APP下载

林木对干旱胁迫的全基因组应答(二)

2016-04-06郎,霖,

陕西林业科技 2016年1期
关键词:干旱胁迫林木

田 郎, 译 张 霖, 校

(1.中国热带农业科学院橡胶研究所,海南儋州 571737;2.河南大学生命科学学院,河南开封 475004)



林木对干旱胁迫的全基因组应答(二)

田郎1, 译张霖2, 校

(1.中国热带农业科学院橡胶研究所,海南儋州 571737;2.河南大学生命科学学院,河南开封 475004)

摘要:干旱对于森林健康及人工生产林的建立均是一种严重威胁。因此,人们对于林木对干旱胁迫的应答机制一直怀有极大的兴趣。本文综述一般植物,特别是林木对于水分亏缺的感受及响应模式,并着重介绍林木对干旱刺激的分子应答机制,尤其是胁迫所引发的整个基因组范围内转录本丰度及蛋白质表达谱的改变。纵观林木此方面的研究历程可以看出,人们对于干旱分子应答的认识已由单个应答基因的分离鉴定逐渐深入到了对协同参与和调控应答反应的一系列相关基因或蛋白质的分析探讨。此外,本文也关注到了如何有效地利用这些研究成果才能最终达到保护森林健康和提高人工林生产力的目的。我们的综合分析结果显示,作为一种新的研究工具和手段,林木干旱应答的全基因组分析可有效地用于其适应性变异的保持及新品种的选育和基因型的定向修饰,从而使其能更好地应对未来可能的干旱胁迫。

关键词:林木;干旱胁迫;全基因组应答

(续接上期)

9目前基因组研究的进展

在基因组学领域,包括全基因组测序在内的一系列分子生物学技术的突破已为人们开启了全面深入了解树木分子生物学的大门[参阅Deschamps等(2009)的综述],而下一代高通量(HTP)测序技术的建立和应用更是为探究和解决其它更为复杂的生物学问题提供了新的契机(Mardis,2008)。虽然对模式植物杨树的研究非常有助于认识和了解树木逆境响应的生物学及分子基础,不过借助这些新的技术手段则更能直接推动并加速林木生物学家对各种非模式物种的研究步伐。基因组测序深度及速度的大幅提高无疑可使人们快速获得大量可资利用的基因组资源,如序列信息,物理图谱,以及分子遗传标记等,从而有力地促进林木标记辅助育种及各种遗传改良技术的迅速发展。

新一代HTP测序技术不仅更有助于了解林木的序列变异,而且可进一步探究其表观遗传修饰。表观遗传修饰,例如DNA或组蛋白修饰在基因表达调控中起着关键作用,因而对植株的生长发育具有重要影响。在胁迫条件下, 表观遗传修饰同样起着调节胁迫诱导基因表达的重要作用(Boyko等,2008;Chinnusamy等,2009)。有些表观遗传修饰具有可遗传性,并可使植株产生所谓的“胁迫记忆”, 也即受胁迫植株能将其抗胁迫能力传递给后代植株。当然, 植物通过表观遗传修饰应对环境胁迫也许是以生长下降为代价(Chinnusamy等,2009)。Gourcilleau等(2010)曾观察发现, 干旱胁迫下不同杨树杂种基因型在DNA甲基化水平上存在明显差异,不仅如此,基因型的DNA甲基化水平甚至与其非胁迫条件下的生产力也密切相关。然而,有关胁迫条件下植株如何通过表观遗传修饰调控基因表达以及胁迫传代记忆的分子机制目前尚不十分清楚。据Molinier等(2006)及Pecinka等(2009)报道,拟南芥植株在经受环境胁迫处理之后,其后代植株较之未经胁迫处理植株的后代表现出更高的同源重组率(HRF)及DNA甲基化水平,不过这种基因组水平上的变化是否与胁迫记忆有关尚需作进一步的验证。

采用协同研究的方法,包括将全基因组表达数据与基因分型数据(例如SNP标记分析)结合起来进行综合分析同样有可能将过去看来似乎完全不相干的一些生物学机制联系起来从而达到对林木干旱响应的更为全面的认识。下一代测序技术的发展不但为人们打开了非模式树种基因组测序的大门,同时也为检测同一物种许多不同个体间的序列变异,以及研究植物的表观遗传修饰提供了必要的技术支撑。这些新的技术手段既有助于获得林木胁迫适应方面的相关信息,也能够进一步加深对林木表型、基因型以及表观遗传变异之间关系的了解和认识。

10 展望

鉴于全球气候和降水变化及其对森林生产率造成的严重影响, 基于众多理由 ,人们越来越清楚地认识到了充分了解树木在不利环境中如何适应和生存的重要性。尽管干旱胁迫周期的延长可能会降低树木的生存能力,不过,利用在林木对干旱胁迫的分子响应研究方面所获得的新的知识,我们能够选育和筛选出适应性更强的品种以应对未来环境的变化。

