APP下载

湖南会同寒武纪早期有机碳同位素地层学研究

2016-07-26凌洪飞ULRICHStruck姚素平魏广祎内生金属矿床成矿机制研究国家重点实验室南京大学地球科学与工程学院南京003MuseumNaturkundeLeibnizInstituteforEvolutionandBiodiversityScienceBerlin05Germany

高校地质学报 2016年2期
关键词:寒武纪会同寒武

王 丹,凌洪飞*,ULRICH Struck,姚素平,李 达,卫 炜,魏广祎.内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京003.Museum für Naturkunde,Leibniz Institute for Evolution and Biodiversity Science,Berlin 05,Germany



湖南会同寒武纪早期有机碳同位素地层学研究

王 丹1,凌洪飞1*,ULRICH Struck2,姚素平1,李 达1,卫 炜1,魏广祎1
1.内生金属矿床成矿机制研究国家重点实验室,南京大学地球科学与工程学院,南京210023
2.Museum für Naturkunde,Leibniz Institute for Evolution and Biodiversity Science,Berlin 10115,Germany

摘要:寒武纪早期是地球海洋环境与生命演化的关键时期,但目前扬子东南缘深水相区的早寒武纪地层尚缺乏系统、精确的地层对比工作。该文选取湖南省怀化地区会同钻孔剖面(深水相区)的留茶坡组硅质岩、小烟溪组黑色页岩为研究对象,进行了高分辨的有机碳同位素(δ13Corg)地层对比,结果在会同剖面自下而上识别出四个正漂移(P1、P2、P3和P4)与两个负漂移(N1和N2),结合其他剖面的生物化石记录和锆石U-Pb年龄资料,将会同剖面有机碳同位素与湖南其他剖面,以及和云南和三峡等地浅水相区剖面的有机碳、无机碳同位素曲线进行对比,认为扬子东南缘埃迪卡拉系-寒武系界线在湖南深水相区可放置于留茶坡组上部较大的有机碳同位素负漂移(Basal Cambrian Carbon isotope Excursion,BACE)出现的位置,但由于钻孔深度不够,所以该负漂移未在会同剖面获得,而P1、P2和P3分别对应于寒武系的ZHUCE (ZHUjiaqing Carbon isotope Excursion,第二阶)、CARE(Cambrian Arthropod Radiation isotope Excursion,第三阶)和MICE (MIngxinsi Carbon Isotope Excursion,第四阶)正漂移,N1和N2分别对应于寒武系的SHICE(SHIyantou Carbon isotope Excursion,第二阶)和AECE(Archaeocyathid Extinction Carbon isotope Excursion,第四阶)负漂移,因此会同剖面留茶坡组顶部至小烟溪组底部属于寒武系第二阶,小烟溪组下部属于寒武系第三阶,而小烟溪组中-上部属于寒武系第四阶,而顶部是否达到第四阶顶部尚无法确认。碳同位素的负漂移可能是海侵时期上升流水体将底层富含12C还原水体带至浅水地区所致,并分别与埃迪卡拉动物群、小壳化石动物群和古杯动物的灭绝密切相关;而在生物繁盛时期,海洋初级生产力升高,有机质埋藏增加,导致碳同位素的正漂移。

关键词:地层对比;有机碳同位素;深水相区;寒武纪早期;湖南

寒武纪早期是地球表生环境与后生动物演化的关键时期,伴随着海洋高程度的氧化(Chen et al.,2015;Scott et al.,2008),先后发生了几次重大的生物爆发与灭绝事件,如小壳动物群、澄江生物群的爆发和小壳动物群、古杯生物的大规模灭绝(Bambach,2006;Zhu et al.,2006;Zhuravlev and Wood,1996;朱茂炎,2010),使这一时期成为国际地质学研究的热点之一。华南扬子地区寒武系地层保存完整且出露较好,碳酸盐岩台地相区含有大量丰富的生物化石(Guo et al.,2014;Li and Xiao,2004;Steiner et al.,2007;Yang et al.,2014a),并且有学者获得了高精度的碳同位素数据(Cremonese et al.,2013;Ishikawa et al.,2008,2014;Li et al.,2013;Zhu et al.,2006,2007b;周传明等,1997),以及一些火山灰 U-Pb年龄数据(Compston et al.,2008;Condon et al.,2005;Okada et al.,2014),目前已经建立起比较完整的地层年代学框架、碳同位素地层学框架和古生物地层学框架(Steiner et al.,2007;Zhu et al.,2006,2007b);然而深水沉积相区生物化石稀少,虽然已经获得一些火山灰U-Pb年龄数据(Chen et al.,2009;Jiang et al.,2009;Wang et al.,2012b;Zhou et al.,2008),但由于缺少碳酸盐岩沉积,无法获得无机碳同位素数据,精确的地层对比工作尚不完善。碳同位素化学地层学具有全球地层对比的潜力,尤其在化石稀少的前寒武系-寒武系地层作用更大(Brasier,1996;Corsetti and Hagadorn,2000;Ishika⁃wa et al.,2008;Kaufman and Knoll,1995;Knoll and Walter,1992;Li et al.,2009;Shen and Schidlowski,2000)。显生宙时期,有机碳同位素与无机碳同位素通常耦合变化,在没有碳酸盐岩沉积的深水剖面,有机碳同位素可以代替无机碳同位素进行地层对比(Kimura and Watanabe,2001;Kump et al.,1999;Shen and Schidlowski,2000)。目前已有一些研究获得深水沉积相区的有机碳同位素数据(Guo et al.,2007,2013;Wang et al.,2015;Wang et al.,2012a),但深水沉积相区的地层与浅水沉积相区地层的系统对比工作仍旧缺乏,并且已有的有机碳同位素数据主要集中在埃迪卡拉系-寒武系界线附近,而寒武系纽芬兰统-第二统的数据报道不多。湘中地区小烟溪组地层被认为函盖了寒武系纽芬兰统-第二统(庞维华等,2011),是建立扬子东南缘深水沉积相区有机碳同位素地层标准曲线的理想场所。本文选取湖南省怀化市会同钻孔剖面开展高精度的有机碳同位素地层学研究,与湖南其他深水沉积相区剖面和云南、三峡浅水沉积相区剖面地层进行对比,试图建立深水沉积相区相对完整的年代地层学与有机碳同位素地层学框架,并探讨碳同位素变化与海洋环境和生物演化之间的关系。

1 地层剖面

扬子板块自西北向东南方向,可以大致分为台地相、过渡相和斜坡-盆地相沉积环境(Jiang et al.,2012;Steiner et al.,2007;Zhu et al.,2003)(图1)。寒武纪初期,海平面较低,扬子地台的大陆架区地层暴露在海水之上,导致该区寒武系底部地层部分缺失(Jiang et al.,2012;Steiner et al.,2007;Zhu et al.,2003;薛耀松和周传明,2006)。随后寒武纪第二期早期(梅树村期晚期)发生的全球范围内大规模的海侵事件,导致整个扬子陆缘盆地内广泛沉积了一套深水相的黑色页岩地层(Jiang et al.,2012)。寒武纪第三期之后,海平面有所下降,随后寒武纪第四期又发生了一次区域甚至全球性的海侵事件,以云南东部乌龙箐组海底底砾岩为标志(胡世学等,2013)。

