APP下载

具有快速响应特性的环境响应型智能水凝胶的研究进展

2016-03-19刘壮谢锐巨晓洁汪伟褚良银

化工学报 2016年1期
关键词:聚合物

刘壮,谢锐,巨晓洁,2,汪伟,褚良银,2

(1四川大学化学工程学院,四川 成都 610065;2高分子材料工程国家重点实验室,四川 成都 610065)



具有快速响应特性的环境响应型智能水凝胶的研究进展

刘壮1,谢锐1,巨晓洁1,2,汪伟1,褚良银1,2

(1四川大学化学工程学院,四川 成都 610065;2高分子材料工程国家重点实验室,四川 成都 610065)

摘要:环境响应智能水凝胶应用于化学传感器、化学微阀、人造肌肉、药物控释载体、物质分离等领域时常常需要快速响应特性,提高智能水凝胶的响应速率成为了智能水凝胶研究领域的重要课题之一。本文主要综述了具有快速响应特性的环境响应智能水凝胶的构建策略与方法,重点介绍了3类具有不同结构的快速响应型智能水凝胶,即具有多孔结构的快速响应智能水凝胶、具有梳状结构的快速响应智能水凝胶以及具有微球复合结构的快速响应智能水凝胶。

关键词:智能水凝胶;聚合物;环境刺激响应;快速响应特性

2015-06-29收到初稿,2015-07-25收到修改稿。

联系人:褚良银。第一作者:刘壮(1987—),男,博士,讲师。

Received date: 2015-06-29.

引 言

水凝胶(hydrogel)是指一类由物理或化学交联而形成的高分子聚合物,是可以吸收大量水并能保持其三维结构的软物质[1-4]。根据响应环境刺激的情况,可以将水凝胶分为无环境响应性的传统水凝胶和有环境响应性的智能水凝胶两大类。传统水凝胶对环境的变化不敏感;而智能水凝胶能响应环境信息(如温度[5-7]、pH[8-11]、离子[12-13]、分子[14]、葡萄糖浓度[15-16]、光[17-18]、电[19]等)的微小变化,产生相应的体积变化或者其他物理化学性质的变化。因此,环境响应型智能水凝胶在化学传感器[20-22]、人工肌肉[23-24]、软体机器人[25-26]、化学反应开关[27-28]、组织工程[29-30]、药物控释[29-31]、物质分离[30,32]等领域有重要的应用价值。

智能水凝胶的响应速率是影响其应用性能的重要参数之一。在环境响应型智能水凝胶的许多应用中,如化学传感器、药物控释、物质分离等,往往需要智能水凝胶具有快速的响应特性。例如:当智能水凝胶用作化学传感器时,其快速响应特性可以减小其执行动作的滞后而实现更精确的控制;当智能水凝胶作为药物控释载体时,其快速响应特性可以使药物及时按需地释放;当智能水凝胶用于物质分离时,其快速响应特性可以大大缩短吸附-解吸过程的时间,从而使得分离过程更有效率。然而,通过传统方法构建的智能水凝胶网络大多有响应速度慢的缺点,响应时间通常是几个小时甚至几天。如:传统均聚方法合成的典型温敏型智能水凝胶聚(N-异丙基丙烯酰胺)[poly(N-isopropylacrylamide), PNIPAM],会在响应温度升高后在其表面形成一层致密的“皮层”,导致水凝胶收缩得非常缓慢,甚至需要一个月才能达到收缩平衡[33]。这种缓慢响应特性严重阻碍了智能水凝胶的应用进程。因此,构建具有快速响应特性的环境响应型智能水凝胶具有重要的意义。

Tanaka和Fillmore在1979年提出了关于水凝胶体积的溶胀/收缩速率的Tanaka-Fillmore理论[34]。他们认为水凝胶的体积变化速率是溶液中水凝胶聚合物网络作为整体、水分子在聚合物网络中综合扩散快慢的函数,并得出了水凝胶体积变化的特征时间(τ)与综合扩散系数(D)以及水凝胶特征尺寸(R)的关系

因此,要想缩短水凝胶体积变化的特征时间τ,有两种主要途径:一是改变水凝胶网络结构,提供水分子容易进出凝胶网络的通道,降低其扩散阻力,提高水分子在凝胶网络中的综合扩散系数D;二是通过降低水凝胶特征尺寸R以提高响应速率。