在过去的几十年中,人们已从最初单个干旱响应基因的发现逐渐深入到了对整个干旱响应转录组的比较鉴定。微阵列及高通量转录组分析不但有力地揭示了林木干旱响应的复杂性,而且将表型观察与转录组应答相关联还可进一步揭示出林木干旱适应性的可能机制。随着其它“组学”平台的逐步建立和发展,研究人员将有可能进一步在蛋白质组及代谢组水平上检测林木对于干旱胁迫的反应。尽管通过分子应答的研究能够获得更多有关树木如何响应干旱胁迫的信息,但我们仍需将多个不同高通量平台的研究数据及结果加以整合才能够充分揭示林木干旱响应的分子机制和途径。为了深入了解不同途径和机制在林木干旱响应中的相对重要性,采用更为全面和整体性的系统生物学研究法将显得尤为重要。例如,通过转录组研究人们发现,很多涉及棉子糖和肌醇半乳糖苷合成的基因在经过干旱处理的树木中具有更高的转录物丰度(Shinozaki等,2007;Hamanishi等,2010),而这些代谢产物被认为在干旱条件下具有渗透保护剂的作用。了解和认识这一抗旱途径不同水平上的作用机理及分子可塑性对于在林木中开发和利用这种内在的干旱保护机制将具有十分重要的意义。

基因组学技术的利用有可能使我们制定出更好的策略以在不断变化的气候条件下保护现有的树木种群并提高新的林分及林木种植园的生产力。借助这些基于基因组学及多管齐下的系统生物学方法的新技术,人们有可能鉴定出与林木干旱响应相关的基因或基因产物,从而制定出林木抗旱选择或定向修饰的有效策略。例如,水稻抗旱QTLs的鉴定(Bernier等,2009)在水稻耐旱品种的标记辅助选择中就起着十分重要的作用(Steele等,2009)。抗逆基因,例如拟南芥(Arabidopsisthaliana)中参与气孔关闭因而能够调节水份损失的MYB61基因,即AtMYB61基因的同系物的鉴定(Liang等,2005)也可被用于林木耐旱性的改良。通过生物信息学分析,有些来自草本的拟南芥的基因还能被转入到林木,例如杨树(Populus)之中(Wilkins等,2009a),并可推断基因(如MYB61)的作用和功能。利用这些研究工具并结合植物中干旱响应的有关知识和信息,我们能够获得耐旱性有所提高和增强的林木工程植株。这种经过人工改良的林木种植材料将有助于提高和保持干旱日趋严重的地区林木的生产力。对于干旱分子应答的认识和了解还将有助于鉴定林木在干旱响应上所发生的自然变异,而这种变异可被选择或作为重点用于森林的保护。鉴于未来气候变化及影响的不确定性,能够使我们提高和增加抗逆单株鉴定的准确性及鉴定率的基因组学技术将在林木逆境生物学研究及抗逆品种的选育中发挥极其重要的作用。

参 考 文 献

[1]Abe,H.,Yamaguchi-Shinozaki,K.,Urao,T.,Iwasaki,T.,Hosokawa,D.andShinozaki,K. 1997RoleofArabidopsisMYCandMYBhomologsindrought-andabscisicacid-regulatedgeneexpression.PlantCell. 9, 1859-1868.

[2]Abe,H.,Urao,T.,Ito,T.,Seki,M.,Shinozaki,K.andYamaguchi-Shinozaki,K. 2003ArabidopsisAtMYC2 (bHLH)andAtMYB2 (MYB)functionastranscriptionalactivatorsinabscisicacidssignaling.PlantCell. 15, 63-78.

[3]Allen,C.D.andBreshears,D.D. 1998Drought-inducedshiftofaforest-woodlandecotone:rapidlandscaperesponsetoclimatevariation.Proc.NatlAcad.Sci.USA. 95, 14839-14842.

[4]Allen,C.D.,Macalady,A.K.,Chenchouni,H.,Bachelet,D.,McDowell,N.andVennetier,M.etal. 2010Aglobaloverviewofdroughtandheat-inducedtreemortalityrevealsemergingclimatechangerisksforforests.For.Ecol.Manage. 259, 660-684.

[5]Allona,I.,Quinn,M.,Shoop,E.,Swope,K.,Cyr,S.S.andCarlis,J.etal. 1998AnalysisofxylemformationinpinebycDNAsequencing.Proc.NatlAcad.Sci.USA. 95, 9693-9698.

[6]Almeida-Rodriguez,A.M.,Cooke,J.E.K.,Yeh,F.andZwiazek,J.J. 2010Functionalcharacterizationofdrought-responsiveaquaporinsinPopulusbalsamiferaandPopulussimonii×balsamiferacloneswithdifferentdroughtresistancestrategies.Physiol.Plant. 140, 321-333.

[7]Bahrun,A.,Jensen,C.R.,Asch,F.andMogensen,V.O. 2002Drought-inducedchangesinxylempH,ioniccomposition,andABAconcentrationactasearlysignalsinfield-grownmaize(ZeamaysL.).J.Exp.Biol. 53, 251-263.

[8]Belin,C.,Thomine,S.andSchroeder,J.I. 2010Waterbalanceandtheregulationofstomatalmovements.InAbioticStressAdaptationinPlants.A.Pareek,S.K.Sopory,H.J.BohnertandGovindjee(eds).Springer,Netherlands,pp. 283-305.