会同剖面是一个钻孔剖面,位于湖南省怀化市会同县,属于扬子东南缘的深水盆地相沉积,包括留茶坡组上部(约25 m)和小烟溪组地层(约395 m)(图1)。留茶坡组地层主要沉积灰白色、灰黑色和黑色硅质岩,夹少量的炭质板岩,并在顶部发育有磷结核。小烟溪组地层岩性较稳定,几乎全部由炭质板岩组成,局部发育灰岩和白云质灰岩夹层,底部发育有Ni-Mo等金属硫化物富集层,并分别在下部,中下部和中部含有磷结核,上部略含粉砂岩夹层。该地区目前未见有详细的生物化石报到,小烟溪组可能函盖了寒武系纽芬兰统-第二统(庞维华等,2011)。

2 分析方法

图1 扬子地区埃迪卡拉纪晚期-寒武纪早期沉积相地质图及湖南会同剖面岩性柱状图(据Jiang等,2012修改)Fig.1 Late Ediacaran-early Cambrian geological map along the southern margin of the Yangtze platform and generalized stratigraphic column of the early Cambrian Hunan Huitong section

本次研究在湖南会同钻孔剖面系统采样135件,采样时选取新鲜的岩石样品,平均间隔为2~3m。样品处理时避开方解石脉与硅质岩脉,将岩石样品切割成3 cm左右的块体,并碾磨成200目以上的粉末,置于40℃的烘箱中过夜烘干。

取20~30 mg得粉末岩石样品,加入2 mol/L的盐酸(HCl)过夜(24小时以上),在溶样过程中换盐酸(HCl)三次以上,没有气泡生成为止,确保岩石样品中的碳酸盐岩全部溶解。酸溶后的样品残渣用去离子水(MiliQ)清洗三次,置于烘箱内过夜烘干后,用锡杯包裹上机测试,有机碳同位素(δ13Corg)测试在南京大学内生金属矿床成矿机制研究国家重点实验室完成和德国柏林自然历史博物馆共同完成,分别使用EA-ConFloIV-MAT 253同位素质谱仪和Thermal Finnigan Elemental Delta V同位素质谱仪,测试结果使用国际标准V-PDB校准,测试误差均小于±0.3‰。有机碳(TOC)含量测试在南京大学现代分析中心完成,使用Elementar Vario MICRO元素分析仪。

3 分析结果

留茶坡组顶部(0~15 m)硅质岩样品的δ13Corg值从最高值-30.0‰(P1)下降至最低值-32.5‰(N1),TOC含量分布在0.2%~3.2%之间;小烟溪组最底部15~30 m处大量的方解石脉杂乱分布,岩石样品受后期成岩作用改造严重;小烟溪组下部(30~150 m)的炭质页岩层中,δ13Corg值首先上升至-30.7‰左右,随后降低至-31.7‰~-30.3‰之间,呈现出有机碳同位素的正漂移(P2),TOC含量较高,分布于2.8%~22.9%之间,平均值为13.3%;至小烟溪组中部(150~235 m)的含磷结核与灰岩夹层的炭质页岩中,δ13Corg值升高至-29.7‰~-30.9‰,平均值为-30.4‰,呈现出一个有机碳同位素的正漂移(P3),TOC含量持续较高,分布于6.5%~20.0%,平均值为13.9%;小烟溪组中上部(235~290 m)含磷结核和粉砂岩夹层的炭质页岩中,δ13Corg值迅速降低至-31.6‰~-30.7‰,平均值为-31.1‰,呈现又一个有机碳同位素的负漂移(N2),TOC含量分布于4.3%~14.3%之间,平均值为8.2%;至小烟溪组上部(290~420m)的含粉砂岩夹层的炭质页岩层中,δ13Corg值回升至-30.3‰左右,呈现出有机碳同位素的正漂移(P4),TOC含量分布于5.4%~12.9%之间,平均值为8.7%(表1,图2)。

4 讨论

4.1 有机碳同位素成岩作用分析

沉积物中有机质的同位素组成(δ13Corg),可能受到成岩早期微生物降解和后期的热变质作用的改造。研究表明,在早期成岩作用过程中,沉积物中的δ13Corg值可以保持不变(Altabet and Francois,1994;Galimov,2004;Macko et al.,1994;Velinsky et al.,1991),或者在小范围内降低,降低幅度不超过1‰~2‰ (Böttcher et al.,1998;Freudenthal et al.,2001;Galimov,2004;Hatcher et al.,1983;Lehmann et al.,2002;Mcarthur et al.,1992;Nakatsuka et al.,1996;Prahl et al.,1997)。若沉积岩样品受到后期热变质作用,富12C的碳氢化合物优先分解,导致剩余有机质的δ13Corg值升高,但升高幅度不大于2‰ (Chung and Sackett,1979;Lewan,1983;Peters et al.,1981;Schwab et al.,2005;Simonet et al.,1981;Tocqué et al.,2005)。会同剖面的δ13Corg-TOC相关性图解显示,δ13Corg与TOC含量之间没有明显的相关性(图3),说明δ13Corg未受到后期作用的明显改造,基本保持初始有机质的碳同位素组成。即使δ13Corg受到后期热变质作用的改造,在短时间尺度内区域变质程度均一,整个剖面的δ13Corg值变化程度相同,并不会影响有机碳同位素曲线的变化趋势。

4.2 地层对比

目前埃迪卡拉系-寒武系浅水沉积相地层的研究已经比较完善,建立了一套精确的生物地层学与碳同位素地层学框架(Steiner et al.,2007;Zhu et al.,2006,2007a,2007b),并识别出与生物演化密切相关的几个碳同位素的异常变化,包括埃迪卡拉系-寒武系界线附近的碳同位素负异常BACE,对应埃迪卡拉型动物群的灭绝,寒武系第二阶下部的碳同位素正异常ZHUCE,对应小壳动物群的繁盛,第二阶上部的碳同位素负异常SHICE,对应小壳动物群动物群的灭绝,第三阶的碳同位素正异常CARE,对应著名的澄江动物群(寒武纪大爆发的主幕),第四阶上部的碳同位素正异常MICE,对应古杯动物群的大量繁盛,第四阶中部的碳同位素负异常AECE,对应古杯动物群的大规模灭绝(图4)(Zhu et al.,2006,2007b及其中参考文献)。而对于深水沉积相区埃迪卡拉系-寒武系地层,由于缺乏充分的化石记录和同位素年龄数据,其与浅水沉积相区地层的对比仍旧是一个难题。

表1 会同剖面有机碳同位素及总有机碳含量数据表Table 1 Analytical results of δ13Corgand TOC contents of the Huitong section