本文综述了近年来具有快速响应特性的环境响应型智能水凝胶的研究进展,主要介绍了具有多孔结构的快速响应智能水凝胶、具有梳状结构的快速响应智能水凝胶以及具有微球复合结构的快速响应智能水凝胶。本文为新型快速响应智能水凝胶的设计制备与应用提供了重要的指导意义。

1 具有多孔结构的快速响应智能水凝胶

智能水凝胶的溶胀和收缩过程主要是高分子聚合网络吸纳和释放水分子的过程。对于多孔结构的水凝胶来说,贯通的孔结构有利于水分子在凝胶网络中更容易地扩散。水凝胶的多孔结构一般通过加入致孔剂来实现。按照致孔剂添加或形成的顺序,可以将智能水凝胶多孔结构的构建方法分为两大类:合成中添加致孔剂法和合成后形成致孔剂法。合成中添加致孔剂法是在智能水凝胶合成过程中,将致孔剂添加到凝胶预聚液中,待水凝胶聚合成型后再将致孔剂除去以形成多孔结构;合成后形成致孔剂法是将水凝胶合成并充分溶胀之后,进行急速冷冻形成冰晶并将其作为致孔剂,使原凝胶网络重新排列,而冰晶溶解之后形成多孔结构。

Serizawa等[35-36]将二氧化硅颗粒添加到预聚液中,聚合完成后利用氢氟酸在室温下将二氧化硅颗粒除去得到多孔的PNIPAM水凝胶。传统的PNIPAM水凝胶需要近50 h才能达到收缩平衡,而该具有多孔结构的PNIPAM水凝胶的温敏响应速率明显提高,比传统水凝胶的响应速率提高了80倍[35]。二氧化硅微球的用量和粒径对PNIPAM水凝胶的温敏响应速率有显著的影响,微球浓度越高、粒径越小,则温敏响应速率越快[36]。

Chu等[37]采用微流控技术[图1(a)],以含有聚苯乙烯微球的预聚液为水相,制备了单分散的油包水乳液,并以此为模板制备了包埋聚苯乙烯微球的PNIPAM微凝胶,再用二甲苯将聚苯乙烯微球溶去,得到具有多孔结构的PNIPAM微凝胶。结果表明,当环境温度从23℃升高到47℃时,因为Tanaka-Fillmore理论[34]的尺寸效应,无孔结构的普通PNIPAM微凝胶的收缩速率明显比大凝胶快,仅需要66 s即可达到收缩平衡(图1 b1)。具有空心结构的PNIPAM微凝胶要比无孔结构的普通PNIPAM微凝胶的收缩得快(图1 b2);而具有多孔结构的PNIPAM微凝胶的收缩速率又比具有空心结构的PNIPAM微凝胶的收缩速率快(如图1 b3)。在降温过程中,具有多孔结构的PNIPAM微凝胶的溶胀速率也是最快的[图1(c)],而且孔隙率越大,微凝胶的响应速率越快。

图1 制备多孔结构的PNIPAM微凝胶的装置(a)以及不同结构的PNIPAM微球在23℃到47℃升温中的体积收缩变化过程(b)和47℃到23℃降温中的体积溶胀变化过程(c). (b1, c1)无孔结构的普通PNIPAM微凝胶;(b2, c2)具有空心结构的PNIPAM微凝胶;(b3, c3)具有多孔结构的PNIPAM微凝胶,标尺为100 μmFig. 1 Microfluidic device for preparing PNIPAM microgels with porous structure (a), and effects of internal structures on dynamic shrinking and swelling behaviors of microgels upon heating from 23 to 47℃ (b) and cooling from 47 to 23℃ (c). (b1, c1) Voidless microgel, (b2, c2) microgel with hollow shell structure, and (b3, c3) microgel with multiple voids. Scale bar = 100 μm. (Modified from Reference [37])

