APP下载

河南栾川三道沟铅锌银矿床方解石地球化学特征及Sm-Nd年龄研究

2016-06-26曹华文裴秋明张寿庭张林奎

地球化学 2016年2期
关键词:栾川方解石铅锌

曹华文,裴秋明,张寿庭,向 辉,张林奎,唐 利

(1.中国地质调查局 成都地质调查中心,四川 成都 610081;2.中国地质大学 地球科学与资源学院,北京 100083;3.四川省地质矿产勘查开发局 一〇六地质队,四川 成都 610030)

0 引 言

豫西栾川地区矿产资源丰富,是东秦岭多金属成矿带的重要组成部分,该矿集区北部为南泥湖-三道庄矿田,南部为近10年探明的鱼库-石宝沟矿田[1]。目前,该地区钼钨矿床(147~139 Ma)的成因[2–6]、晚中生代(157~135 Ma)花岗岩的成岩过程[7–10]和区域大地构造背景[11–13]的研究较详细;但区域内的铅锌银多金属矿床的研究较少,且矿床成因争议较大。部分学者认为区内薄脉状铅锌银矿床为造山型铅锌银矿床[14–16],与造山型金矿床特征相似,成矿机理可由碰撞造山成岩成矿与流体作用模型(即 CMF模式[14])解释;与此同时,部分学者认为其具有层控特征,属MVT型[17]、SEDEX型[18]或者同沉积改造成因型矿床[19];然而,也有部分学者研究指出其属热液脉型矿床,受层间断裂控制,并与研究区内晚中生代岩浆活动关系密切[1,20–22]。

三道沟铅锌银矿床位于栾川矿集区西部(图 1),前人研究较为薄弱,前人仅做过部分流体包裹体和H-O同位素研究[23],初步认为其属于中温热液脉型铅锌银矿床,是燕山期岩浆期后含矿热液充填成矿作用的产物,但其成矿时代及成矿机理尚需进一步研究。

方解石是铅锌银多金属矿床中常见的热液成因的脉石矿物,热液方解石常与方铅矿和闪锌矿共伴生,广泛出现于热液成矿期的多个阶段,能为探讨矿床成矿机理提供重要信息[24]。近年来,热液方解石微量(稀土)元素被广泛应用于示踪成矿流体来源,探讨成矿流体性质及演化特征等[25–32]。同时,方解石作为热液矿床的含钙矿物,是进行Sm-Nd同位素年代学研究的理想对象;且Sm-Nd同位素体系本身抗风化、抗蚀变能力较强,易保持封闭[33],方解石Sm-Nd定年已成为厘定热液矿床成矿时代的一种有效手段,目前已有大量学者对不同类型矿床的热液方解石进行了Sm-Nd同位素定年研究,获得了可靠的年代学数据[34–40]。

图1 栾川三道沟铅锌银矿床地质简图Fig.1 Geological map of the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district

本文拟在三道沟铅锌银矿床地质特征研究的基础上,分析热液方解石微量元素地球化学特征,利用方解石Sm-Nd同位素定年的方法厘定该矿床的成矿时代;并与栾川矿集区内晚中生代花岗岩成岩时代、斑岩-夕卡岩型钼钨矿床成矿时代进行对比,初步探讨三道沟铅锌银矿床的成因和构造背景。

1 区域地质背景

秦岭造山带包括华北板块南缘(即华熊地体),北秦岭造山带、南秦岭造山带和扬子板块北缘;分别被栾川断裂、商丹缝合带和勉略缝合带分隔。三道沟铅锌银矿床地理位置位于洛阳市栾川县三川镇东南部,属豫西钼钨铅锌银多金属矿集区的西部,大地构造位置上属于华北克拉通南缘,毗邻北秦岭造山带[1](图1a)。

区域地层具有明显的由结晶基底和盖层组成的双层结构,结晶基底为元古宇-太古宇太华群,主要是一套以片麻岩为主的深变质岩系;盖层不整合于太华群之上,主要包括中元古界熊耳群、蓟县系官道口群、新元古界栾川群和下古生界陶湾群(图1b)。其中,官道口群白术沟组,栾川群三川组、煤窑沟组地层为区内多金属矿床的主要赋矿层位[1]。

区内构造格局的形成主要受控于华北板块与扬子板块的碰撞,以及太平洋板块向欧亚板块的俯冲。整体构造线以 NWW-NW 向为主,并叠加了NNE-NE以及近SN向构造(图1b),这些不同方向的构造共同构成了该区典型的棋盘状构造格局,不仅控制了区域岩浆岩的展布,也决定了区内多金属矿产的分布。矿集区内岩浆活动频繁而强烈,岩浆岩比较发育。主要有新元古代前加里东期变正长斑岩、变辉长岩(830 Ma[12])和中生代燕山期花岗岩(158~136 Ma[1,7])(图1)。其中,以燕山早期的上房沟、南泥湖、黄背岭、鱼库、石宝沟、火神庙及大坪等中酸性小岩体与成矿作用最为密切[7–8]。

栾川矿集区内一系列多金属矿床围绕中酸性小岩体呈规律性分布,构成了一个从中心到外围的斑岩型-夕卡岩型 Mo-W 矿床(内带: 如三道庄、南泥湖、上房沟和东鱼库矿床等)→夕卡岩型 Mo-Pb-Zn矿床(过渡带: 如骆驼山、银河沟和中鱼库矿床)→中-低温热液脉型 Pb-Zn-Ag多金属矿床(外带: 如核桃岔、洪洞沟、百炉沟和赤土店矿床)的成矿系列[1,41](图1b)。近10年来,在斑岩体外围的矿产勘查工作取得了较大的进展,先后发现了百炉沟、赤土店、冷水北沟、杨树凹、银河沟等10余处薄脉状铅锌银多金属矿脉群[16,42],规模可观。其中三道沟铅锌银矿床是矿区内中-低温热液脉性矿床的典型代表。