续表1

图2 会同剖面有机碳同位素和总有机碳含量曲线图Fig.2 δ13Corg and TOC profiles of the Huitong section

4.2.1 浅水相鄂西三峡地区与滇东地区地层对比

根据小壳化石组合带(SSFs) A.trisulcatus-P.anabarica Assemblage Zone(Zone I)出露的位置,滇东地区和三峡地区前寒武系-寒武系界线被分别置于朱家箐组和岩家河组的底部(Guo et al.,2014;Li and Xiao,2004;Steiner et al.,2007;Yang et al.,2014a)(图5),并在界线附近均发现较大的碳同位素的负漂移(Cremonese et al.,2013;Ishikawa et al.,2008;Li et al.,2013;Shen and Schidlowski,2000;Zhou and Xiao,2007;王丹等,2012;周传明等,1997)(图6a和6b)。前人研究表明,三峡岩家河组底部的δ13Ccarb负漂移可与滇东朱家箐底部的δ13Ccarb负漂移相对应(Ishikawa et al.,2008;王丹等,2012),即碳同位素BACE负漂移(Zhu et al.,2006),该负漂移(BACE)在其他地区的碳酸盐岩前寒武系-寒武系界线地层中普遍存在,可以作为全球地层对比的标志(Brasier et al.,1994;Ishikawa et al.,2008;Kaufman et al.,1996;Maloof et al.,2005,2010a,b)。

图3 会同剖面δ13Corg与TOC含量的相关性图解Fig.3 Cross-plot of δ13Corgversus TOC contents of the Huitong section

滇东地区寒武系第二阶地层开始于朱家箐组上部(大海段),以小壳化石第三组合带(Watsonella crosbyi Assemblage Zone)为标志(图5)(Li and Xiao,2004;Steiner et al.,2007;Yang et al.,2014a),并存在较大的δ13Ccarb/δ13Corg正漂移(Cremonese et al.,2013;Li et al.,2009;周传明等,1997),即碳同位素ZHUCE正漂移(Zhu et al.,2006)(图6a)。前人研究表明,三峡岩家河组上部发育有小壳化石组合带A.yanjiaheensis Assemblage Zone,与滇东小壳化石第三组合带Watsonella crosbyi Assemblage Zone相对应(图5)(Guo et al.,2014),并且岩家河组上部也存在较大的δ13Ccarb正漂移,可与滇东朱家箐上部的δ13Ccarb/δ13Corg正漂移相对应(Ishikawa et al.,2008;王丹等,2012)(图6a,b),因此三峡岩家河组上部地层属于寒武系第二阶。朱家箐组与岩家河组上部的ZHUCE正漂移不仅在扬子地台广泛发育(Brasier et al.,1990;Li et al.,2009;Shen and Schid⁃lowski,2000),在西伯利亚、蒙古、摩洛哥等地区均有发现(Brasier et al.,1994,1996;Kaufman et al.,1996;Maloof et al.,2005),可以作为寒武系第二阶开始的标志。

图4 埃迪卡拉纪晚期-寒武世纪早期同位素与生物地层年代表(据Steiner et al.,2007;Zhu et al.,2006,2007b修改)Fig.4 δ13C and bio-chronostratigraphic frameworks of the Ediacaran-early Cambrian

滇东地区石岩头组发育小壳化石组合带Sinosachites flabelliformis-Tannuolina zhangwentangi Assemblage Zone(Steiner et al.,2007;图5),属于寒武系第二阶上部。根据前人报道,该组发育有碳同位素负漂移(SHICE)(Zhu et al.,2006;周传明等,1997;(图6a))。虽然前人研究没有明确指出,但寒武系第二阶碳同位素的负漂移在西伯利亚 (Brasier and Sukhov,1998;Derry et al.,1994;Kouchinsky et al.,2005)、摩洛哥(Maloof et al.,2005,2010a,b)等地也均被发现,说明该SHICE负漂移广泛发育并具有地层对比的潜力。三峡地区岩家河组和水井沱组之间存在沉积间断,两组之间的火山灰锆石U-Pb年龄数据为526.5±5.4 Ma (Okada et al.,2014),说明三峡地区寒武纪第二期时期沉积地层很大程度上缺失(图5),因此也未能测得SHICE负漂移。

图5 扬子地区埃迪卡拉系-寒武系地层对比图Fig.5 Stratigraphic correlation of the Ediacaran-Cambrian in the Yangtze Region

滇东地区玉案山组发育著名的澄江动物群(张文堂和侯先光,1985)(图5),属于寒武系第三阶,并发现较大的δ13Ccarb正漂移(CARE)(图6a)(周传明等,1997),该碳同位素正漂移在西伯利亚 (Brasier and Sukhov,1998;Derry et al.,1994;Kouchinsky et al.,2005)和摩洛哥(Maloof et al.,2010a,b)等地均有报道,具有地层对比的潜力。三峡地区水井沱组下部发育有寒武纪第三期的Rhombo⁃corniculum cancellatum Taxon-range组合带以及三叶虫化石 Tsunyidiscus mumangensts(遵义盘虫)(Guo et al.,2014;Steiner et al.,2007;杨爱华等,2005)(图5),说明水井沱组下部地层与玉案山组大致相当。同时,水井沱组下部的δ13Ccarb值从-5‰逐渐上升至0‰(Ishikawa et al.,2008),呈现出正漂移的趋势,本文认为可与滇东地区玉案山组的碳同位素CARE正漂移(~-0.7‰)相对应(图6a和6b)。

滇东地区玉案山组之上地层的碳同位素数据目前未见报道,与三峡地区的碳同位素地层对比工作尚未展开。三峡地区水井沱组中部出露三叶虫Hupeidicus orientalis(湖北盘虫)(杨爱华等,2005)(图5),属于寒武世第三期晚期至第四期早期,指示水井沱组上部属于寒武系第四阶。据Ishikawa等(2008)报道,水井沱组上部地层中δ13Ccarb值从0‰逐渐上升至+3‰,呈现正漂移的趋势(图6b),Ishikawa等(2014)认为该碳同位素正漂移对应于寒武纪第四阶早期的MICE正漂移,并且在西伯利亚(Brasier and Sukhov,1998)、加拿大(Dilliard et al.,2007)等地均有报道。因此,三峡地区水井沱组上部发育的δ13Ccarb正漂移可以作为第三阶下部地层对比的标志之一,在扬子地台广泛应用。在水井沱组之上,石牌组地层中发育有两个三叶虫化石带,即下部的Redlichia meitanensis组合带和上部的Palaeolenus lantenoisi组合带。

图6 扬子地区埃迪卡拉系-寒武系碳同位素地层对比图Fig.6 Carbon isotope chemostratigraphy of the Ediacaran-Cambrian in the Yangtze Region

石牌组上覆地层天河板组内发育有三叶虫Megapalaeolenus deprati组合带和古杯Archaeocy⁃athus-Retecyathus-sanxiacyathus组合带(宜昌地质矿产研究所,1987)(图5),说明三峡地区石牌组至天河板组地层属于寒武系第四阶。根据Ishikawa等(2014)的研究,石牌组中部δ13Ccarb呈现较大的负漂移(图6b),与西伯利亚(Brasier and Sukhov,1998)、加拿大(Dilliard et al.,2007)等地Botomian-Toyonian时期的δ13Ccarb负漂移相对应,属于寒武系第四阶的AECE负漂移。因此,三峡地区石牌组的δ13Ccarb负漂移可以作为扬子地区第四阶中部地层对比的标志。