[9]Bernier,J.,Serraj,R.,Kumar,A.,Venuprasad,R.,Impa,S.andGowda,V.etal. 2009Thelarge-effectdrought-resistanceQTLqtl12.1increaseswateruptakeinuplandrice.FieldCropsRes. 110, 139-146.

[10]Berta,M.,Giovannelli,A.,Sebastiani,F.,Camussi,A.andRacchi,M.L. 2010TranscriptomechangesinthecambialregionofpoplarPopulusalbaL.inresponsetowaterdeficit.PlantBiol. 12, 341-354.

[11]Bigler,C.,Br?ker,O.,Bugmann,H.,Dobbertin,M.andRigling,A. 2006DroughtasanincitingmortalityfactorinScotspinestandsoftheValais,Switzerland.Ecosystems. 9, 330-343.

[12]Blodner,C.,Majcherczyk,A.,Kues,U.andPolle,A. 2007Earlydrought-inducedchangestotheneedleproteomeofNorwayspruce.TreePhysiol. 27, 1423-1431.

[13]Bonhomme,L.,Monclus,R.,Vincent,D.,Carpin,S.,Claverol,S.andLomenech,A.-M.etal. 2009GeneticvariationanddroughtresponseintwoPopulus×euramericanagenotypesthrough2-DEproteomicanalysisofleavesfromfieldandglasshousecultivatedplants.Phytochemistry. 70, 988-1002.

[14]Boyko,A.andKovalchuk,I. 2008Epigeneticcontrolofplantstressresponse.Environ.Mol.Mutagen. 49, 61-72.

[15]Bray,E.A. 1994Stressinducedgeneexpressioninplant.InAlterationsinGeneExpressioninResponsetoWaterDeficit.A.S.Basra(ed.).HardwoodAcademicPublishers,Chur,Switzerland,pp. 1-23.

[16]Brendel,O.,LeThiec,D.,Scotti-Saintagne,C.,Bodénès,C.,Kremer,A.andGuehl,J.-M. 2008QuantitativetraitlocicontrollingwateruseefficiencyandrelatedtraitsinQuercusroburL.TreeGenet.Genomes. 4, 263-278.

[17]Campalans,A.,Pages,M.andMesseguer,R. 2001IdentificationofdifferentiallyexpressedgenesbythecDNA-AFLPtechniqueduringdehydrationofalmond(Prunusamygdalus).TreePhysiol. 21, 633-643.

[18]Caruso,A.,Morabito,D.,Delmotte,F.,Kahlem,G.andCarpin,S. 2002DehydrininductionduringdroughtandosmoticstressinPopulus.PlantPhysiol.Biochem. 40, 1033-1042.

[19]Chang,S.,Puryear,J.D.,Dias,M.A.D.L.,Funkhouser,E.A.,Newton,R.J.andCairney,J. 1996Geneexpressionunderwaterdeficitinloblollypine(Pinustaeda):isolationandcharacterizationofcDNAclones.Physiol.Plant. 97, 139-148.

[20]Chaves,M.M.,Maroco,J.P.andPereira,J.S. 2003Understandingplantresponsestodrought—fromgenestothewholeplant.Funct.PlantBiol. 30, 239-264.

[21]Chinnusamy,V.andZhu,J.-K. 2009Epigeneticregulationofstressresponsesinplants.Curr.Opin.PlantBiol. 12, 133-139.

[22]Choi,H.-i,Hong,J.-h,Ha,J.-o,Kang,J.-yandKim,S.Y. 2000ABFs,afamilyofABA-responsiveelementbindingfactors.J.Biol.Chem. 275, 1723-1730.

[23]Ciais,P.,Reichstein,M.,Viovy,N.,Granier,A.,Ogee,J.andAllard,V.etal. 2005Europe-widereductioninprimaryproductivitycausedbytheheatanddroughtin2003.Nature. 437, 529-533.

[24]Close,T.J. 1996Dehydrins:emergenceofabiochemicalroleofafamilyofplantdehydrationproteins.Physiol.Plant. 97, 795-803.

[25]Cowan,I.R. 1977Stomatalbehaviorandenvironment.Adv.Bot.Res. 4, 117-228.

[26]Davies,W.J.andZhang,J. 1991Rootsignalsandtheregulationofgrowthanddevelopmentofplantsindryingsoil.Annu.Rev.PlantPhysiol.PlantMol.Biol. 42, 55-76.

[27]Deschamps,S.andCampbell,M. 2009Utilizationofnext-generationsequencingplatformsinplantgenomicsandgeneticvariantdiscovery.Mol.Breeding. 25, 553-570.

[28]Dubos,C.,LeProvost,G.,Pot,D.,Salin,F.,Lalane,C.andMadur,D.etal. 2003Identificationandcharacterizationofwater-stress-responsivegenesinhydroponicallygrownmaritimepine(Pinuspinaster)seedlings.TreePhysiol. 23, 169-179.