2 矿床地质特征

三道沟铅锌银矿床位于河南省栾川县三川镇,其中心坐标为 111°24′59″E,33°54′52″N。研究区主要出露新元古界栾川群南泥湖组、煤窑沟组、大红口组和鱼库组地层(图 1c)。南泥湖组为研究区的主要的赋矿层位,主要由钙质砂岩、变石英砂岩,石英片岩和大理岩组成;煤窑沟组中也有部分矿体产出,主要为变质细砂岩、大理岩和片岩,夹石煤层。大红口组为片岩、粗面岩夹少量大理岩;鱼库组则主要由白云质大理岩组成。矿区内断裂构造极其发育,研究区主体构造线与区域构造走向一致,矿体主要受近NNE向断裂控制。研究区西南部出露前加里东期变正长斑岩和辉长岩(图1c)。

三道沟矿床铅锌银矿(化)体呈脉状、透镜状产于南泥湖组、煤窑沟组地层中(图 1c)。目前三道沟矿床已探明两条较大规模的矿体,分布于研究区东北部。两个矿体近平行展布,主体走向为NE向,其中S021矿带走向长 1000余 m,宽 1.00~4.14 m;S020矿带走向长1300 m,宽0.15~3.70 m。矿床的Pb品位为 0.55%~2.02%,平均为 1.21%;Zn为 0.75%~1.89%,平均为 1.74%;Ag为 7.75~27.02 g/t,平均为20.33 g/t[19]。研究区西南部的核桃岔地区,已探明两条矿化体(S023和 S024),走向则以近南北向为主,近平行产出,规模较大,赋矿围岩主要为新元古代前加里东期变正长斑岩和变辉长岩。

矿区矿石成分主要为一套中-低温热液成因的矿物组合。其中矿石矿物主要有黄铁矿、方铅矿、闪锌矿,少量黄铜矿,脉石矿物主要有石英、方解石和绢云母等。根据矿物共生组合关系及矿物组构特征,将三道沟铅锌银矿床成矿作用过程划分为早、中、晚3个阶段。早阶段的石英-黄铁矿阶段(Ⅰ),主要形成石英、黄铁矿等矿物;中阶段的石英-铅锌银硫化物阶段(Ⅱ),主要形成石英、方解石、方铅矿、闪锌矿、黄铜矿、黄铁矿等矿物,是主成矿阶段;晚阶段的石英-碳酸盐岩阶段(Ⅲ),主要形成石英、方解石及少量铅锌银硫化物,表现为大量的团块状含矿方解石(Ⅲ1)(图 2b/e)和不含矿脉状方解石(Ⅲ2)(图2c/f)切穿中阶段(Ⅱ)的石英-铅锌银矿脉。

图2 栾川三道沟铅锌银矿床矿石典型结构构造特征Fig.2 Typical structures and textures of sulfide ores from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district

矿石结构主要为自形粒状结构,少量残余结构、半自形粒状结构,他形粒状结构;矿石构造有块状构造、条带状构造、团块状构造、角砾状构造、(细)脉状构造及浸染状构造等。围岩蚀变则主要发育碳酸盐化、硅化、绢云母化和黄铁矿化等热液蚀变。

3 分析测试

本文主要针对三道沟铅锌银矿床 S020矿带开展研究,9个分析样品采集于矿体坑道内。其中,中阶段(Ⅱ)细粒含矿方解石样品 2个(SDG-28和、SDG-34);晚阶段(Ⅲ1)团块状方解石样品 4个(SDG-22、SDG-25、SDG-27 和 SDG-31);晚阶段(Ⅲ2)脉状方解石样品 3个(SDG-21、SDG-24和SDG-30)。样品单矿物分选由河北廊坊诚信地质服务有限公司完成。首先在显微镜下挑选方解石单矿物样品,纯度达 99%以上,然后用蒸馏水清洗方解石单矿物,低温蒸干,在玛瑙研钵中磨制成 200目粉末样品。

方解石单矿物微量元素含量测定在中国地质大学(北京)科学研究院 X射线荧光光谱和激光烧蚀等离子质谱(XRF&LA-ICPMS)实验室完成。采用等离子质谱法(ICP-MS)分析,仪器为美国Thermo Scientific X SeriesⅡ型四级杆等离子体质谱仪。元素的检测下限为n×10–9,分析误差一般优于8%。微量元素地球化学分析步骤详见文献[27,43]。

方解石单矿物Sm-Nd同位素分析在中国地质调查局天津地质调查中心同位素实验室完成,实验仪器为 MAT-261质谱仪。Nd分馏的内校正采用146Nd/144Nd=0.7219,Sm、Nd的全流程空白分别为3×10–11g 和 5×10–11g。国际标准岩石样 BCR-1 的结果是: Sm=6.571 μg/g、Nd=28.753 μg/g、143Nd/144Nd =0.512644±5。Sm、Nd含量的分析误差优于 0.5%,147Sm/144Nd(2σ)的分析误差为±0.2%。Sm-Nd等时线年龄采用 Isoplot(4.15)程序计算[44],其中λ(147Sm) =6.54×10-12a-1。Sm-Nd同位素分析步骤详见文献[26,38,45]。