4.2.2 湖南深水相区与滇东、三峡地区地层对比

扬子东南缘深水沉积相区前寒武系-寒武系界线位置至今未有定论。前人研究表明,湖南多个剖面的留茶坡组上部均存在较大的有机碳同位素负漂移,包括龙鼻嘴剖面、李家沱剖面和袁家剖面(图6d,6e和6f)(Cremonese et al.,2014;Guo et al.,2007,2013;Wang et al.,2012a)。Wang等(2012a)和Guo等(2013)建议留茶坡组上部有机碳同位素的负漂移可与云南、三峡地区的碳同位素BACE负漂移相对比。另外,Zhou等(2014)提出湖南留茶坡组上部的火山灰层可以与云南朱家箐组中部的火山灰层相对应,其火山灰锆石U-Pb年龄分别为536.3±5.5 Ma和539.4±2.9 Ma(Chen et al.,2009;Compston et al.,2008)(图5)。因此深水沉积相区前寒武系-寒武系界线可以置于留茶坡组上部的火山灰层之下有机碳同位素负漂移出现的位置(图5和图6)。本文会同剖面钻孔深度不够,推测未采到留茶坡组上部前寒武系-寒武系界线处的样品,留茶坡组顶部硅质岩地层已属于寒武系。

湖南牛蹄塘组最底部磷结核层与硅质岩层内发育有小壳化石组合带Protohertzina anabarica-Kaiyangites novilis Assemblage Zone(图5),可与滇东、三峡地区地区小壳化石组合带A.trisulcatus-P.anabarica Assemblage Zone(Zone I) 相 对 比(Steiner et al.,2007;Yang et al.,2014b),属于寒武系幸运阶。在湖南龙鼻嘴剖面和李家沱剖面,牛蹄塘组/小烟溪底部δ13Corg呈现出正漂移(图6d和6e)(Cremonese et al.,2014;Guo et al.,2007,2013;Wang et al.,2012a),Wang等(2012a)和Guo等(2013)建议该δ13Corg正漂移可与云南、三峡地区的碳同位素ZHUCE正漂移相对比,说明其对应层位已经属于寒武系第二阶(图6)。此碳同位素地层对比的合理性随后得到证实,Zhou等(2014)针对湖南、贵州地区牛蹄塘组底部火山灰层岩相学与地球化学的研究表明,该火山灰层可能与云南东部石岩头组和三峡水井沱组底部的火山灰层属于同一期火山活动(图5),尽管目前为止,针对这些火山灰研究获得的年龄数据并不十分一致:云南石岩头组底部526.5±1.1 Ma(Compston et al.,2008);三峡水井沱组底部526.5±5.4 Ma(Okada et al.,2014);贵州牛蹄塘组底部518±5 Ma (Wang et al.,2012b),522.7±4.9 Ma(Zhou et al.,2008),532.3±0.7 Ma(Jiang et al.,2009)(图5)。由此可见,湖南牛蹄塘组寒武系幸运阶的地层较薄,或者曾存在沉积间断,或者由较低的沉积速率所致(Steiner et al.,2007)。本文会同剖面留茶坡组顶部δ13Corg同样呈现出正漂移P1,该δ13Corg正漂移可与龙鼻嘴剖面、李家沱剖面牛蹄塘组/小烟溪底部的δ13Corg正漂移一起,对应于浅水沉积相区的ZHUCE正漂移,说明会同剖面留茶坡组顶部地层已属于寒武系第二阶(图6)。

扬子地台东南缘牛蹄塘组和小烟溪组底部,沿NE方向广泛分布有1600 km长的Ni-Mo等金属硫化物富集带,可以作为区域地层对比的标志层(图5)(Jiang et al.,2012;Och et al.,2013;Wang et al.,2015;Zhu et al.,2003)。前人研究表明,湖南牛蹄塘组、小烟溪组底部的Ni-Mo富集层可以与云南肖滩剖面石岩头组顶部的Ni-Mo富集层相对比(Och et al.,2013;Wang et al.,2015),属于寒武系第二阶上部(图5)。Xu等(2011)获得湖南和贵州地区Ni-Mo金属硫化物矿石的Re-Os同位素年龄521±5 Ma(图5),证实了Ni-Mo富集层对应层位属于寒武系第二阶上部。另一方面,云南浅水沉积相区石岩头组顶部Ni-Mo富集层对应层位存在一个δ13Ccarb和δ13Corg的负漂移,即SHICE负漂移(Cremonese et al.,2013;Zhu et al.,2006;周传明等,1997),该负漂移在湖南三岔、龙鼻嘴、李家沱和袁家剖面牛蹄塘组/小烟溪组底部Ni-Mo富集层对应层位均可以识别(Guo et al.,2007,2013;Wang et al.,2012a,2015)(图6),笔者认为这可以作为地层对比的另一个标志。本文会同剖面小烟溪组底部Ni-Mo富集层对应层位发育的δ13Corg的负漂移N1,可与湖南其他剖面和云南肖滩剖面的SHICE负漂移相对应(图6)。综上所述,湖南会同剖面留茶坡组顶部的δ13Corg正漂移P1对应于寒武系第二阶上部的ZHUCE正漂移,留茶坡组/小烟溪组界线地层处的δ13Corg负漂移N1对应于寒武系第二阶上部的SHICE负漂移,由于深水沉积相区沉积速率较低,导致会同剖面寒武系第二阶的沉积地层较薄,凝缩于留茶坡组顶部和小烟溪组的底部。

湖南多个剖面(包括三岔剖面、龙鼻嘴剖面、李家沱剖面和袁家剖面)的牛蹄塘组/小烟溪组Ni-Mo富集层之上,δ13Corg均呈现出正漂移(图6c,6d,6e和6f)(Guo et al.,2007,2013;Wang et al.,2012a,2015),前人研究建议该δ13Corg正漂移可以与滇东地区玉案山组的CARE正漂移相对应(图6)(Guo et al.,2013;Wang et al.,2012a,2015),另外在湖南、贵州牛蹄塘组上部分别发现三叶虫Hunanocephalus和Tsunyidicus(图5)(Steiner et al.,2005),说明牛蹄塘组中上部地层属于寒武系第三阶。本文会同剖面小烟溪组下部地层(30~150 m)有机碳同位素曲线的变化趋势与三岔剖面、李家沱剖面和袁家剖面十分类似,δ13Corg也呈现出一个正漂移P2,可与浅水沉积相区的CARE正漂移相对应,说明会同剖面小烟溪组下部地层属于寒武系第三阶(图6)。