[29]Dubos,C.andPlomion,C. 2003Identificationofwater-deficitresponsivegenesinmaritimepine(PinuspinasterAit.)roots.PlantMol.Biol. 51, 249-262.

[30]Engelbrecht,B.M.J.,Comita,L.S.,Condit,R.,Kursar,T.A.,Tyree,M.T.andTurner,B.L.etal. 2007Droughtsensitivityshapesspeciesdistributionpatternsintropicalforests.Nature. 447, 80-82.

[31]Ferrell,W.K.andWoodard,E.S. 1966EffectsofseedoriginondroughtresistanceofDouglas-fir(Pseudotsugamenziesii) (Mirb.)Franco.Ecology. 47, 499-503.

[32]Fischer,U.andPolle,A. 2010Populusresponsestoabioticstress.InGeneticsandGenomicsofPopulus.S.Jansson,R.P.BhaleraoandA.Groover(eds).Springer,NewYork,NY,pp. 225-246.

[33]Froux,F.,Ducrey,M.,Dreyer,E.andHuc,R. 2005VulnerabilitytoembolismdiffersinrootsandshootsandamongthreeMediterraneanconifers:consequencesforstomatalregulationofwaterloss?Trees. 19, 137-144.

[34]Giuliano,G.,Pichersky,E.,Malik,V.S.,Timko,M.P.,Scolnik,P.A.andCashmore,A.R. 1988Anevolutionarilyconservedproteinbindingsequenceupstreamofaplantlight-regulatedgene.Proc.NatlAcad.Sci.USA. 85, 7089-7093.

[35]Gonzalez-Martinez,S.C.,Ersoz,E.,Brown,G.R.,Wheeler,N.C.andNeale,D.B. 2006DNAsequencevariationandselectionoftagsingle-nucleotidepolymorphismsatcandidategenesfordrought-stressresponseinPinustaedaL.Genetics. 172, 1915-1926.

[36]Gourcilleau,D.,Bogeat-Triboulot,M.-B.,LeThiec,D.,Lafon-Placette,C.,Delaunay,A.andEl-Soud,W.A.etal. 2010DNAmethylationandhistoneacetylation:genotypicvariationsinhybridpoplars,impactofwaterdeficitandrelationshipswithproductivity.Ann.For.Sci. 67, 208.

[37]Goyal,K.,Walton,L.J.andTunnacliffe,A. 2005LEAproteinspreventproteinaggregationduetowaterstress.Biochem.J. 388, 151-157..

[38]Guiltinan,M.J.,Marcotte,W.R.Jr.andQuatrano,R.S. 1990Aplantleucinezipperproteinthatrecognizesanabscisicacidresponseelement.Science. 250, 267-271.

[39]Hadley,J.andSmith,W. 1990Influenceofleafsurfacewaxandleafareatowatercontentratiooncuticulartranspirationinwesternconifers,U.S.A.Can.J.For.Res. 20, 1306-1311.

[40]Hall,D.,Tegstrom,C.andIngvarsson,P.K. 2010Usingassociationmappingtodissectthegeneticbasisofcomplextraitsinplants.Brief.Funct.Genomics. 9, 157-165.

[41]Hamanishi,E.T.,Raj,S.,Wilkins,O.,Thomas,B.R.,Mansfield,S.D.andPlant,A.L.etal. 2010IntraspecificvariationinthePopulusbalsamiferadroughttranscriptome.PlantCellEnviron. 33, 1742-1755.

[42]Hartung,W.,Sauter,A.,Turner,N.C.,Fillery,I.andHeilmeier,H. 1996Abscisicacidinsoils:whatisitsfunctionandwhichfactorsandmechanismsinfluenceitsconcentration?PlantSoil. 184, 105-110.

[43]Heath,L.S.,Ramakrishnan,N.,Sederoff,R.,Whetten,R.,Chevone,B.andStruble,C.etal. 2002Studyingthefunctionalgenomicsofstressresponsesinloblollypinewithexpressomicroarrayexperimentmanagementsystem.Comp.Funct.Genomics. 3, 226-243.

[44]Hertzberg,M.,Aspeborg,H.,Schrader,J.,Andersson,A.,Erlandsson,R.andBlomqvist,K.etal. 2001Atranscriptionalroadmaptowoodformation.Proc.NatlAcad.Sci.USA. 98, 14732-14737.

[45]Hogg,E.H.,Brandt,J.P.andMichaelian,M. 2008Impactsofaregionaldroughtontheproductivity,diebackandbiomassofwesternCanadianaspenforests.Can.J.For.Res. 38, 1373.

[46]Hogg,E.H.andWein,R.W. 2005ImpactsofdroughtonforestgrowthandregenerationfollowingfireinsouthwesternYukon,Canada.Can.J.For.Res. 35, 2141-2150.

[47]Hsiao,T.C.andXu,L.-K. 2000Sensitivityofgrowthofrootsversusleavestowaterstress:biophysicalanalysisandrelationtowatertransport.J.Exp.Biol. 51, 1595-1616.