图2 交联度为4%的PNIPAM微球的SEM显微照片(a~c)及其收缩-溶胀速率(d,e)。其中,(a1, a2)为普通PNIPAM微凝胶(标记为N-4);(b1, b2)为异丙醇诱导PNIPAM体积收缩挤出超细油滴形成通孔结构的微凝胶(标记为OPI-4);(c1, c2)为温度诱导PNIPAM体积收缩挤出超细油滴形成通孔结构的微凝胶;(d) 3种微凝胶在25℃到50℃升温过程中的收缩速率;(e) 3种微凝胶在50℃到25℃降温过程中的溶胀速率Fig. 2 SEM images of PNIPAM microgels with different structures containing crosslinking degree of 4% (a—c), and shrinking and swelling rates of the proposed PNIPAM microgels (e, f). (a1, a2) Normal microgels (marked as N-4); (b1, b2) microgels with open-celled porous structure (marked as OPI-4), whose pore is formed by adding isopropanol; (c1, c2) microgels with open-celled porous structure (marked as OPH-4), whose pore is formed by increasing temperature; (d) shrinking rates of PNIPAM microgels with different structures during the process of increasing temperature from 25℃ to 50℃; (e) swelling rates of PNIPAM microgels with different structures during process of decreasing temperature from 50℃ to 25℃. (Modified from Reference [38-39])

Mou等[38-39]同样采用微流控技术制备具有多孔结构的PNIPAM微凝胶,不过该工作使用微油滴作为致孔剂,通过微凝胶的体积相变从而收缩挤出微油滴,在水凝胶内部形成贯通的孔结构。首先用高速均质乳化法制备水包油超细乳液(其中水相含有NIPAM单体、交联剂和引发剂);然后通过微流控装置制备油包(水包油)乳液,利用紫外光引发聚合生成包含超细油滴的PNIPAM微凝胶;再通过化学溶剂(如异丙醇)或者升温使PNIPAM微凝胶产生体积收缩而挤出凝胶中的超细油滴。普通的PNIPAM水凝胶具有致密的“皮层”(图2 a1,a2),而该方法制备得到的PNIPAM微凝胶具有贯通的孔结构(图2 b1,b2, c1,c2)。在升温过程中,PNIPAM微凝胶的通孔结构提供了具有小阻力的排水通道,使得PNIPAM微凝胶的收缩速率明显提高(图2d);同样地,通孔结构使PNIPAM微球在降温时具有更快的溶胀速率(图2e)。

还有很多其他材料作为智能水凝胶致孔剂,如CaCO3颗粒[40]、不同分子量的聚乙二醇PEG[41-42]、羟丙基纤维素[43]、NaHCO3[44]、Na2CO3[45]以及壳聚糖[46]等,构筑多孔的凝胶结构,提高智能水凝胶的响应特性。

相比于通过合成中在预聚体中添加致孔剂来构造凝胶多孔结构方法的多样化,水凝胶合成后再形成多孔结构的方法则比较单一。最常用的方法是在水凝胶溶胀后,迅速急冻在原位产生冰晶作为致孔剂。在冷冻过程中产生的冰晶使原水凝胶网络高分子链重新排列,而冰晶部分将成为小阻力的水通道。Xue等[46-47]通过改变冷冻前的水凝胶含水量,控制调节冷冻处理后水凝胶内孔的大小,当平衡时水含量在10倍聚合物量以上时,冷冻处理后的水凝胶在收缩过程中,当体积收缩一半的时间仅需要30~40 s,比普通常规水凝胶要快100多倍。

2 具有梳状结构的快速响应智能水凝胶

梳状结构的水凝胶是指凝胶网络中有一端是具有自由端高分子侧链的一类具有快速响应特性的水凝胶。当受到外界刺激时,侧链自由端可自由运动,从而更容易收缩或溶胀,导致梳状结构的水凝胶具有较快的响应速率。

梳状结构的水凝胶最早由Yoshida等[33]报道。他们在PNIPAM水凝胶网络中引入悬挂的PNIPAM高分子侧链,可以得到比较均匀的且溶胀/收缩速度较快的温敏水凝胶。其快速响应机理是在水凝胶网络中的侧链自由端当温度升高时能很快地收缩,其收缩后附着在水凝胶骨架网络链上,从而在骨架网络链之间形成阻力较小的水通道。

