。利用黑血序列抑制管腔内血流,可清晰显示血管壁内膜结构,对发现动脉夹层的特异性征象如内膜瓣、双腔征等十分重要[22,24-25]。Sakurai等[25]发现T1加权体积各向同性快速自旋回波捕获(volumetric isotropic turbo spin echo acquisition,VISTA)序列与其他方法比较能更清晰的显示假腔结构。双翻转恢复(double inversion recovery,DIR)黑血成像序列的应用还可将壁内血肿与腔内血栓进行鉴别[26]。Han等[17]的研究发现HR-MRI对诊断狭窄闭塞型颅内椎动脉夹层的敏感性和特异性均较高,且观察者间诊断吻合度良好。我国学者应用非增强血管与斑块内出血同步(simultaneous noncontrast angiography and intraplaque hemorrhage,SNAP)磁共振成像在一次扫描中即可同时获取管腔与管壁形态信息,使成像时间缩短了50%,且对壁内血肿的敏感性达79.2%[27]。另外,短期(3个月)内血管形态恢复也是诊断颅内动脉夹层的重要标准[3],磁共振成像(magnetic resonance imaging,MRI)作为一种无创、无放射性的检查手段更适合对患者进行随访,以明确诊断及判断治疗效果。

2.2 鉴别诊断

2.2.1 动脉粥样硬化 颅内动脉粥样硬化在亚洲人群中十分常见,常引起颅内动脉狭窄或闭塞,当继发斑块内出血时,与动脉夹层所致的壁内血肿鉴别较为困难。但动脉粥样硬化多不伴有血管外径扩张,而这却恰是动脉夹层的重要特征之一,采用基线平行解剖扫描(basiparallel anatomic scanning,BPAS)MRI可清晰呈现血管外膜,从而有助于对二者进行鉴别[28-29]。另有研究者通过定量分析发现动脉夹层与粥样硬化所致MCA狭窄的重构指数存在差异,因而提出该方法有望为MCA狭窄的病因诊断提供依据[4]。

2.2.2 椎动脉发育不良(vertebral artery hypoplasia,VAH) VAH是先天性的椎动脉细小,人群中的发生率约25%[30]。由于多数患者并无后循环缺血症状,该病既往被认为呈良性病程[31],而近年的研究发现VAH可能与后循环缺血有关[31-33]。VAH典型的影像学表现为管腔狭窄,并不具有特异性;而管壁厚度正常或较优势侧薄弱,与动脉夹层壁内血肿所致的管壁增厚恰好相反。因此VW-MRI对二者的鉴别至关重要。需要指出的是,VAH可能是动脉夹层的易感因素之一[34],提示对于后循环卒中尤其是伴有异常形态VAH的患者,需要进行管壁成像以明确卒中病因学诊断。

3 病理特点分析

HR-MRI可提供动脉夹层的详细结构信息,如内膜瓣,假腔出入口,壁内血肿体积、长度、延伸方向及分支血管的继发改变等[35]。Swartz等[22]研究了不同原因血管病变的管壁成像特点,结果发现在动脉夹层中受累血管呈现不规则偏心强化,由此提出动脉夹层的发生可能与血管壁的炎症相关;Arai等[36]则分析了5例动脉夹层患者VW-MRI的特点,发现4例存在病变部位的血管壁增强而1例表现为壁内血肿近端及远端管壁增强,推测炎症可能是动脉夹层的诱因亦或是动脉夹层发生后的修复反应。另有研究者指出,动脉夹层呈现的管壁增强可能源自假腔的慢血流或动脉滋养血管[37]。可见,VWMRI有望为动脉夹层潜在病因的寻找和病理生理机制的阐释提供依据。

4 病变分期

夹层的壁内血肿信号因发病时间不同而异,典型的偏心高信号壁内血肿(高铁血红蛋白)见于发病后数天(T1加权3~4 d,T2加权7~8 d)至60 d[22-23,38]。Gao等[39]针对MCA夹层的研究发现,壁内血肿发生后2~340 d的信号强度变化与预期值吻合,指出通过定量分析MRI中的信号变化可估测夹层发病时间。另有研究证实,急性期与慢性期IAD在病变形态、强化特征及MRI定量分析参数方面均存在不同[40],提示MRI可能有助于对动脉夹层进行分期。

5 局限性

HR-MRI管壁成像可直接观察到动脉夹层的特征性壁内血肿,因而可有效弥补管腔成像的不足,提高动脉夹层的诊断率。然而不可否认,它仍然具有局限性:首先,管壁成像的定位仍然依赖MRA检查,可导致检查时间延长,且在整个序列采集过程中需要有经验的技术人员或影像学医师监督,以保证病变血管的正确覆盖[22];其次,由于颅内血管与周围CSF信号在T1加权像中相似,致使血管外径的清晰度相对不足[41];最后,多数关于颅内血管影像学诊断的研究难以得到病理证实,因而诊断大多参考颅外血管的管壁成像结论。