[48]Ingram,J.andBartels,D. 2003Themolecularbasisofdehydrationtoleranceinplants.Ann.Rev.PlantPhysiol.PlantMol.Biol. 47, 377-403.

[49]IntergovernmentalPanelonClimateChange2007IPCCFourthAssessmentReport:ClimateChange2007 (AR4)IPCC,Geneva,Switzerland.

[50]Jarvis,P.G.andJarvis,M.S. 1963Thewaterrelationsoftreeseedlings.:IV.Someaspectsofthetissuewaterrelationsanddroughtresistance.Physiol.Plant. 16, 501-516.

[51]Klingler,J.P.,Batelli,G.andZhu,J.-K. 2010ABAreceptors:theSTARTofanewparadigminphytohormonesignalling.J.Exp.Biol. 61, 3199-3210.

[52]Knight,H.andKnight,M.R. 2001Abioticstresssignallingpathways:specificityandcross-talk.TrendsPlantSci. 6, 262-267.

[53]Li,X.,Wu,H.,Dillon,S.andSoutherton,S. 2009GenerationandanalysisofexpressedsequencetagsfromsixdevelopingxylemlibrariesinPinusradiataD.Don.BMCGenomics. 10, 41.

[54]Liang,Y.K.,Dubos,C.,Dodd,I.C.,Holroyd,G.H.,Hetherington,A.M.andCampbell,M.M. 2005AtMYB61,anR2R3-MYBtranscriptionfactorcontrollingstomatalapertureinArabidopsisthaliana.Curr.Biol. 15, 1201-1206.

[55]Liu,W.,Fairbairn,D.J.,Reid,R.J.andSchachtman,D.P. 2001CharacterizationoftwoHKT1homologuesfromEucalyptuscamaldulensisthatdisplayintrinsicosmosensingcapability.PlantPhysiol. 127, 283-294.

[56]Lorenz,W.W.,Sun,F.,Liang,C.,Kolychev,D.,Wang,H.andZhao,X.etal. 2006Waterstress-responsivegenesinloblollypine(Pinustaeda)rootsidentifiedbyanalysesofexpressedsequencetaglibraries.TreePhysiol. 26, 1-16.

[57]Ma,Y.,Szostkiewicz,I.,Korte,A.,Moes,D.,Yang,Y.andChristmann,A.etal. 2009RegulatorsofPP2Cphosphataseactivityfunctionasabscisicacidsensors.Science. 324, 1064-1068.

[58]Mahdieh,M.,Mostajeran,A.,Horie,T.andKatsuhara,M. 2008DroughtstressalterswaterrelationsandexpressionofPIP-typeaquaporingenesinNicotianatabacumplants.PlantCellPhysiol. 49, 801-813.

[59]Mardis,E.R. 2008Next-generationDNAsequencingmethods.Annu.Rev.GenomicsHum.Genet. 9, 387-402.

[60]Maurel,C.,Verdoucq,L.,Luu,D.-T.andSantoni,V. 2008Plantaquaporins:membranechannelswithmultipleintegratedfunctions.Annu.Rev.PlantBiol. 59, 595-624.

[61]McCourt,P.andCreelman,R. 2008TheABAreceptors—wereportyoudecide.Curr.Opin.PlantBiol. 11, 474-478.

[62]Molinier,J.,Ries,G.,Zipfel,C.,Hohn,B. 2006Transgenerationmemoryofstressinplants.Nature. 442, 1046-1049.

[63]Munné-Bosch,S.andAlegre,L. 2004Dieandletlive:leafsenescencecontributestoplantsurvivalunderdroughtstress.Funct.PlantBiol. 31, 203-216.

[64]Nagaraj,S.H.,Gasser,R.B.andRanganathan,S. 2007Ahitchhiker’sguidetoexpressedsequencetag(EST)analysis.Brief.Bioinform. 8, 6-21.

[65]Namroud,M.-C.,Beaulieu,J.,Juge,N.,Laroche,J.andBousquet,J. 2008Scanningthegenomeforgenesinglenucleotidepolymorphismsinvolvedinadaptivepopulationdifferentiationinwhitespruce.Mol.Ecol. 17, 3599-3613.

[66]Nguyen,A.andLamant,A. 1989Variationingrowthandosmoticregulationofrootsofwater-stressedmaritimepine(PinuspinasterAit.)provenances.TreePhysiol. 5, 123-133.

[67]Park,S.-Y.,Fung,P.,Nishimura,N.,Jensen,D.R.,Fujii,H.andZhao,Y.etal. 2009Abscisicacidinhibitstype2CproteinphosphatasesviathePYR/PYLfamilyofSTARTproteins.Science. 324, 1068-1071.

[68]Pechanova,O.,Hsu,C.-Y.,Adams,J.,Pechan,T.,Vandervelde,L.andDrnevich,J.etal. 2010Apoplastproteomerevealsthatextracellularmatrixcontributestomultistressresponseinpoplar.BMCGenomics. 11, 674.

[69]Pecinka,A.,Rosa,M.,Schikora,A.,Berlinger,M.,Hirt,H.,Luschnig,C.,MittelstenScheid,O. 2009TransgenerationalstressmemoryisnotageneralresponseinArabidopsis.PLoSONE. 4(4),e5202.