图3 传统poly(NIPAM-co-AAc)水凝胶(标记为NNA30)和梳状结构的poly(NIPAM-co-AAc)水凝胶的示意图(标记为GNA30) (a),以及其在响应温度和pH刺激后动态收缩过程(b). 温度从25℃升温至60℃而pH从7.4降到2.0,GNA30-2 比GNA30-1具有更多数量的侧链[48]Fig. 3 Schematic illustration of structures of normal-type and comb-type grafted poly(NIPAM-co-AAc) hydrogels marked as NNA30 and GNA30 respectively (a), and deswelling process of NNA30, GNA30-1 and GNA30-2 hydrogels undergoing shrinking at pH 2.0 and 60℃ after being removed from an equilibrium condition of pH 7.4 at 25℃ (b)[48]

Zhang等[48-49]将PNIPAM大分子单体、NIPAM小分子单体、丙烯酸(AAc)以及交联剂通过自由基聚合反应,制备了温度和pH双重敏感刺激响应的聚(N-异丙基丙烯酰胺-共聚-丙烯酸)[poly(NIPAM-co-AAc)]大凝胶和微凝胶。相比于普通的水凝胶,这种凝胶的主体凝胶网络上存在有可自由摆动的梳状接枝链[如图3(a)],结合了对温度响应的单体和pH响应的单体合成的梳型接枝共聚凝胶,不仅具有多重环境响应特性,并且具有快速响应速率[如图3(b)]。该工作研究了同时改变两种环境因素对智能水凝胶响应速率的影响,发现温度和pH双重因素可以协同作用使水凝胶更快地响应。水凝胶的溶胀比和收缩响应速率都受到梳状接枝链数量的影响:梳状接枝链越多,水凝胶对温度和pH的响应能力越大。在此工作基础上,他们又报道了一种阳离子型温度和pH双重刺激响应型聚(N-异丙基丙烯酰胺-共聚-N,N'-甲基丙烯酸二甲氨基乙酯)[poly(NIPAM-co-DMAEMA)]水凝胶[50]。当温度从18℃升高到44℃、同时环境pH从7.4升高到11时,具有梳状结构的poly(NIPAM-co-DMAEMA)水凝胶的收缩速率明显快于传统型水凝胶。

Zhang等[16]设计了具有梳状结构的葡萄糖浓度响应的智能水凝胶。该智能水凝胶在生理温度下(约37℃),能快速响应生理葡萄糖浓度的变化,表现出很大程度的体积相变。这种具有梳状结构的葡萄糖浓度响应的智能水凝胶在葡萄糖响应型传感器、药物送达系统等方面具有广阔的应用前景。

3 具有微球复合结构的快速响应智能水凝胶

根据Tanaka-Fillmore理论[34],智能水凝胶的尺寸越小,其响应速度越快。如,直径100 nm左右的PNIPAM微球完成收缩的时间不到2 μs[51]。因此,基于智能微凝胶的快速响应能力,研究者们设计了具有微球复合结构的快速响应水凝胶。根据微球在凝胶网络的存在形式,一般将具有微球复合结构的智能水凝胶分为两大类:物理包埋微球型以及化学交联微球型。物理包埋微球型复合结构水凝胶是一类将智能纳米微球通过简单的物理包埋方式固嵌在凝胶网络中形成的快速响应水凝胶;化学交联微球型复合结构水凝胶是一类将智能微球通过化学键将微球交联到凝胶网络中形成的快速响应水凝胶。

Zhang等[52]将PNIPAM微球分散到NIPAM单体预聚液中,然后聚合成物理包埋微球型复合结构PNIPAM水凝胶,该凝胶具有快速响应特性。Yue 等[53]认为物理包埋微球型复合结构PNIPAM水凝胶具有快速响应特性的原因是PNIPAM纳米微凝胶的快速收缩,从而产生一定的空隙或通道,有利于凝胶网络中的水分排出,从而可以加快整个水凝胶的收缩速率(图4)。

Cho等[54-55]将NIPAM和烯丙胺的共聚微球交联起来形成了化学交联微球型复合结构快速响应温敏水凝胶。该工作利用微球上的烯丙胺和外加的聚丙烯酸间形成静电吸引而将微球胶凝,适度加热后再加入戊二醛将微球上的氨基化学交联,从而得到水凝胶。采用这种方法制备温敏水凝胶退溶胀速度非常快,从20℃到40℃升温过程中,仅需150 s即基本达平衡且溶胀时也无滞后现象。

图4 物理包埋PNIPAM纳米凝胶复合结构的PNIPAM水凝胶的响应原理示意图[53]Fig. 4 Schematic illustration of rapid response process of PNIPAM hydrogel with composite structure of physically embedded PNIPAM nanogels[53]