4 分析结果

4.1 Sm-Nd同位素年龄

本文研究了3个阶段(或3种产状)的方解石。Ⅱ阶段方解石为石英-硫化物阶段(中阶段)的含矿细粒方解石;Ⅲ1阶段方解石为石英-方解石阶段(晚阶段)的含矿团块状方解石;Ⅲ2阶段方解石为石英-方解石阶段(晚阶段)的穿插早阶段的不含矿细脉状方解石(图2)。3种产状的方解石Sm、Nd含量和同位素组成测试结果见表1。其Sm含量为0.2037~5.431 μg/g,Nd含量为 0.3286~11.02 μg/g,147Sm/144Nd和143Nd/144Nd比值分别为0.1206~0.7938和0.511929~0.512539。

含矿方解石(Ⅱ和Ⅲ1阶段样品) 6个样品获得等时线年龄为(135.3±9.5) Ma(2σ,MSWD=2.9),(143Nd/144Nd)t=0.511825±0.000017(图 3a);含矿和不含矿方解石(Ⅱ、Ⅲ1和Ⅲ2阶段样品) 9个样品获得等时线年龄为(138.3±2.6) Ma(2σ,MSWD=2.3),(143Nd/144Nd)t=0.5118204±0.0000067(图 3b)。2 个年龄在误差范围内一致,表明 3种产状的方解石为同源样品,地质时代为早白垩世。

4.2 微量元素特征

研究区三种产状的方解石的 ΣREE变化范围较大(6.42 μg/g~215.8 μg/g),稀土配分曲线均表现为左倾,重稀土元素富集程度更高。不同阶段方解石中的稀土元素含量特征差别较大,Ⅱ、Ⅲ1和Ⅲ2阶段方解石的ΣREE平均值分别为 182 μg/g、64.2 μg/g和7.63 μg/g;HREE/LREE平均值分别为1.87、3.76和 4.72;δEu平均值分别为 1.08、2.15和 0.73;δCe平均值分别为1.03、0.99和0.91(表2,图4a)。从Ⅱ阶段方解石→Ⅲ1阶段方解石→Ⅲ2阶段方解石,稀土元素含量逐渐降低,并在最晚阶段(Ⅲ2)中出现了轻稀土元素强烈亏损的现象;这表明随着流体的演化,其ΣREE值和LREE/HREE比值呈现规律性变化;Eu异常由弱正异常变为正异常,最后为负异常。3个阶段的方解石微量元素含量相似,普遍偏低,但相对富集 Pb(平均 53.8 μg/g),强烈亏损 Nb(平均0.004 μg/g)和 Zr(平均 0.18 μg/g)(表 2,图 4b);晚阶段Sr含量最低,这与湖南锡矿山锑矿床[48]方解石微量元素特征一致。

表1 栾川三道沟铅锌银矿床方解石Sm-Nd同位素分析结果Table 1 Sm-Nd isotope data of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district

图3 栾川三道沟铅锌银矿床147Sm/144Nd和143Nd/144Nd关系及等时线年龄图Fig.3 Sm-Nd isochron of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district

表2 栾川三道沟铅锌银矿床方解石稀土元素和微量元素分析结果(μg/g)Table 2 REE and trace element compositions(μg/g) of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district

图4 栾川三道沟铅锌银矿床方解石的稀土元素(a)和微量元素(b)标准化分布模式Fig.4 Normalized REE and trace element patterns of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district球粒陨石和原始地幔数据分别据McDonough et al.[46]和Sun et al.[47]。Chondrite and primitive mantle data after McDonough et al.[46] and Sun et al.[47].

从理论上而言,LREE的离子半径较HREE更接近Ca2+,更容易替代Ca2+,因而LREE的方解石-流体配分系数大于 HREE[49]。因此,相对于 HREE而言,LREE更易从流体中进入方解石晶格中而导致方解石富集 LREE,因而热液方解石的稀土元素分布模式常常表现为 LREE富集型[50]。但是,三道沟矿床的方解石均为 HREE富集型,这与湖南锡矿山锑矿床方解石[28]、东天山黑峰山铁矿床方解石[49]、贵州半坡锑矿床方解石[51]等特征相似,可能暗示晶体化学因素对其REE的分布模式也起着较为重要的制约作用[28]。

5 讨 论

5.1 成矿时代

含矿方解石(Ⅱ和Ⅲ1阶段样品)6个样品获得的等时线年龄(图 3a)与含矿和不含矿方解石(Ⅱ、Ⅲ1和Ⅲ2阶段样品) 9个样品获得的等时线年龄(图3b)近一致,均为早白垩世。数据点加权平均方差(MSWD)较小,为2.3~2.9之间,说明数据点离散程度较低、等时线可信度较高;且近年来的国内外地质学者亦证明了方解石 Sm-Nd定年的可靠性[34,35,52–55],因此本次方解石Sm-Nd同位素的测试结果(138 Ma)应该代表了方解石从热液中沉淀的时代,即三道沟铅锌银矿床的成矿时代。

Caoet al.[1]统计了栾川矿集区的成岩和成矿年龄(图5),研究区内花岗岩岩浆活动可以细分为3个阶段: 152~158 Ma、144~150 Ma、136~142 Ma;斑岩-夕卡岩型Mo-W矿床的成矿年龄为139~147 Ma,峰值为146 Ma,与第2阶段晚侏罗世晚期岩浆岩活动有关;热液脉型 Pb-Zn-Ag矿床主要形成于 136~138 Ma,与第3阶段早白垩世早期岩浆活动时代接近[56]。本次研究的三道沟矿床与区内其他 Pb-Zn-Ag矿床成矿时代一致,均与区内第 3阶段岩浆活动有关(图 5)。