[70]Plomion,C.,Lalanne,C.,Claverol,S.,Meddour,H.,Kohler,A.andBogeat-Triboulot,M.-B.etal. 2006Mappingtheproteomeofpoplarandapplicationtothediscoveryofdrought-stressresponsiveproteins.Proteomics. 6, 6509-6527.

[71]Polle,A.,Altman,A.andJiang,X. 2006Towardsgeneticengineeringfordroughttoleranceintrees.InTreeTransgenesis—RecentDevelopments.M.FladungandD.Ewald(eds).Springer,Heidelberg,Germany,pp. 275-297..

[72]Popko,J.,H?nsch,R.,Mendel,R.R.,Polle,A.andTeichmann,T. 2010Theroleofabscisicacidandauxinintheresponseofpoplartoabioticstress.PlantBiol. 12, 242-258.

[73]Ramanjulu,S.andBartels,D. 2002Drought-anddesiccation-inducedmodulationofgeneexpressioninplants.PlantCellEnviron. 25, 141-151.

[74]Rice,K.,Matzner,S.,Byer,W.andBrown,J. 2004PatternsoftreediebackinQueensland,Australia:theimportanceofdroughtstressandtheroleofresistancetocavitation.Oecologia. 139, 190-198.

[75]Ronnberg-Wastljung,A.C.,Glynn,C.andWeih,M. 2005QTLanalysesofdroughttoleranceandgrowthforaSalixdasyclados×Salixviminalishybridincontrastingwaterregimes.Theor.Appl.Genet. 110, 537-549.

[76]Saavedra,X.,Modrego,A.,Rodriguez,D.,Gonzalez-Garcia,M.P.,Sanz,L.andNicolas,G.etal. 2010TheNuclearinteractorPYL8/RCAR3ofFagussylvaticaFsPP2C1isapositiveregulatorofabscisicacidsignalinginseedsandstress.PlantPhysiol. 152, 133-150.

[77]Saez,A.,Apostolova,N.,Gonzalez-Guzman,M.,Gonzalez-Garcia,M.P.,Nicolas,C.andLorenzo,O.etal. 2004Gain-of-functionandloss-of-functionphenotypesoftheproteinphosphatase2CHAB1revealitsroleasanegativeregulatorofabscisicacidsignalling.PlantJ. 37, 354-369.

[78]Secchi,F.andZwieniecki,M.A. 2010PatternsofPIPgeneexpressioninPopulustrichocarpaduringrecoveryfromxylemembolismsuggestamajorroleforthePIP1aquaporinsubfamilyasmoderatorsofrefillingprocess.PlantCellEnviron. 33, 1285-1297.

[79]Sharp,R.E.,Poroyko,V.,Hejlek,L.G.,Spollen,W.G.,Springer,G.K.andBohnert,H.J.etal. 2004Rootgrowthmaintenanceduringwaterdeficits:physiologytofunctionalgenomics.J.Exp.Biol. 55, 2343-2351.

[80]Shaw,J.D.,Steed,B.E.andDeBlander,L.T. 2005Forestinventoryandanalysis(FIA)annualinventoryanswersthequestion:whatishappeningtopinyon-juniperwoodlands?J.For. 103, 280-285.

[81]Shen,Q.,Zhang,P.andHo,T.H.D. 1996Modularnatureofabscisicacid(ABA)responsecomplexes:compositepromoterunitsthatarenecessaryandsufficientforABAinductionofgeneexpressioninbarley.PlantCell. 8, 1107-1119.

[82]Shinozaki,K.andYamaguchi-Shinozaki,K. 1996Molecularresponsetodroughtandcoldstress.Curr.Opin.Biotechnol. 7, 161-167.

[83]Shinozaki,K.andYamaguchi-Shinozaki,K. 2000Molecularresponsestodehydrationandlowtemperature:differencesandcross-talkbetweentwostresssignalingpathways.Curr.Opin.PlantBiol. 3, 217-223.

[84]Shinozaki,K.andYamaguchi-Shinozaki,K. 2007Genenetworksinvolvedindroughtstressresponseandtolerance.J.Exp.Biol. 58, 221-227.

[85]Slovik,S.,Daeter,W.andHartung,W. 1995CompartmentalRedistributionandLong-DistanceTransportofAbscisicAcid(ABA)inPlantsasInfluencedbyEnvironmentalChangesintheRhizosphere:ABiomathematicalModel.OxfordUniversityPress.

[86]Sobeih,W.Y.,Dodd,I.C.,Bacon,M.A.,Grierson,D.andDavies,W.J. 2004Long-distancesignalsregulatingstomatalconductanceandleafgrowthintomato(Lycopersiconesculentum)plantssubjectedtopartialroot-zonedrying.J.Exp.Biol. 55, 2353-2363.

[87]Steele,K. 2009NovelUplandRiceVarietyBredUsingMarker-AssistedSelectionandClient-OrientedBreedingReleasedinJharkhand,IndiaPlantBreedingNews,FAOAppliedPlantBreedingNewsletter,Rome,Italy.