湖南会同剖面小烟溪组中部(150~235 m)有机碳同位素δ13Corg呈现出另一个正漂移P3,笔者认为可与三峡地区水井沱组上部的MICE正漂移相对应,即该段地层属于寒武系第四阶下部(图6);小烟溪组中上部地层(235~290 m)出现了有机碳同位素δ13Corg的负漂移N2,可与三峡地区石牌组的AECE负漂移相对应,说明该段地层属于寒武系第四阶中部;小烟溪组顶部地层(290~420)及其第四个有机碳同位素正漂移P4则属于寒武系第四阶上部,是否涵盖第四阶的顶部尚无法确认(图6)。以上关于寒武系第四阶有机碳同位素特征在湖南地区系首次报道。

4.3 碳同位素异常与生物演化的关系

生物的演化与其生存环境变化紧密相关,体现在生物繁盛和灭绝事件与碳同位素变化的耦合性,大规模的生物灭绝事件往往对应着碳同位素的负漂移,例如埃迪卡拉纪-寒武纪界线附近的碳同位素负异常(BACE)对应了埃迪卡拉型动物群的灭绝,寒武纪第二期的碳同位素负异常(SHICE)对应了SSFs动物群的灭绝,寒武纪第四期的碳同位素负异常(AECE)与古杯动物群的大规模灭绝相耦合(图4)(Zhu et al.,2006,2007b及其中参考文献);相对应地,碳同位素负异常前后往往伴随着另一种类型生物的繁盛与碳同位素的正漂移,例如新元古代末期埃迪卡拉型生物的繁盛对应碳同位素的正漂移DEPCE,寒武纪第二期,小壳动物群快速演化并辐射对应ZHUCE正漂移,寒武纪第三期,以澄江动物群为代表的“寒武纪大爆发”对应于CARE正漂移,以及寒武纪第三期-第四期(沧浪铺期)古杯动物群的大量繁盛对应了MICE正漂移(图4)(Zhu et al.,2006,2007b及其中参考文献)。这些重大的物种更迭事件与碳同位素的协同演化并不仅仅是单个盆地内的区域性事件,往往在多个大陆板块同一时期同步出现(Bambach et al.,2004;Brasier et al.,1994;BrasierandSukhov,1998;Dilliardetal.,2007;Ishikawa et al.,2014;Li et al.,2007;Maloof et al.,2010a,b;Narbonne,2005;Zhu et al.,2006;Zhuravlev,2001),说明生物与环境的协同演化可能受控于某个或某些全球范围内的机制,例如板块运动、气候变暖和海平面升降等。

图7 寒武纪早期海侵时期碳同位素负异常示意图Fig.7 Schematic depiction for the negative carbon isotope excursion during the early Cambrian transgression

大规模的生物灭绝事件(如埃迪卡拉动物群、小壳动物群和古杯动物群的灭绝)及其对应的碳同位素的负异常,时间上往往与海平面的上升相吻合(Dalziel,2014;Ishikawa et al.,2014;Steiner et al.,2001),例如寒武纪第二期全球性大规模的海侵时期发育了SHICE负漂移(Maloof et al.,2005,2010b;Steiner et al.,2001;Zhu et al.,2006),第四阶的海侵事件对应了AECE负漂移(Brasier and Sukhov,1998;Dilliard et al.,2007;Ishikawa et al.,2014)。新元古至寒武纪早期,是罗迪尼亚大陆裂解、冈瓦那大陆合成的重要时期,板块的运动造成大洋环流的改变,再加上冰期之后全球变暖和海平面上升,导致陆架边缘频繁的上升流作用(Tucker,1992;图7)。地球化学指标(如铁组分)表明,新元古代末期-寒武纪早期一些深水盆地仍旧处于还原环境(Canfield et al.,2008;Feng et al.,2014;Wille et al.,2008),强烈的上升流水体将底部富含12C和P的还原水体带至浅水区域(图7),形成广泛的磷块岩或者磷酸盐结核沉积(Cook,1992),并造成广泛分布的碳同位素的负异常(Brasier,1989;Ishikawa et al.,2014;Kimura and Watanabe,2001;Zhuravlev and Wood,1996)。同时,作为营养元素的P元素的大量输入至表层海水,大大提高了生物初级生产力,大量有机质的形成和随后的分解消耗水体中的氧气,进一步扩大了水体的还原程度(Saltzman,2005),可能与大规模的动物灭绝密切相关。一个时期的物种消减或者灭绝,为后来新的物种的兴起与繁盛提供了生态空间(Knoll and Carroll,1999),新物种的繁盛使生物生产力升高,尤其动物的活动,比如排泄,有利于有机质的埋藏(Ishikawa et al.,2012),最终导致碳同位素得正漂移(Hayes et al.,1983)。

5 结论

通过会同剖面高精度的有机碳同位素与湖南其他剖面和滇东、三峡浅水相区剖面无机碳、有机碳同位素进行对比,结合化石资料和火山灰U-Pb年龄数据,认为扬子东南缘埃迪卡拉系-寒武系界线在湖南深水相区可放置于留茶坡组上部较大的有机碳同位素负漂移(BACE)出现的位置,由于钻孔深度不够,该负漂移未在会同剖面获得;会同剖面留茶坡组上部的δ13Corg正漂移(P1)对应于寒武纪第二阶下部的ZHUCE正漂移,留茶坡组顶部至小烟溪组底部的δ13Corg负漂移(N1)对应于第二阶上部的SHICE负漂移,小烟溪组下部的δ13Corg正漂移(P2)对应于第三阶的CARE正漂移,中部的δ13Corg正漂移(P3)对应于第四阶上部的MICE正漂移,上部的δ13Corg负漂移(N3)对应于第四阶中部的AECE负漂移,顶部的δ13Corg正漂移(P4)属于第四阶上部,是否达到第四阶顶部尚无法确认。埃迪卡拉纪晚期-寒武纪早期,板块运动频繁,气候变暖、海平面上升,推测强烈的上升流将富12C的还原性底层水体带至浅水地区,形成广泛分布的碳同位素的负异常,与大规模的生物灭绝密切相关。而在生物繁盛时期,海洋初级生产力升高,有机质埋藏增加,导致碳同位素的正漂移。

致谢:感谢朱茂炎研究员和张俊明研究员对野外地层工作的指导,感谢张朝晖老师,Marianne Falk,巩伟明在实验工作中的帮助。本研究受国家重点基础研究规划项目(“973”,2013CB835004)、自然科学基金项目(41230102)和德国科学研究基金项目(DFG Forschergruppe 736)联合资助。

参考文献(References):

胡世学,朱茂炎,罗惠麟,等.2013.关山生物群[M].云南科技出版社.

庞维华,丁孝忠,高林志,等.2011.湖南下寒武统层序地层特征与古环境演化变迁[J].中国地质,38(3):560-576.

王丹,凌洪飞,李达,等.2012.三峡地区岩家河埃迪卡拉系-寒武系界线剖面碳同位素地层学研究[J].地层学杂志,36(01):21-30.

薛耀松,周传明.2006.扬子区早寒武世早期磷质小壳化石的再沉积和地层对比问题.地层学杂志30(1),64-74

杨爱华,朱茂炎,张俊明.2005.扬子地台早寒武世古盘虫类的地层分布及其古地理控制[J].古地理学报,7(02):219-232.