图5 栾川矿集区岩浆岩年龄、Mo-W矿床及Pb-Zn-Ag多金属矿床成矿年龄统计图Fig.5 Age distribution of the Pb-Zn-Ag deposits,Mo-W deposits and ore-related granites in the Luanchuan ore district

5.2 矿床成因

在热液流体的起源、迁移、演化和沉淀的过程中:(1) 在流体的起源-迁移阶段,若流体为还原性、酸性的高温(> 250℃)环境[57];(2) 在流体的结晶沉淀阶段,若流体为氧化的低温(< 200℃)热液环境;那么流体演化过程满足这两个条件时,从中沉淀的方解石会具有明显的Eu正异常[27]。Ⅱ、Ⅲ1阶段的方解石具有明显的Eu正异常,这可能表明成矿流体起源为酸性、还原的高温流体,而方解石沉淀时流体温度降低。起源于岩浆热液的流体与大气降水混合会导致氧逸度升高,这可以解释研究区方解石的演化过程。该矿床的石英H-O同位素的资料也显示早阶段成矿流体为岩浆水,晚阶段明显存在大气降水的加入[23]。而Ⅲ2阶段的脉状方解石具有明显的Eu负异常,可能是由于早阶段的方解石富集了更多的Eu,而导致晚阶段方解石亏损Eu。高温下由于随着温度的增高,Ce4+/Ce3+的氧化还原平衡转向更高的氧逸度,所以,在高温环境中起源的流体不易形成 Ce异常[57]。三道沟矿床 3个阶段的方解石均无Ce异常或弱的Ce异常,这与Eu异常判断的结果(即起源于高温的流体)一致。

Ⅱ、Ⅲ1和Ⅲ2 3个阶段方解石的Y/Ho比值平均分别为28、31.06和24.55,La/Ho比值平均分别为0.79、0.66和0.49。表明三道沟矿床的Y和Ho之间、La和Ho之间分馏均不明显;Y/Ho比值与典型的岩浆岩和碎屑岩的值(20~40)相似[27],证明流体运移距离较短(图6a)。同源方解石矿物在Y/Ho-La/Ho图中大致呈水平分布[58],3个阶段方解石在稀土微量元素分布模式中相近(图 4)均反映出三者的同源性[49],即属于同源不同阶段演化的产物。Ⅱ阶段方解石和Ⅲ1阶段方解石均为含矿方解石(图 2),在 Tb/Ca-Tb/La图解[59]上均位于热液成因区域内,而Ⅲ2阶段不含矿脉状方解石位于沉积成因区,表明可能受地层围岩的影响,可能围岩地层提供了部分物质来源(比如Ca)(图 6b)。

图6 栾川三道沟铅锌银矿床方解石的Y/Ho-La/Ho图解和Tb/Ca-Tb/La图解Fig.6 Y/Ho-La/Ho and Tb/Ca-Tb/La diagrams of calcites from the Sandaogou Pb-Zn-Ag deposit in the Luanchuan district底图分别据 Bau et al.[58]和 Möller et al.[59]。After Bau et al.[58] and Möller et al.[59].

三道沟矿床的成矿时代与区内岩浆活动的成岩时代接近(图5),矿体切穿地层,受断裂控制(图1和图 2),且与方铅矿和闪锌矿共伴生的方解石为热液成因方解石(图6)。因此,认为三道沟矿床属与岩浆活动有关的断裂控矿的热液脉型矿床。三道沟矿床与研究区内的斑岩-夕卡岩型 Mo-W 矿床[2–3]、晚侏罗世-早白垩世花岗质岩浆活动构成一个统一的岩浆-热液-成矿(Mo-W-Pb-Zn-Ag)系统[1]。结合区域地质背景,认为其形成于秦岭造山带中生代陆-陆碰撞过程中由挤压向伸展转变的阶段,或碰撞后造山的局部伸展背景[8]。

6 结 论

(1) 从成矿早阶段到晚阶段,方解石富集HREE;3种产状的方解石∑REE值、LREE/HREE比值和δEu值逐渐减小,无明显的Ce异常;表明三者属于同源不同阶段演化的产物,晚期方解石可能受围岩地层加入的影响。Y/Ho-La/Ho图解和Tb/Ca-Tb/La图解均指示该矿床方解石主要为热液成因。

(2) 方解石147Sm/144Nd和143Nd/144Nd同位素比值具有良好的线性关系,等时线年龄为(138.3±2.6) Ma。指示三道沟矿床形成于早白垩世,矿床成因属与岩浆活动有关的,断裂控矿的岩浆热液充填脉状成因。结合区域成岩-成矿年代学资料认为,三道沟矿床与区内最后一阶段花岗质岩浆活动(142~136 Ma)有关,属于栾川Mo-W-Pb-Zn-Ag多金属成矿系统。

野外工作期间得到了河南省地质调查院和栾川县地质矿产局的大力支持;成文过程中得到了燕长海教授级高级工程师的悉心指导和修改;两位匿名审稿专家给本文提出了许多建设性意见,使本文得以完善,在此一并致以诚挚的感谢!

:

[1]Cao H W,Zhang S T,Santosh M,Zheng L,Tang L,Li D,Zhang X H,Zhang Y H.The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt,China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages [J].J Asian Earth Sci,2015,111: 751–780.

[2]Yang Y,Chen Y J,Zhang J,Zhang C.Ore geology,fluid inclusions and four-stage hydrothermal mineralization of the Shangfanggou giant Mo-Fe deposit in Eastern Qinling,central China [J].Ore Geol Rev,2013,55: 146–161.