图5 化学交联PNIPAM微球复合结构PNIPAM水凝胶的制备原理示意图(a)以及不同成分结构的PNIPAM水凝胶在25℃至50℃升温过程中的收缩行为(b, c)[56]Fig. 5 Schematic illustration of preparation of nanogel-composited PNIPAM hydrogel (a), and dynamic volume-deswelling behaviours of PNIPAM hydrogels after environmental temperature jumping abruptly from 25℃ to 55 ℃, in which Vtand V0are volumes of hydrogels at time t and at beginning (t=0, equilibrated in water at 25℃) respectively[56]

Xia等[56]制备了含有可聚合悬挂双键的PNIPAM活性微凝胶,然后与NIPAM单体化学交联共聚得到化学交联微球型复合结构的水凝胶(NSG)。其制备过程如图5(a)所示,首先将单体NIPAM与交联剂N,N′-亚甲基双丙烯酰胺(BIS)在乳化剂十二烷基硫酸钠(SDS)和引发剂过硫酸钾(KPS)存在条件下,在60℃水中聚合,反应一段时间后,急速中止聚合反应,得到带有可聚合不饱和双键的PNIPAM微凝胶分散液;再向PNIPAM 微凝胶分散液中加入NIPAM单体,并在冰水浴中以N,N,N′,N′-四甲基乙二胺(TMEDA)催化,利用PNIPAM微凝胶分散液中残余的引发剂引发聚合得到复合结构温敏水凝胶。与BIS交联的传统PNIPAM水凝胶(NG)相比,该NSG水凝胶的收缩响应速率明显提升。工作系统地考察了该化学交联微球型复合结构PNIPAM水凝胶的收缩动力学[图5(b),(c)],发现制备活性微凝胶的聚合时间延长可提高复合结构的PNIPAM水凝胶的收缩速率[图5(b)]。增加初始NIPAM浓度,从而提高PNIPAM微凝胶含量,可使NSG水凝胶的响应速率加快[图5(c)]。值得一提的是该微球复合结构水凝胶还具有优越的机械性能。

4 结 论

环境响应智能水凝胶的物理或者化学性质可以根据外界环境改变而改变。这种凝胶的响应行为使其在化学传感器、化学微阀、人造肌肉、药物控释载体、物质分离等领域都有广阔的应用前景。从应用的角度考虑,常常要求智能水凝胶具有快速响应特性,因此,提高智能水凝胶的响应速率成了智能水凝胶研究领域的重要课题之一。

然而,到目前为止,具有快速响应特性的环境响应智能水凝胶也面临着诸多挑战。第一,在构筑特殊凝胶网络结构来提高水凝胶响应特性的同时,往往会影响智能水凝胶的另外一个重要的参数——机械性能,而同时具有快速响应特性和高机械强度的智能水凝胶一直是研究者们孜孜以求的目标。第二,迄今报道的具有快速响应特性的智能水凝胶响应的刺激种类尚比较单一,而面对工业上或临床应用,还需要进一步开发出其他多种刺激的和多重刺激的快速响应智能水凝胶。第三,将具有快速响应特性的环境响应智能水凝胶开发应用于化工、生物、医药等领域,创造显著的社会效益和经济价值。相信通过多学科领域的科技工作者的进一步努力,具有快速响应特性的环境响应智能水凝胶的发展必将日新月异。也可预见,快速响应智能水凝胶会有更广阔的应用前景。

References

[1] WICHERLE O, LIM D. Hydrophilic gels for biological use [J]. Nature, 1960, 185: 117-118.

[2] LEE K Y, MOONEY D J. Hydrogels for tissue engineering [J]. Chem. Rev., 2001, 101: 1869-1879.

[3] LIU M J, ISHIDA Y, EBINA Y, et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets [J]. Nature, 2015, 517: 68-72

[4] CHU L Y, XIE R, JU X J, et al. Smart Hydrogel Functional Materials[M]. Berlin, Heidelberg: Springer-Verlag, 2013.

[5] HU Z B, CHEN Y Y, WANG C J, et al. Polymer gels with engineered environmentally responsive surface patterns [J]. Nature, 1998, 393: 149-152.

[6] JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408, 178-181.