宜昌地质矿产研究所.1987.长江三峡地区地层参观手册[M].北京:地质出版社.

张文堂,侯先光.1985.Naroia在亚洲大陆的发现[J].古生物学报,24 (6):591-595.

周传明,张俊明,李国祥,等.1997.云南永善肖滩早寒武世早期碳氧同位素记录[J].地质科学,32(02):201-211.

朱茂炎.2010.动物的起源和寒武纪大爆发:来自中国的化石证据[J].古生物学报,49(03):269-287.

Altabet M A and Francois R.1994.Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J].Global Biogeochemical Cycles,8(1):103-116.

Böttcher M E,Oelschläger B,Höpner T,et al.1998.Sulfate reduction related to the early diagenetic degradation of organic matter and“black spot”formation in tidal sandflats of the German Wadden Sea(southern North Sea):stable isotope(13C,34S,18O)and other geochemical results [J].Organic Geochemistry,29(5):1517-1530.

Bambach R K.2006.Phanerozoic biodiversity mass extinctions[J].Annual Review of Earth and Planetary Sciences,34:127-155.

Bambach R K,Knoll A H and Wang S C.2004.Origination,extinction,and mass depletions of marine diversity[J].Paleobiology,30(4):522-542.

Brasier M D.1989.On Mass Extinctions and Faunal Turnover near the End of the Precambrian[M]//Donovan S K,ed.,Mass extinctions:Processes and evidence:London:Belhaven Press:73-88.

Brasier M D,Corfield R M,Derry L A,et al.1994.Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia[J].Geology,22(5):455-458.

Brasier M D,Magaritz M,Corfield R,et al.1990.The carbon and oxygen isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation[J].Geological Magazine,127(4): 319-332.

Brasier M D,Shields G,Kuleshov V N,et al.1996.Integrated chemo and biostratigraphic calibration of early animal evolution:Neoproterozoicearly Cambrian of southwest Mongolia[J].Geological Magazine,133 (04):445-485.

Brasier M D and Sukhov S S.1998.The falling amplitude of carbon isotopic oscillations through the lower to middle Cambrian:northern Siberia data [J].Canadian Journal of Earth Sciences,35(4):353-373.

Canfield D E,Poulton S W,Knoll A H,et al.2008.Ferruginous conditions dominated later neoproterozoic deep water chemistry[J].science,321 (5891):949-952.

Chen D Z,Wang J G,Qing H R,et al.2009.Hydrothermal venting activities in the Early Cambrian,South China:Petrological,geochronological and stable isotopic constraints[J].Chemical Geology,258(3-4):168-181.

据国家和地方节能标准和能效标准的实施,对应的软件也同步更新。节能软件和能效测评软件在全国使用率均在70%以上,为我国绿色建筑设计创造了条件。软件除销售给用户外,在我们的绿色建筑的设计咨询中项目中,也广泛使用,既检验了软件功能,也增加了用户体验,有利于软件的改进和完善。开发了绿色建筑设计领域系列软件产品,实现了绿色建筑设计软件的产业化。

Chen X,Ling H F,Vance D,et al.2015.Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J].Nat Commun 6.

Chung H M and Sackett W M.1979.Use of stable carbon isotope compositions of pyrolytically derived methane as maturity indices for carbonaceous materials[J].Geochimica et Cosmochimica Acta,43(12).

Compston W,Zhang Z,Cooper J A,et al.2008.Further SHRIMP geochronology on the early Cambrian of South China[J].American Journal of Science,308(4):399-420.

Condon D,Zhu M Y,Bowring S,et al.2005.U-Pb ages from the neoproterozoic Doushantuo Formation,China[J].Science,308(5718): 95-98.

Cook P J.1992.Phosphogenesis around the Proterozoic-Phanerozoic transition[J].Journal of the Geological Society,149(4):615-620.

Corsetti F A and Hagadorn J W.2000.Precambrian-Cambrian transition: Death Valley,United States[J].Geology,28(4):299-302.

Cremonese L,Shields-Zhou G,Struck U,et al.2013.Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section,South China[J].Precambrian Research,225:148-165.

Cremonese L,Shields-Zhou G A,Struck U,et al.2014.Nitrogen and organic carbon isotope stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian transition in South China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,398(0):165-186.

Dalziel I W D.2014.Cambrian transgression and radiation linked to an Iapetus-Pacific oceanic connection?[J].Geology,42(11):979-982.

Derry L,Brasier M,Corfield R E A,et al.1994.Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton:a paleoenvironmental record during the‘Cambrian explosion’ [J].Earth and Planetary Science Letters,128(3):671-681.

Dilliard K A,Pope M C,Coniglio M,et al.2007.Stable isotope geochemistry of the lower Cambrian Sekwi Formation,Northwest Territories,Canada: Implications for ocean chemistry and secular curve generation[J].Palaeogeography Palaeoclimatology Palaeoecology,256(3-4):174-194.

Feng L,Li C,Huang J,et al.2014.A sulfate control on marine mid-depth euxinia on the early Cambrian(ca.529-521 Ma)Yangtze platform,South China[J].Precambrian Research,246(0:123-133.

Freudenthal T,Wagner T,Wenzhöfer F,et al.2001.Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes[J].Geochimica et Cosmochimica Acta,65(11):1795-1808.

Galimov E M.2004.The pattern of delta(13)C(org)versus HI/OI relation in recent sediments as an indicator of geochemical regime in marine basins:comparison of the Black Sea,Kara Sea,and Cariaco trench[J].Chemical Geology,204(3-4):287-301.

Guo J F,Li Y and Li G X.2014.Small shelly fossils from the early Cambrian Yanjiahe Formation,Yichang,Hubei,China[J].Gondwana Research,25(3):999-1007.

Guo Q,Strauss H,Zhu M,et al.2013.High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform,South China:Implications for the Ediacaran-Cambrian transition[J].Precambrian Research,225:209-217.

Guo Q J,Strauss H,Liu C Q,et al.2007.Carbon isotopic evolution of the terminal neoproterozoic and early Cambrian:Evidence from the Yangtze platform,South China [J]. Palaeogeography Palaeoclimatology Palaeoecology,254(1-2):140-157.

Hatcher P G,Spiker E C,Szeverenyi N M,et al.1983.Selective Preservation and Origin of Petroleum-Forming Aquatic Kerogen[J].Nature,305 (5934):498-501.

Hayes J M,Wedeking K W,Kaplan I R.1983.Precambrian organic geochemistry,preservation of the record [M]//Earth’s Earliest Biosphere:Its Origin and Evolution,Schopf J W,ed.,Princeton,NJ: Princeton Univ.Press:93-134.

Ishikawa T,Ueno Y,Komiya T,etal.2008.Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area,South China:Prominentglobal-scale isotope excursions just before the Cambrian Explosion[J].Gondwana Research,14(1-2):193-208.

Ishikawa T,Ueno Y,Shu D,et al.2012.Irreversible change of the oceanic carbon cycle in the earliest Cambrian:High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area,South China[J].Precambrian Research,225:190-208.