[3]Yang Y F,Li N,Chen Y J.Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit,Henan Province,China:Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting [J].Ore Geol Rev,2012,46: 83–94.

[4]Mao J W,Pirajno F,Xiang J F,Gao J J,Ye H S,Li Y F,Guo B J.Mesozoic molybdenum deposits in the East Qinling-Dabie Orogenic Belt: Characteristics and tectonic settings [J].Ore Geol Rev,2011,43(1): 264–293.

[5]Zhu L M,Zhang G W,Guo B,Lee B.He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background [J].Chinese Sci Bull,2009,54(14): 2479–2492.

[6]Mao J W,Xie G Q,Bierlein F,Q W J,Du A D,Ye H S,Pirajno F,Li H M,Guo B J,Li Y F.Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt [J].Geochim Cosmochim Acta,2008,72(18): 4607–4626.

[7]Li D,Han J W,Zhang S T,Yan C H,Cao H W,Song Y W.Temporal evolution of granitic magmas in the Luanchuan metallogenic belt,east Qinling Orogen,central China: Implications for Mo metallogenesis [J].J Asian Earth Sci,2015,111: 663–680.

[8]Zhang Y H,Zhang S T,Xu M,Jiang X K,Li J J,Wang S Y,Li D,Cao H W,Zou H,Fang Y.Geochronology,geochemistry and Hf isotopes of the Jiudinggou molybdenum deposit,Central China,and their geological significance [J].Geochem J,2015,49: 321–342.

[9]Bao Z W,Wang Y,Zhao T P,Li C J,Gao X Y.Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt,Central China [J].Ore Geol Rev,2014,57: 132–153.

[10]Mao J W,Xie G Q,Pirajno F,Ye H S,Wang Y B,Li Y F,Xiang J F,Zhao H J.Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling,central-eastern China:SHRIMP zircon U-Pb ages and tectonic implications [J].Aust J Earth Sci,2010,57(1): 51–78.

[11]Li D,Zhang S T,Yan C H,Wang G W,Song Y W,Ma Z B,Han J W.Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt,East Qinling orogen,Central China [J].J Geodynam,2012,61: 94–104.

[12]Wang X L,Jiang S Y,Dai B Z,Griffin W l,Dai M N,Yang Y H.Age,geochemistry and tectonic setting of the Neoproterozoic(ca 830Ma) gabbros on the southern margin of the North China Craton [J].Precamb Res,2011,190(1/4): 35–47.

[13]Dong Y P,Zhang G W,Franz N,Liu X M,Johann G,Christoph H.Tectonic evolution of the Qinling orogen,China: Review and synthesis [J].J Asian Earth Sci,2011,41(3): 213–237.

[14]陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006,33(6): 1181–1196.Chen Yan-jing.Orogenic-type deposits and their metallogenic model and exploration potential [J].Geol China,2006,33(6):1181–1196(in Chinese with English abstract).

[15]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题[J].岩石学报,2009,25(11): 2695–2726.Chen Yan-jing,Zhai Ming-guo,Jiang Shao-yong.Significant achievements and open issues in study of orogenesis and metmetallogenesis surrounding the North China contiment [J].Acta Petrol Sinica,2009,25(11): 2695–2726(in Chinese with English abstract).

[16]祁进平,陈衍景,倪培,赖勇,丁俊英,宋要武,唐国军.河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因[J].岩石学报,2007,23(9): 2119–2130.Qi Jin-ping,Chen Yan-jing,Ni Pei,Lai Yong,Ding Jun-ying,Song Yao-wu,Tang Guo-jun.Fluid inclusion constraints on the origin of the Lengshuibeigou Pb-Zn-Ag deposit,Henan Province [J].Acta Petrol Sinica,2007,23(9): 2119–2130(in Chinese with English abstract).

[17]燕长海,宋要武,刘国印,邢矿.河南栾川杨树凹-百炉沟MVT铅锌矿带地质特征[J].地质调查与研究,2004,27(4):249–254.Yan Chang-hai,Song Yao-wu,Liu Guo-yin,Xing Kuang.Geological features of Yangshuwa-Bailugou MVT lead-zinc deposit belt in Luanchuan,Henan Province [J].Geol Surv Res,2004,27(4): 249–254(in Chinese with English abstract).

[18]刘国印,燕长海,宋要武,段士刚.河南栾川赤土店铅锌矿床特征及成因探讨[J].地质调查与研究,2007,30(4):263–270.Liu Guo-yin,Yan Chang-hai,Song Yao-wu,Duan Shi-gang.Characteristics and genesis of Chitudian lead-zinc deposits in Luanchuan County [J].Geol Surv Res,2007,30(4): 263–270(in Chinese with English abstract).

[19]燕长海,刘国印,彭翼,宋要武,王纪中,赵荣军,曾宪友,吕文德,姚新年,马宏卫,何玉良.豫西南地区铅锌银成矿规律[M].北京: 地质出版社,2009: 1–369.Yan Chang-hai,Liu Guo-yin,Peng Yi,Song Yao-wu,Wang Ji-zhong,Zhao Rong-jun,Zeng Xian-you,Lü Wen-de,Yao Xin-nian,Ma Hong-wei,He Yu-liang.The Metallogenetical Characteristics of the Lead-Zinc-Silver Deposits in Southwest Henan [M].Beijing: Geological Publishing House,2009:1–369(in Chinese).