[88]Sterky,F.,Bhalerao,R.R.,Unneberg,P.,Segerman,B.,Nilsson,P.andBrunner,A.M.etal. 2004APopulusESTresourceforplantfunctionalgenomics.Proc.NatlAcad.Sci.USA. 101, 13951-13956.

[89]Sterky,F.,Regan,S.,Karlsson,J.,Hertzberg,M.,Rohde,A.andHolmberg,A.etal. 1998Genediscoveryinthewood-formingtissuesofpoplar:analysisof5,692expressedsequencetags.Proc.NatlAcad.Sci.USA. 95, 13330-13335.

[90]Strabala,T.J. 2004Expressedsequencetagdatabasesfromforestrytreespecies.InMoleculargeneticsandbreedingofforesttreesFoodProducts.S.KumarandM.Fladung(eds).HawthornPress,Binghamton,NY.

[91]Street,N.R.,Skogstrom,O.,Sjodin,A.,Tucker,J.,Rodriguez-Acosta,M.andNilsson,P.etal. 2006ThegeneticsandgenomicsofthedroughtresponseinPopulus.PlantJ. 48, 321-341.

[92]Teskey,R.O.,Bongarten,B.C.,Cregg,B.M.,Dougherty,P.M.andHennessey,T.C. 1987Physiologyandgeneticsoftreegrowthresponsetomoistureandtemperaturestress:anexaminationofthecharacteristicsofloblollypine(PinustaedaL.).TreePhysiol. 3, 41-61.

[93]Tsuchihira,A.,Hanba,Y.T.,Kato,N.,Doi,T.,Kawazu,T.andMaeshima,M. 2010Effectofoverexpressionofradishplasmamembraneaquaporinsonwater-useefficiency,photosynthesisandgrowthofEucalyptustrees.TreePhysiol. 30, 417-430.

[94]Tuskan,G.A.,DiFazio,S.,Jansson,S.,Bohlmann,J.,Grigoriev,I.andHellsten,U.etal. 2006Thegenomeofblackcottonwood,Populustrichocarpa(Torr. &Gray).Science. 313, 1596-1604.

[95]Tyree,M.T.,Kolb,K.J.,Rood,S.B.andPatino,S. 1994Vulnerabilitytodrought-inducedcavitationofripariancottonwoodsinAlberta:apossiblefactorinthedeclineoftheecosystem?TreePhysiol. 14, 455-466.

[96]Ujino-Ihara,T.,Yoshimura,K.,Ugawa,Y.,Yoshimaru,H.,Nagasaka,K.andTsumura,Y. 2000ExpressionanalysisofESTsderivedfromtheinnerbarkofCryptomeriajaponica.PlantMol.Biol. 43, 451-457.

[97]Uno,Y.,Furihata,T.,Abe,H.,Yoshida,R.,Shinozaki,K.andYamaguchi-Shinozaki,K. 2000Arabidopsisbasicleucinezippertranscriptionfactorsinvolvedinanabscisicacid-dependentsignaltransductionpathwayunderdroughtandhigh-salinityconditions.Proc.NatlAcad.Sci.USA. 97, 11632-11637.

[98]Urao,T.,Yakubov,B.,Satoh,R.,Yamaguchi-Shinozaki,K.,Seki,M.andHirayama,T.etal. 1999Atransmembranehybrid-typehistidinekinaseinarabidopsisfunctionsasanosmosensor.PlantCell. 11, 1743-1754.

[99]vanMantgem,P.J.,Stephenson,N.L.,Byrne,J.C.,Daniels,L.D.,Franklin,J.F.andFule,P.Z.etal. 2009WidespreadincreaseoftreemortalityratesintheWesternUnitedStates.Science. 323, 521-524.

[100]Walton,D.C.,Harrison,M.A.andCotê,P. 1976Theeffectsofwaterstressonabscisic-acidlevelsandmetabolisminrootsofPhaseolusvulgarisL.andotherplants.Planta. 131, 141-144.

[101]Wang,C.,Wang,Y.,Diao,G.,Jiang,J.andYang,C. 2010Isolationandcharacterizationofexpressedsequencetags(ESTs)fromCambiumTissueofBirch(Betulaplatyphylla).PlantMol.Biol.Report. 28, 438-449.

[102]Watkinson,J.I.,Sioson,A.A.,Vasquez-Robinet,C.,Shukla,M.,Kumar,D.andEllis,M.etal. 2003Photosyntheticacclimationisreflectedinspecificpatternsofgeneexpressionindrought-stressedloblollypine.PlantPhysiol. 133, 1702-1716.

[103]Welin,B.V.,Olson, ?,Nylander,M.andPalva,E.T. 1994Characterizationanddifferentialexpressionofdhn/lea/rab-likegenesduringcoldacclimationanddroughtstressinArabidopsisthaliana.PlantMol.Biol. 26, 131-144.

[104]Wilkins,O.,Nahal,H.,Foong,J.,Provart,N.J.andCampbell,M.M. 2009aExpansionanddiversificationofthePopulusR2R3-MYBfamilyoftranscriptionfactors.PlantPhysiol. 149, 981-993.