[7] XIAO X C, CHU L Y, CHEN W M, et al. Positively thermo-sensitive monodisperse core-shell microspheres [J]. Adv. Funct. Mater., 2003, 13: 847-852.

[8] KIM S J, SPINKS G M, PROSSER S, et al. Surprising shrinkage of expanding gels under an external load [J]. Nat. Mater., 2006, 5: 48-51.

[9] LEE B P, KONST S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry [J]. Adv. Mater., 2014, 26: 3415-3419.

[10] LEE K, ASHER S A. Photonic crystal chemical sensors: pH and ionic strength [J]. J. Am. Chem. Soc., 2000, 122, 9534-9537.

[11] SHIM T S, KIM S H, HEO C J, et al. Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers [J]. Angew. Chem. Int. Ed., 2012, 51: 1420-1423.

[12] MI P, JU X J, XIE R, et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release [J]. Polymer, 2010, 51:1648-1653.

[13] JIANG M Y, JU X J, FANG L, et al. A novel smart microsphere with K+-induced shrinking and aggregating property based on responsive host-guest system [J]. ACS Appl. Mater. Inter., 2014, 6: 19405-19415.

[14] TU T, FANG W W, SUN Z M. Visual-size molecular recognition based on gels [J]. Adv. Mater., 2013, 25: 5304-5313.

[15] SAMOEI G K, WANG W H, ESCOBEDO J O, et al. A chemomechanical polymer that functions in blood plasma with high glucose selectivity [J]. Angew. Chem. Int. Edit., 2006, 45: 5319-5322.

[16] ZHANG S B, CHU L Y, XU D, et al. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature [J]. Polym. Adv. Technol., 2008, 19: 937-743.

[17] JUODKAZIS S, MUKAI N, WAKAKI R, et al. Reversible phase transitions in polymer gels induced by radiation forces [J]. Nature, 2000, 408: 178-181.

[18] TATSUMA T, TAKADA K, MIYAZAKI T. UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel [J]. Adv. Mater., 2007, 19: 1249-1521.

[19] KWON I C, BAE Y H, KIM S W. Electrically erodible polymer gel for controlled release of drugs [J]. Nature, 1991, 354: 291-293.

[20] BEEBE D J, MOORE J S, BAUER J M, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels [J]. Nature, 2000, 404: 588-590.

[21] DONG L, AGARWAL A K, BEEBE D J, et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels [J]. Nature, 2006, 442: 551-554.

[22] CHEN C, ZHU Y H, BAO H, et al. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor [J]. Chem. Commun., 2011, 47: 5530-5532.

[23] SIDORENKO A, KRUPENKIN T, TAYLOR A, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns [J]. Science, 2007, 315: 487-490.

[24] TAKASHIMA Y, HATANAKA S, OTSUBO M, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions [J]. Nat. Commun., 2012, 3: 1270.

[25] CALVERT P. Hydrogels for soft machines [J]. Adv. Mater., 2009, 21: 743-756.

[26] YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators [J]. Adv. Funct. Mater., 2015 25: 2980-2991

[27] HE X M, AIZENBERG M, KUKSENOK O, et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation [J]. Nature, 2012, 487: 214-218.

[28] KUMACHEVA E. Hydrogels: the catalytic curtsey [J]. Nat. Mater., 2012, 11: 665-666.

[29] SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications [J]. Science, 2012, 336: 1124-1128.

[30] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials [J]. Nat. Mater., 2010, 9: 101-113.

[31] LIU Z, LIU L, JU X J, et al. K+-recognition capsules with squirting release mechanisms [J]. Chem. Commun., 2011, 47: 12283-12285.

[32] NAGASE K, KOBAYASHI J, OKANO T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering [J]. J. R Soc. Interface, 2009, 6: S293-S309.

[33] YOSHIDA R, UCHIDA U, KANEKO Y, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes [J]. Nature, 1995, 374: 240-242.

[34] TANAKA T, FILLMORE D J. Kinetics of swelling of gels [J]. J. Chem. Phys., 1979, 70: 1214-1218.

[35] SERIZAWA T, WAKITA K, KANEKO T, et al. Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica particles and subsequent acid treatment [J]. J. Polym. Sci. Pol. Chem., 2002, 40: 4228-4235.