[20]Wang C M,He X Y,Yan C H,Lü W D,Sun W Z.Ore geology,and H,O,S,Pb,Ar isotopic constraints on the genesis of the Lengshuibeigou Pb-Zn-Ag deposit,China [J].Geosci Journal,2013,17(2): 197–210.

[21]Duan S G,Xue C J,Chi G X,Liu G Y.Ore geology,fluid inclusion,and S- and Pb-isotopic constraints on the genesis of the Chitudian Zn-Pb deposit,Southern margin of the North China craton [J].Resour Geol,2011,61(3): 224–240.

[22]Wang C M,Cheng Q M,Zhang S T,Deng J,Xie S Y.Magmatic-hydrothermal superlarge metallogenic systems — A case study of the Nannihu ore field [J].J China Univ Geosci,2008,19(4): 391–403.

[23]唐利,张寿庭,曹华文,田浩浩,张旭晃,张亚飞,陈慧军,张伟.河南栾川三道沟铅锌银矿床成矿流体地球化学特征[J].现代地质,2014,28(2): 359–368.Tang Li,Zhang Shou-ting,Cao Hua-wen,Tian Hao-hao,Zhang Xu-huang,Zhang Ya-fei,Chen Hui-jun,Zhang Wei.Geochemical features of Ore-forming fluids of the Sandaogou Pb-Zn-Ag deposit in Luanchuan County,Henan Province [j].Geoscience,2014,28(2):359–368(in Chinese with English abstract).

[24]唐永永,毕献武,和利平,武丽艳,冯彩霞,邹志超,陶琰,胡瑞忠.兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳-氧同位素地球化学特征研究[J].岩石学报,2011,27(9):2635–2645.Tang Yong-yong,Bi Xian-wu,He Li-ping,Wu Li-yan,Feng Cai-xia,Zou Zhi-chao,Tao Yan,Hu Rui-zhong.Geochemical characteristics of trace elements,fluid inclusions and carbon-oxygen isotopes of calcites in the Jinding Zn-Pb deposit,Lanping,China [J].Acta Petrol Sinica,2011,27(9):2635–2645(in Chinese with English abstract).

[25]Uysal I T,Zhao J X,Golding S D,Lawrence M G,Glikson M,Collerson K D.Sm-Nd dating and rare-earth element tracing of calcite: Implications for fluid-flow events in the Bowen Basin,Australia [J].Chem Geol,2007,238(1/2): 63–71.

[26]Cai Y,Zhang Q,Zhang Y B,Wang D P,Li K W.Sm-Nd dating and rare earth element geochemistry of the hydrothermal calcites from Guling carbonate-hosted talc mineralization in the central Guangxi province,South China [J].Chinese J Geochem,2015,43(2): 156–166.

[27]曹华文,张寿庭,高永璋,马莹,曾昭法,高峰,邹灏.内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J].地球化学,2014,43(2): 131–140.Cao Hua-wen,Zhang Shou-ting,Gao Yong-zhang,Ma Ying.Zeng Zhao-fa,Gao Feng,Zou Hao.REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications,Inner Mongolia Autonomous Region [J].Geochimica.2014,43(2): 131–140(in Chinese with English abstract).

[28]彭建堂,胡瑞忠,漆亮,赵军红,符亚洲.锡矿山热液方解石的REE分配模式及其制约因素[J].地质论评,2004,50(1): 25–32.Peng Jian-tang,Hu Rui-zhong,Qi Liang,Zhao Jun-hong,Fu Ya-zhou.REE distribution pattern for the hydrothermal calcites from the Xikuangshan antimony deposit and its constraining factors [J].Geol Rev,2004,50(1): 25–32(in Chinese with English abstract).

[29]李荣清.湘南多金属成矿区方解石的稀土元素分布特征及其成因意义[J].矿物岩石,1995,15(4): 72–77.Li Rong-qing.Rare earth element distribution and its genetic signification of calcite in Southern Hunan polymetallic metallogenic province [J].J Mineral Petrol,1995,15(4): 72–78(in Chinese with English abstract).

[30]包广萍,崔银亮,高建国.滇东北茂租铅锌矿床热液方解石稀土元素地球化学特征[J].矿物学报,2013,33(4): 681–685.Bao Guang-ping,Cui Yin-liang,Gao Jian-guo.REE geochemical features of hydrothermal calcite from Maozu Pb-Zn deposit,Northeastern Yunnan Province,China [J].Acta Mineral Sinica,2013,33(4): 681–685(in Chinese with English abstract).

[31]周家喜,黄智龙,周国富,曾乔松.黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学[J].大地构造与成矿学,2012,36(1): 93–101.Zhou Jia-xi,Huang Zhi-long,Zhou Guo-fu,Zeng Qiao-song.C,O isotope and REE geochemistry of the hydrothermal calcites from the Tianqiao Pb-Zn ore deposit in NW Guizhou Province,China [J].Geotecton Metallogen,2012,36(1):93–101(in Chinese with English abstract).

[32]Bonsall T A,Spry P G,Voudouris P Ch,Tombros S,Seymour K St,Melfos V.The geochemistry of carbonate-replacement Pb-Zn-Ag mineralization in the Lavrion District,Attica,Greece: fluid inclusion,stable isotope,and rare earth element studies [J].Econ Geol,2011,106(4): 619–651.