6 展望

如前文所述,动脉夹层壁内血肿的典型信号改变多见于疾病亚急性期,因而急性期(发病24 h内)动脉夹层的诊断始终是个难题。Kato等[42]利用定量非对称回波的最小二乘估算法迭代水脂分离序列(iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence,IDEALIQ)技术建立R2*图,发现它对急性壁内血肿的诊断准确性达88.9%,显著高于T2*WI及T1-CUBE序列,并能有效降低颅底骨质及血管壁钙化的干扰作用。但是由于空间分辨率有限,它对内膜瓣与双腔征的诊断效能尚需更多研究证实。此外,通过注射不同类型的对比剂以显示特定组织与细胞的分子MRI已在主动脉与心脏疾病研究领域报道[43],相信在不久的将来也会应用于动脉夹层的诊断中,以提高该病的早期诊断率,改善患者的预后。

1 Schievink WI. Spontaneous dissection of the carotid and vertebral arteries[J]. N Engl J Med,2001,344:898-906.

2 Ro A,Kageyama N. Pathomorphological differentiation between traumatic rupture and nontraumatic arterial dissection of the intracranial vertebral artery[J]. Leg Med(Tokyo),2014,16:121-127.

3 Debette S,Compter A,Labeyrie MA,et al.Epidemiology,pathophysiology,diagnosis,and management of intracranial artery dissection[J]. Lancet Neurology,2015,14:640-654.

4 Jung SC,Kim HS,Choi CG,et al. Quantitative analysis using high-resolution 3T MRI in acute intracranial artery dissection[J]. J Neuroimaging,2016,26:612-617.

5 Sikkema T,Uyttenboogaart M,Eshghi O,et al.Intracranial artery dissection[J]. Eur J Neurol,2014,21:820-826.

6 Mandell DM,Mossa-Basha M,Qiao Y,et al.Intracranial vessel wall MRI:principles and expert consensus recommendations of the American society of neuroradiology[J]. AJNR Am J Neuroradiol,2017,38:218-229.

7 Duna GF,Calabrese LH. Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system[J]. J Rheumatol,1995,22:662-667.

8 Mossa-Basha M,Alexander M,Gaddikeri S,et al.Vessel wall imaging for intracranial vascular disease evaluation[J]. J NeuroInterv Surg,2016,8:1154-1159.

9 Aoki S,Shirouzu I,Sasaki Y,et al. Enhancement of the intracranial arterial wall at MR imaging:relationship to cerebral atherosclerosis[J]. Radiology,1995,194:477-481.

10 Kuker W,Gaertner S,Nagele T,et al. Vessel wall contrast enhancement:a diagnostic sign of cerebral vasculitis[J]. Cerebrovasc Dis,2008,26:23-29.

11 van der Kolk AG,Zwanenburg JJ,Brundel M,et al.Intracranial vessel wall imaging at 7.0-T MRI[J]. Stroke,2011,42:2478-2484.

12 Dieleman N,van der Kolk AG,Zwanenburg JJ,et al.Imaging intracranial vessel wall pathology with magnetic resonance imaging:current prospects and future directions[J]. Circulation,2014,130:192-201.

13 Lou X,Ma N,Ma L,et al. Contrast-enhanced 3T highresolution MR imaging in symptomatic atherosclerotic basilar artery stenosis[J]. AJNR Am J Neuroradiol,2013,34:513-517.

14 Chung GH,Kwak HS,Hwang SB,et al. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis[J]. Eur J Radiol,2012,81:4069-4074.

15 Kim JM,Jung KH,Sohn CH,et al. Middle cerebral artery plaque and prediction of the infarction pattern[J].Arch Neurol,2012,69:1470-1475.

16 Cuvinciuc V,Viallon M,Momjian-Mayor I,et al. 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection[J]. Neuroradiology,2013,55:595-602.

17 Han M,Rim NJ,Lee JS,et al. Feasibility of highresolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection[J]. Eur Radiol,2014,24:3017-3024.

18 Kim BM,Kim SH,Kim DI,et al. Outcomes and prognostic factors of intracranial unruptured vertebrobasilar artery dissection[J]. Neurology,2011,76:1735-1741.

19 Mizutani T. Natural course of intracranial arterial dissections[J]. J Neurosurg,2011,114:1037-1044.

20 Metso TM,Metso AJ,Helenius J,et al. Prognosis and safety of anticoagulation in intracranial artery dissections in adults[J]. Stroke,2007,38:1837-1842.

21 Ahn SS,Kim BM,Suh SH,et al. Spontaneous symptomatic intracranial vertebrobasilar dissection:initial and follow-up imaging fi ndings[J]. Radiology,2012,264:196-202.

22 Swartz RH,Bhuta SS,Farb RI,et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI[J]. Neurology,2009,72:627-634.

23 Kwak HS,Hwang SB,Chung GH,et al. High-resolution magnetic resonance imaging of symptomatic middle cerebral artery dissection[J]. J Stroke Cerebrovasc Dis,2014,23:550-553.