[105]Wilkins,O.,Waldron,L.,Nahal,H.,Provart,N.J.andCampbell,M.M. 2009bGenotypeandtimeofdayshapethePopulusdroughtresponse.PlantJ. 60, 703-715.

[106]Wilkinson,S.,Corlett,J.E.,Oger,L.andDavies,W.J. 1998EffectsofxylempHontranspirationfromwild-typeandflaccatomatoleaves.Avitalroleforabscisicacidinpreventingexcessivewaterlossevenfromwell-wateredplants.PlantPhysiol. 117, 703-709.

[107]Wilkinson,S.andDavies,W.J. 2002ABA-basedchemicalsignalling:theco-ordinationofresponsestostressinplants.PlantCellEnviron. 25, 195-210.

[108]Williams,M.E.,Foster,R.andChua,N.H. 1992SequencesflankingthehexamericG-boxcoreCACGTGaffectthespecificityofproteinbinding.PlantCell. 4, 485-496.

[109]Wisniewski,M.,Close,T.J.,Artlip,T.andArora,R. 1996Seasonalpatternsofdehydrinsand70-kDaheat-shockproteinsinbarktissuesofeightspeciesofwoodyplants.Physiol.Plant. 96, 496-505.

[110]Yang,F.,Wang,Y.andMiao,L.-F. 2010Comparativephysiologicalandproteomicresponsestodroughtstressintwopoplarspeciesoriginatingfromdifferentaltitudes.Physiol.Plant. 139, 388-400.

[111]Yordanov,I.,Velikova,V.andTsonev,T. 2000Plantresponsestodrought,acclimation,andstresstolerance.Photosynthetica. 38, 171-186.

[112]Zeevaart,J.A.D.andCreelman,R.A. 1988Metabolismandphysiologyofabscisicacid.Annu.Rev.PlantPhysiol.PlantMol.Biol. 39, 439-473.

[113]Zhang,S.,Chen,F.,Peng,S.,Ma,W.,Korpelainen,H.andLi,C. 2010Comparativephysiological,ultrastructuralandproteomicanalysesrevealsexualdifferencesintheresponsesofPopuluscathayanaunderdroughtstress.Proteomics. 10, 2661-2677.

[114]Zhang,X.,Zang,R.andLi,C. 2004PopulationdifferencesinphysiologicalandmorphologicaladaptationsofPopulusdavidianaseedlingsinresponsetoprogressivedroughtstress.PlantSci. 166, 791-797.

[115]Zhao,M.andRunning,S.W. 2010Drought-inducedreductioninglobalterrestrialnetprimaryproductionfrom2000through2009.Science. 329, 940-943.

(全文译自Forestry,2011,Vol.84,No.3)

收稿日期:2015-10-18

译者简介:田郎(1961-),男,侗族,湖南新晃侗族自治县人,硕士,副研究员,现从事植物组织培养及分子生物学研究工作。E-mail:tianerlang@163.com。 校张霖(1967-),男,汉族,籍贯天津,博士,副教授,主要从事植物逆境生物学及分子生物学科研教学工作。E-mail:linzhang@henu.edu.cn。

中图分类号:S 772.3+6

文献标识码:A

文章编号:1001-2117(2016)01-0062-07

Genome-wideresponsestodroughtinforesttrees

TranslatedbyTIANLang1,ProofreadbyZHANGLin2

(1.Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737;2. College of Life Sciences, Henan University, Kaifeng, Henan 475004)

Abstract:Drought is a significant threat to forest health and the establishment of productive tree plantations. There is therefore great interest in understanding the mechanisms underpinning drought responses in forest trees. This review considers the means by which plants in general, and forest trees specifically, both detect and respond to water limitation. The review focuses on molecular-level responses to a drought stimulus, with an emphasis on responses that involve genome-wide reconfigurations in transcript abundance and protein complement in forest trees. A historical view of the molecular analysis of such responses shows a remarkable transition from understanding the impact of drought on individual genes to a more comprehensive picture of the suites of genes and proteins that constitute a drought response. Attention is paid to how this understanding might further the aims of preserving forest health and improve plantation productivity. The review suggests that genome-wide analysis of forest tree drought responses can be leveraged to provide new tools for conservation of adaptive variation and targets for selective breeding or directed modification of forest tree genotypes that can better contend with future drought scenarios.

Key words:forest tree;drought stress;Genome-wide responses

猜你喜欢

干旱胁迫林木
中幼林抚育在森林培育中的重要性
林木移植的注意事项
试论高大林木的病虫害防治技术
天敌昆虫在林木病虫害防治中的重要作用探讨
硝普钠浸种对干旱胁迫下玉米种子萌发及幼苗生长的影响
一氧化氮参与水杨酸对玉米幼苗根系抗旱性的调控
一氧化氮参与水杨酸对玉米幼苗根系抗旱性的调控
干旱胁迫对扁豆生长与生理特性的影响
不同水分条件下硫肥对玉米幼苗叶片光合特性的影响
林木新秀 黑果腺肋花揪