[33]刘协鲁,王义天,胡乔青,魏然,王瑞廷,温深文,陈明寿,杨光华.陕西省凤太矿集区柴蚂金矿床碳酸盐矿物的Sm-Nd同位素测年及意义[J].岩石学报,2014,30(1):271–280.Liu Xie-lu,Wang Yi-tian,Hu Qiao-qing,Wei Ran,Wang Rui-ting,Wen Shen-wen,Chen Ming-shou,Yang Guang-hua.Sm-Nd isotopic dating of carbonate minerals from the Chaima gold deposit in the Fengxian-Taibai ore concentration area,Shaanxi Province and its implications [J].Acta Petrol Sinica,2014,30(1): 271–280(in Chinese with English abstract).

[34]Barker S L L,Bennett V C,Cox S F,Norman M D,Gagan M K.Sm-Nd,Sr,C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid–rock reaction and geochronology [J].Chem Geol,2009,268(1/2): 58–66.

[35]Peng J T,Hu R Z,Burnard P G.Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit(Hunan,China): The potential of calcite as a geochronometer [J].Chem Geol,2003,200(1/2):129–136.

[36]Su W C,Hu R Z,Xia B,Xia Y,Liu Y P.Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit,Guizhou,China [J].Chem Geol,2009,258(3/4): 269–274.

[37]Zou Z C,Hu R Z,Bi X W,Wu L Y,Feng C X,Tang Y Y.Absolute and relative dating of Cu and Pb-Zn mineralization in the Baiyangping area,Yunnan Province,SW China: Sm-Nd geochronology of calcite [J].Geochem J,2015,49(1):103–112.

[38]Zhang J R,Wen H J,Qiu Y Z,Zhang Y X,Li C.Ages of sediment-hosted Himalayan Pb-Zn-Cu-Ag polymetallic deposits in the Lanping basin,China: Re-Os geochronology of molybdenite and Sm-Nd dating of calcite [J].J Asian Earth Sci,2013,73: 284–295.

[39]Xu W G,Fan H R,Hu F F,Santosh M,Yang K F,Lan T G,Wen B J.Geochronology of the Guilaizhuang gold deposit,Luxi Block,eastern North China Craton: Constraints from zircon U-Pb and fluorite-calcite Sm-Nd dating [J].Ore Geol Rev,2015,65: 390–399.

[40]Li W B,Huang Z L,Yin M D.Dating of the giant Huize Zn-Pb ore field of Yunnan Province,southwest China: Constraints from the Sm-Nd system in hydrothermal calcite [J].Resour Geol,2007,57(1): 90–97.

[41]裴秋明,张寿庭,曹华文,唐利,许腾,李军军,张旭晃,郭娜娜.豫西栾川县骆驼山硫锌多金属矿床闪锌矿微量元素地球化学特征及其地质意义[J].岩石矿物学杂志,2015,34(4): 741–754.Pei Qiu-ming,Zhang Shou-ting,Cao Hua-wen,Tang Li,Xu Teng,Li Jun-jun,Zhang Xu-huang,Guo Na-na.Trace element geochemistry of the Luotuoshan sulphur-zinc polymetallic deposit in Luanchuan,western Henan,and its geological implications [J].Acta Petrol Mineral,2015,34(4): 741–754(in Chinese with English abstract).

[42]段士刚,薛春纪,冯启伟,高炳宇,刘国印,燕长海,宋要武.豫西南赤土店铅锌矿床地质、流体包裹体和 S、Pb同位素地球化学特征[J].中国地质,2011,38(2): 427–441.Duan Shi-gang,Xue Chun-ji,Feng Qi-wei,Gao Bing-yu,Liu Guo-yin,Yan Chang-hai,Song Yao-wu.Geology,fluid inclusions and S,Pb isotopic geochemistry of the Chitudian Pb-Zn deposit in Luanchuan,Henan Province [J].Geol China,2011,38(2): 427–441(in Chinese with English abstract).

[43]Cao H W,Zhang S T,Lin J Z,Zheng L,Wu J D,Li D.Geology,geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit,Tengchong County,Western Yunnan(China): Regional tectonic implications [J].J Asian Earth Sci,2014,81: 142–152.

[44]Ludwig K R.User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel [M].Berkeley: Berkeley Geochronology Center,2012: 1–70.

[45]Peng J T,Hu R Z,Lin Y X,Zhao J H.Sm-Nd isotope dating of hydrothermal calcites from the Xikuangshan antimony deposit,Central Hunan [J].Chinese Sci Bull,2002,47(13):1134–1137.

[46]McDonough W F,Sun S-s.The composition of the Earth [J].Chem Geol,1995,120(3/4): 223–253.

[47]Sun S-s,McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J].Geol Soc London Spec Pub,1989,42(1): 313–345.

[48]解庆林,马东升,刘英俊.锡矿山锑矿床方解石的地球化学特征[J].矿产与地质,1996,10(2): 94–99.Xie Qing-lin,Ma Dong-sheng,Liu Ying-jun.Geochemical characteristics of calcite in the Xikuangshan antimony deposit,Hunan [J].Mineral Resour Geol,1996,10(2): 94–99(in Chinese with English abstract).

[49]黄小文,漆亮,孟郁苗.东天山黑峰山、双峰山及沙泉子(铜)铁矿床的矿物微量和稀土元素地球化学特征[J].矿床地质,2013,32(6): 1188–1210.Huang Xiao-wen,Qi Liang,Meng Yu-miao.Trace element and REE geochemistry of minerals from Heifengshan,Shuangfengshan and Shaquanzi(Cu)-Fe deposits,Eastern Tianshan Mountains [J].Mineral Deposits,2013,32(6):1188–1210(in Chinese with English abstract).