24 Naggara O,Oppenheim C,Louillet F,et al. Traumatic intracranial dissection:mural hematoma on high-resolution MRI[J]. J Neuroradiol,2010,37:136-137.

25 Sakurai K,Miura T,Sagisaka T,et al. Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA)sequence:a preliminary study[J]. J Neuroradiol,2013,40:19-28.

26 Hunter MA,Santosh C,Teasdale E,et al. High-resolution double inversion recovery black-blood imaging of cervical artery dissection using 3T MR imaging[J]. AJNR Am J Neuroradiol,2012,33:E133-E137.

27 Li Q,Wang J,Chen H,et al. Characterization of craniocervical artery dissection by simultaneous MR noncontrast angiography and intraplaque hemorrhage imaging at 3T[J]. AJNR Am J Neuroradiol,2015,36:1769-1775.

28 Hamaguchi T,Yamada M. Basiparallel anatomic scanningmagnetic resonance imaging in vertebral artery dissection[J].Arch Neurol,2009,66:276-277.

29 Fatima Z,Motosugi U,Okumura A,et al. Basiparallel anatomical scanning (BPAS)-MRI can improve discrimination of vertebral artery dissection from atherosclerosis and hypoplasia[J]. Acad Radiol,2012,19:1362-1367.

30 Khan S,Cloud GC,Kerry S,et al. Imaging of vertebral artery stenosis:a systematic review[J]. J Neurol Neurosurg Psychiatry,2007,78:1218-1225.

31 Park JH,Kim JM,Roh JK. Hypoplastic vertebral artery:frequency and associations with ischaemic stroke territory[J]. J Neurol Neurosurg Psychiatry,2007,78:954-958.

32 Perren F,Poglia D,Landis T,et al. Vertebral artery hypoplasia:a predisposing factor for posterior circulation stroke?[J]. Neurology,2007,68:65-67.

33 Katsanos AH,Kosmidou M,Kyritsis AP,et al. Is vertebral artery hypoplasia a predisposing factor for posterior circulation cerebral ischemic events? A comprehensive review[J]. Eur Neurol,2013,70:78-83.

34 Zhou M,Zheng H,Gong S,et al. Vertebral artery hypoplasia and vertebral artery dissection:a hospital-based cohort study[J]. Neurology,2015,84:818-824.

35 Wang Y,Lou X,Li Y,et al. Imaging investigation of intracranial arterial dissecting aneurysms by using 3 T high-resolution MRI and DSA:from the interventional neuroradiologists' view[J]. Acta Neurochir (Wien),2014,156:515-525.

36 Arai D,Satow T,Komuro T,et al. Evaluation of the arterial wall in vertebrobasilar artery dissection using highresolution magnetic resonance vessel wall imaging[J]. J Stroke Cerebrovasc Dis,2016,25:1444-1450.

37 Sakurai K,Miura T,Sagisaka T,et al. Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA)sequence:a preliminary study[J]. J Neuroradiol,2013,40:19-28.

38 Ryu CW,Kwak HS,Jahng GH,et al. High-resolution MRI of intracranial atherosclerotic disease[J]. Neurointervention,2014,9:9-20.

39 Gao PH,Yang L,Wang G,et al. Symptomatic unruptured isolated middle cerebral artery dissection:clinical and magnetic resonance imaging features[J]. Clin Neuroradiol,2016,26:81-91.

40 Park KJ,Jung SC,Kim HS,et al. Multi-contrast highresolution magnetic resonance fi ndings of spontaneous and unruptured intracranial vertebral artery dissection:qualitative and quantitative analysis according to stages[J].Cerebrovasc Dis,2016,42:23-31.

41 Ryu CW,Jahng GH,Kim EJ,et al. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla[J].Cerebrovasc Dis,2009,27:433-442.

42 Kato A,Shinohara Y,Yamashita E,et al. Usefulness of R2* maps generated by iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation sequence for cerebral artery dissection[J].Neuroradiology,2015,57:909-915.

43 Makowski MR,Botnar RM. MR imaging of the arterial vessel wall:molecular imaging from bench to bedside[J].Radiology,2013,269:34-51.

猜你喜欢

管壁管腔夹层
整层充填流动树脂与夹层技术在深楔状缺损修复中的比较研究
浅谈夹层改造常用设计方法
清洗刷在不同管腔器械清洗中的探讨
低温工况下不锈钢管壁厚的脉冲涡流检测
压缩载荷下钢质Ⅰ型夹层梁极限承载能力分析
管腔器械清洗灭菌方法的新进展
传统纯棉白条检查法与医用导光检测仪在管腔器械清洗质量评估中的应用
隔夹层参数对底水油藏注水效果影响数值模拟研究
——以渤海A 油藏为例
自制便携式光源管腔器械检测仪的应用效果
大唐鲁北厂2号炉壁温超限及措施的探讨