Ishikawa T,Ueno Y,Shu D,et al.2014.The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area,South China[J].Gondwana Research,25(3):1045-1056.

Jiang G,Wang X,Shi X,et al.2012.The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian(ca.542-520 Ma)Yangtze platform[J].Earth and Planetary Science Letters,317:96-110.

Jiang S Y,Pi D H,Heubeck C,et al.2009.Early Cambrian ocean anoxia in south China[J].Nature,459(7248):E5-E6.

Kaufman A J and Knoll A H.1995.Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications[J].Precambrian Research,73(1-4):27-49.

Kaufman A J,Knoll A H,Semikhatov M A,et al.1996.Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region,northern Siberia[J].Geological Magazine,133 (5):509-533.

Kimura H and Watanabe Y.2001.Oceanic anoxia at the Precambrian-Cambrian boundary[J].Geology,29(11):995-998.

Knoll A H and Carroll S B.1999.Early animal evolution:Emerging views from comparative biology and geology [J].Science,284 (5423): 2129-2137.

Knoll A H and Walter M R.1992.Latest Proterozoic stratigraphy and earth history[J].Nature,356(6371):673-678.

Kouchinsky A,Bengtson S,Pavlov V,et al.2005.Pre-tommotian age of the lower pestrotsvet formation in the selinde section on the Siberian platform:carbon isotopic evidence[J].Geological Magazine,142(04): 319-325.

Kump L R,Arthur M A,Patzkowsky M E,et al.1999.A weathering hypothesis for glaciation at high atmospheric pCO(2)during the Late Ordovician[J].Palaeogeography Palaeoclimatology Palaeoecology,152 (1-2):173-187.

Lehmann M F,Bernasconi S M,Barbieri A,et al.2002.Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis [J].Geochimica et Cosmochimica Acta,66(20):3573-3584.

Lewan M D.1983.Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale[J].Geochimica et Cosmochimica Acta,47(8):1471-1479.

Li D,Ling H F,Shields-Zhou G A,et al.2013.Carbon and strontium isotope evolution ofseawateracrossthe Ediacaran-Cambrian transition: Evidence from the Xiaotan section,NE Yunnan,South China[J].Precambrian Research,225:128-147.

Li D,Ling H F,Chen Y Q,et al.2007.New carbon isotope stratigraphy of an old section in southwest China:Implications for placement of PC-C boundary on Yangtze Platform[J].Geochimica et Cosmochimica Acta,71(15):A569-A569.

Li D,Ling H F,Jiang S Y,et al.2009.New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China:implications for global correlation[J].Geological Magazine,146(4):465-484.

Li G and Xiao S.2004.Tannuolina and Micrina(Tannuolinidae)from the Lower Cambrian of eastern Yunnan,South China,and their scleritome reconstruction[J].Journal of Paleontology,78(5):900-913.

Macko S A,Engel M H and Qian Y.1994.Early diagenesis and organic matter preservation-a molecular stable carbon isotope perspective[J].Chemical Geology,114(3-4):365-379.

Maloof A C,Porter S M,Moore J L,et al.2010a.The earliest Cambrian record of animals and ocean geochemical change[J].Geological Society of America Bulletin,122(11-12):1731-1774.

Maloof A C,Ramezani J,Bowring S A,et al.2010b.Constraints on early Cambrian carbon cycling from the duration ofthe Nemakit-Daldynian-Tommotian boundary delta C-13 shift,Morocco[J].Geology,38(7):623-626.

Maloof A C,Schrag D P,Crowley J L,et al.2005.An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin,Morocco[J].Canadian Journal of Earth Sciences,42(12):2195-2216.

Mcarthur J M,Tyson R V,Thomson J,et al.1992.Early Diagenesis of Marine Organic-Matter-Alteration of the Carbon Isotopic Composition [J].Marine Geology,105(1-4):51-61.

Nakatsuka T,Watanabe K,Handa N,et al.1996.Glacial to interglacial surface nutrient variations of Bering deep basins recorded by δ13C and δ15N of sedimentary organic matter[J].Oceanographic Literature Review,8(43):792.

Narbonne G M.2005.The ediacarabiota:Neoproterozoic origin of animals and their ecosystems[J].Annual Review of Earth and Planetary Sciences,33:421-442.

Och L M,Shields-Zhou G A,Poulton S W,et al.2013.Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province,South China[J].Precambrian Research,225:166-189.

Okada Y,Sawaki Y,Komiya T,et al.2014.New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges,Weng'an and Chengjiang areas,South China[J].Gondwana Research 25 (3): 1027-1044.

Peters K E,Rohrback B G and Kaplan I R.1981.Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation[J].AAPG Bulletin,65(3):501-508.

Prahl F G,De Lange G J,Scholten S,et al.1997.A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain[J].Organic Geochemistry,27(3-4): 141-152.

Saltzman M R.2005.Phosphorus,nitrogen,and the redox evolution of the Paleozoic oceans[J].Geology,33(7):573-576.

Schwab V,Spangenberg J E and Grimalt J O.2005.Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100 C to 550 C:case study in the Liassic black shale formation of Central Swiss Alps[J].Geochimica et Cosmochimica Acta,69(7): 1825-1840.

Scott C,Lyons T,Bekker A,et al.2008.Tracing the stepwise oxygenation of the Proterozoic ocean[J].Nature,452(7186):456-459.

Shen Y and Schidlowski M.2000.New C isotope stratigraphy from southwest China:Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations[J].Geology,28(7):623-626.

Simonet B R T,Brenner S,Peters K E,et al.1981.Thermal alteration of Cretaceous black shale by diabase intrusions in the Eastern Atlantic-II.Effects on bitumen and kerogen[J].Geochimica et Cosmochimica Acta,45(9):1581-1602.

Steiner M,Li G,Qian Y,et al.2007.Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform(China)[J].Palaeogeography,Palaeoclimatology,Palaeoecology,254(1):67-99.

Steiner M,Wallis E,Erdtmann B D,et al.2001.Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J].Palaeogeography Palaeoclimatology Palaeoecology,169(3-4):165-191.

Steiner M,Zhu M,Zhao Y,et al.2005.Lower Cambrian burgess shale-type fossil associations of south China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,220(1):129-152.

Tocqué E,Behar F,Budzinski H,et al.2005.Carbon isotopic balance of kerogen pyrolysis effluents in a closed system [J].Organic Geochemistry,36(6):893-905.

TuckerM E.1992.ThePrecambrian-Cambrian boundary:seawater chemistry,ocean circulation and nutrient supply in metazoan evolution,extinction and biomineralization[J].Journal of the Geological Society,149(4):655-668.

Velinsky D J,Burdige D J,Fogel M L.1991.Nitrogen Diagenesis in Aanoxic Marine Sediments:Isotope Effects [M].GeophysicalLaboratory,Carnegie Institution Year Book,1990-91:154-162.

Wang D,Struck U,Ling H F,et al.2015.Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform,South China:Evidence from nitrogen and organic carbon isotopes[J].Precambrian Research,267:209-226.