[50]冯彩霞,毕献武,武丽艳,邹志超,唐永永.滇西北白秧坪多金属矿集区东矿带方解石 REE地球化学特征及意义[J].吉林大学学报(地球科学版),2011,41(5): 1397–1406.Feng Cai-xia,Bi Xian-wu,Wu Li-yan,Zou Zhi-chao,Tang Yong-yong.Significance and characteristics of REE geochemistry in calcite in the Eastern ore belt of the Baiyangping poly-metallic metallogenic province,northwestern Yunnan Province,China [J].J Jilin Univ(Earth Sci Ed),2011,41(5):1397–1406(in Chinese with English abstract).

[51]邓红,黄智龙,肖宪国,丁伟.贵州半坡锑矿床方解石稀土元素地球化学研究[J].矿物学报,2014,34(2): 208–216.Deng Hong,Huang Zhi-long,Xiao Xian-guo,Ding Wei.REE geochemistry of gangue calcite from Banpo deposit in Dushan antimony ore field,Guizhou Province,China [J].Acta Mineral Sinica,2014,34(2): 208–216(in Chinese with English abstract).

[52]刘英超,杨竹森,田世洪,宋玉财,李玉龙,卢世银,赵志逸,侯增谦.三江中段青海玉树吉龙沉积岩容矿脉状铜矿成矿作用研究[J].岩石学报,2013,29(11): 3852–3870.Liu Ying-chao,Yang Zhu-sen,Tian Shi-hong,Song Yu-cai,Li Yu-long,Lu Shi-yin,Zhao Zhi-yi,Hou Zeng-qian.Metallogeny of Jilong sediment-hosted vein type Cu deposit in the central part of the ‘Sanjiang’ belt [J].Acta Petrol Sinica,2013,29(11): 3852–3870(in Chinese with English abstract).

[53]田世洪,杨竹森,侯增谦,杨天南,张洪瑞,刘燕学,宋玉财,刘英超,王银喜,于玉帅,王富春,薛万文,鲁海峰,张玉宝,朱田,俞长捷.青海玉树东莫扎抓和莫海拉亨铅锌矿床与逆冲推覆构造关系的确定——来自粗晶方解石Rb-Sr和Sm-Nd等时线年龄证据[J].岩石矿物学杂志,2011,30(3): 475–489.Tian Shi-hong,Yang Zhu-sen,Hou Zeng-qian,Yang Tian-nan,Zhang Hong-rui,Liu Yan-xue,Song Yu-cai,Liu Ying-chao,Wang Yin-xi,Yu Yu-shuai,Wang Fu-chun,Xue Wan-wen,Lu Hai-feng,Zhang Yu-bao,Zhu Tian,Yu Chang-jie.Confirmation of connection between Dongmozhazhua and Mohailaheng Pb-Zn ore deposits and thrust nappe system in Yushu area,Southern Qinghai: Evidence from Rb-Sr and Sm-Nd isochron ages of macrocrystalline calcite [J].Acta Petrol Mineral,2011,30(3): 475–489(in Chinese with English abstract).

[54]王登红,秦燕,王成辉,陈毓川,高兰.贵州低温热液型汞、锑、金矿床成矿谱系——以晴隆大厂、兴仁紫木凼和铜仁乱岩塘为例[J].大地构造与成矿学,2012,36(3):330–336.Wang Deng-hong,Qin Yan,Wang Cheng-hui,Chen Yu-chuan,Gao Lan.Mineralization pedigree for epithermal Hg,Sb,Au deposit in Guizhou Province: Taking the Dachang Sb deposit,the Zimudang Au deposit and the Luanyangtang Hg deposit for examples [J].Geotecton Metallogen,2012,36(3):330–336(in Chinese with English abstract).

[55]Zhou J X,Huang Z L,Yan Z F.The origin of the Maozu carbonate-hosted Pb-Zn deposit,southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age [J].J Asian Earth Sci,2013,73: 39–47.

[56]曹华文,裴秋明,张寿庭,张林奎,郑硌,胡昕凯.豫西栾川中鱼库锌铅矿床闪锌矿 Rb-Sr定年及其地质意义[J].成都理工大学学报(自然科学版),2016(待刊).Cao Hua-wen,Pei Qiu-ming,Zhang Shou-ting,Zhang Lin-kui,Zheng Luo,Hu Xin-kai.Rb-Sr dating of sphalerites from the Zhongyuku Zn-Pb deposit in Luanchuan,Western of Henan Province and its geological significance [J].J Chengdu Univ Technol(Sci Technol Ed),2016(in press)(in Chinese with English abstract).

[57]Bau M,Möller P.Rare earth element fractionation in metamorphogenic hydrothermal calcite,magnesite and siderite [J].Mineral Petrol,1992,45(3): 231–246.

[58]Bau M,Dulski P.Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids [J].Contrib Mineral Petrol,1995,119(2): 213–223.

[59]Möller P,Parekh P P,Schneider H J.The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis [J].Mineral Deposita,1976,11(1): 111–116.

猜你喜欢

栾川方解石铅锌
F-在方解石表面的吸附及其对方解石表面性质的影响
氯化钙和碳酸钠对方解石浮选的影响及其机理研究
河南崤山东部浅覆盖区磁异常特征及其银铅锌找矿预测
内蒙古巴尔陶勒盖-复兴屯发现特大型陆相火山岩型铅锌银矿床
云南迪庆铜铅锌硫化矿浮选分离研究
贵州重晶石与方解石常温浮选分离试验研究
王鑫:美一方环境 惠一方百姓
铅锌尾矿综合回收锌试验研究
“栾川人”中原地区远古人类的一次重要发现
豫西名吃 栾川养生“豆腐宴”