Wang J,Chen D,Yan D,et al.2012a.Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J].Chemical Geology,306-307:129-138.

Wang X,Shi X,Jiang G,et al.2012b.New U-Pb age from the basal Niutitang Formation in South China:Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition[J].Journal of Asian Earth Sciences,48(0):1-8.

Wille M,Nägler T F,Lehmann B,et al.2008.Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J].Nature,453 (7196):767-769.

Xu L G,Lehmann B,Mao J W,et al.2011.Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China-A reassessment[J].Economic Geology,106(3):511-522.

Yang B,Steiner M,Li G,et al.2014a.Terreneuvian small shelly faunas of East Yunnan(South China)and their biostratigraphic implications[J].Palaeogeography Palaeoclimatology Palaeoecology,398(0):28-58.

Yang B,Zhang L,Danelian T,et al.2014b.Chert-hosted small shelly fossils: expanded tool of biostratigraphy in the Early Cambrian[J].GFF,136 (1):303-308.

Zhou C and Xiao S.2007.Ediacaran δ13C chemostratigraphy of South China [J].Chemical Geology,237(1-2):89-108.

Zhou M,Luo T,Huff W D,et al.2014.Prominent Lower Cambrian K-Bentonites In South China: Distribution, Mineralogy, and Geochemistry[J].Journal of Sedimentary Research,84(10):842-853.

Zhou M Z,Luo T Y,Li Z X,et al.2008.SHRIMP U-Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation,Zunyi,South China[J].Chinese Science Bulletin,53(4):576-583.

Zhu M Y,Babcock L E and Peng S C.2006.Advances in Cambrian stratigraphy and paleontology:Integrating correlation techniques,paleobiology,taphonomy and paleoenvironmental reconstruction[J].Palaeoworld,15(3-4):217-222.

Zhu M,Zhang J and Yang A.2007a.Integrated Ediacaran(Sinian)chronostratigraphy of South China [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,254(1):7-61.

Zhu M,Zhang J,Yang A,et al.2003.Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform:an integrated approach[J].Progress in Natural Science,13 (12):951-960.

Zhu M Y,Strauss H and Shields G A.2007b.From snowball earth to the Cambrian bioradiation:Calibration ofEdiacaran-Cambrian earth history in South China [J].Palaeogeography Palaeoclimatology Palaeoecology,254(1-2):1-6.

Zhuravlev A Y.2001.BioticdiversityandstructureduringtheNeoproterozoic-Ordovician transition[A].New York:The Ecology of the Cambrian Radiation,Columbia University Press:173-199.

Zhuravlev A Y and Wood R A.1996.Anoxia as the cause of the mid-Early Cambrian(Botomian)extinction event[J].Geology,24(4),311-314.

中图分类号:P597

文献标识码:A

文章编号:1006-7493(2016)02-0274-15

DOI:10.16108/j.issn1006-7493.2015173

Corresponding author:LING Hongfei,Professor;E-mail:hfling@nju.edu.cn

收稿日期:2015-08-14;修回日期:2015-10-30

基金项目:国家重点基础研究规划项目(2013CB835004);自然科学基金项目(41230102);德国科学研究基金项目(DFG Forschergruppe 736)资助

作者简介:王丹,女,1986年生,博士研究生,主要从事同位素地球化学研究;E-mail:njuwangdan@163.com

*通讯作者:凌洪飞,教授;E-mail:hfling@nju.edu.cn

Organic Carbon Isotope Stratigraphy of the Early Cambrian Huitong Section in Hunan Province,Southeastern Yangtze,China

WANG Dan1,LING Hongfei1*,ULRICH Struck2,YAO Suping1,LI Da1,WEI Wei1,WEI Guangyi1
1.State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,
Nanjing University,Nanjing 210023,China
2.Museum für Naturkunde,Leibniz Institute for Evolution and Biodiversity Science,Berlin 10115,Germany

Abstract:The early Cambrian is one of the critical periods during Earth evolution involving significant evolution of marine environment and metazoans.However,the early Cambrian strata in the deep-water setting along the southeastern margin of the Yangtze Platform are still lack of systematically and accurately stratigraphic correlations.Here we conduct a high-resolution organic carbon isotope chemostratigraphy of the deep-water chert in the Liuchapo Formation and black shales in the Xiaoyanxi Formation,which werecollected from drill cores in the Huitong section of Hunan Province.Results indicate four positive δ13Corgexcursions(termed P1,P2,P3 and P4)and two negative δ13Corgexcursions(termed N1 and N2)in ascending order.Combined with the fossil records and zircon U-Pb dating data,we correlate the δ13Corgcurve of the Huitong section with the δ13Corgand δ13Ccarbcurves of other sections in Hunan and shallow-water areas including Yunnan and Three Gorges.The correlation implies that the Ediacaran-Cambrian boundary was placed at the negative δ13Corgexcursion(Basal Cambrian Carbon isotope Excursion,BACE)in the upper Liuchapo Formation of Hunan Province.This negative δ13Corgexcursion(BACE),however,has not been identified at the Huitong section,owning to the limited drill core depth.The three positive δ13Corgexcursions P1,P2 and P3 can be correlated with ZHUCE(ZHUjiaqing Carbon isotope Excursion,Stage 2),CARE(Cambrian Arthropod Radiation isotope Excursion,Stage 3)and MICE(Mingxinsi Carbon Isotope Excursion,Stage 4)δ13Corgexcursions,respectively.In contrast,the two negative δ13Corgexcursions N1 and N2 are likely correlated with SHICE(SHIyantou Carbon isotope Excursion,Stage 2)and AECE(Archaeocyathid Extinction Carbon isotope Excursion,Stage 4)δ13Corgexcursions,respectively.Therefore,the upper Liuchapo and the basal Xiaoyanxi formations probably belong to the Cambrian Stage 2.The lower Xiaoyanxi Formation belongs to the Cambrian Stage 3 and the middle-upper Xiaoyanxi Formation belongs to the Cambrian Stage 4.However,it is still unclear whether the top of the Xiaoyanxi Formation covers the end of the Cambrian Stage 4.The negative δ13Corgexcursions probably result from the transportation of12C-enriched anoxic bottom water through upwelling from deep to shallow water,and might be closelyassociatedwiththemassextinctionofEdiacaranfauna,smallshellyfossilsandarchaeocyathids.Incontrast,theflourishofCambrian faunacouldincreasetheprimaryproductivityandassociatedrateoforganicmatterburial,whichleadtothepositiveδ13Corgexcursions.

Key words:stratigraphic correlation;organic carbon isotopes;deep-water facies;early Cambrian,Hunan

猜你喜欢

寒武纪会同寒武
清江生物群——探索寒武纪生命大爆发秘密的新窗口
艺术节播下的种子正发芽
寒武纪:怪物元年
寒武纪:独创AI指令集 云、端战略并行
川西南地区震旦—寒武系天然气成藏条件分析
历史之外遇见会同
寄情山水 超然物外
还原儿时的味道
云南马关—麻栗坡地区早寒武世地层的识别及意义
湖南保靖下寒武统牛蹄塘组页岩气成藏地质条件评价