[36] SERIZAWA T, WAKITA K, AKASHI M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silicon particles [J]. Macromolecules, 2002, 35: 10-12.

[37] CHU L Y, KIM J W, SHAH R K, et al. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics [J]. Adv. Funct. Mater., 2007, 17: 3499-3504

[38] MOU C L, JU X J, ZHANG L, et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure [J]. Langmuir, 2014, 30(5): 1455-1464.

[39] MOU C L. Study on microfluidic fabrication of stimuli-responsive microspheres and microcapsules with novel structures and functions[D]. Chengdu: Sichuan University, 2014: 49-75.

[40] LEE W F, YEH Y C. Effect of porosigen and hydrophobic monomer on the fast swelling-deswelling behaviors for the porous thermoreversible copolymeric hydrogels [J]. J. Appl. Polym. Sci., 2006, 100: 3152-3160

[41] ZHANG X Z, YANG Y Y, CHUNG T S, et al. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels [J]. Langmuir, 2001, 17: 6094-6099

[42] ZHUO R X, LI W. Preparation and characterization of macroporous poly(N-isopropylacrylamide) hydrogels for the controlled release of proteins [J]. J. Polym. Sci. Pol. Chem., 2003, 41: 152-159.

[43] WU X S, HOFFMAN A S, PAUL Y. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels [J]. J. Polym. Sci. Pol. Chem.. 1992, 30: 2121-2129.

[44] CHEN J, PARK H, PARK K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties [J]. J. Biomed. Mater. Res., 1999, 44: 53-62.

[45] ZHANG Y, TAN T W. Preparation of fast responsive, pH sensitive polyaerylic acid gel with different pore-forming agents [J]. J. Biomed. Eng., 2007, 24:884-889.

[46] XUE W, HAMLEY I W, HUGLIN M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerization [J]. Polymer, 2002, 43: 5181-5186

[47] XUE W, CHAMP S, HUGLIN M B, et al. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-coacrylic) [J]. Eur. Polym. J., 2004, 40: 467-476.

[48] ZHANG J, CHU L Y, LI Y K, et al. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors [J]. Polymer, 2007, 48: 1718-1728.

[49] ZHANG J, CHU L Y, CHENG C J, et al. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties [J]. Polymer, 2008, 49: 2595-2603.

[50] ZHANG J, XIE R, ZHANG S B, et al. Rapid pH/temperatureresponsive cationic hydrogels with dual stimuli-sensitive grafted side chains [J]. Polymer, 2009, 50: 2516-2525.

[51] WANG J P, GAN D J, LYON L A, et al. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. J. Am. Chem. Soc., 2001, 123: 11284-11289.

[52] ZHANG J T, HUANG S W, XUE Y N, et al. poly(N-isopropylacrylamide) nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics [J]. Macromol. Rapid Comm., 2005, 26: 1346-1350.

[53] YUE L L, XIE R, WEI J, et al. Nano-gel containing thermo-responsive microspheres with fast response rate owing to hierarchical phase-transition mechanism [J]. J. Colloid Interf. Sci., 2012, 377: 137-144.

[54] CHO E C, KIM J W, FERNANDEZ-NIEVES A, et al. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles [J]. Nano Letters, 2008, 8: 168-172

[55] CHO E C, KIM J W, HYUN D C, et al. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids [J]. Langmuir, 2010, 26: 3854-3859.

[56] XIA L W, XIE R, JU X J, et al. Nano-structured smart hydrogels with rapid response and high elasticity [J]. Nature Commun., 2013, 4: 2226.

Foundation item: supported by the National Natural Science Foundation of China (20825622, 21136006).

Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics

LIU Zhuang1, XIE Rui1, JU Xiaojie1,2, WANG Wei1, CHU Liangyin1,2
(1School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China;2State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China)

Abstract:Stimuli-responsive smart hydrogels have been considered to be highly potential in versatile applications in numerous fields, such as chemical sensors and/or actuators, chemical values, artificial muscle, controlled drug delivery systems and substance separations, for which rapid responsive characteristics are highly desired. Therefore, rapid response to environmental stimuli is critical for the versatility of such smart hydrogels. This review briefly introduces the design and fabrication of stimuli-responsive smart hydrogels with rapid responsive characteristics, including three main types of smart hydrogels designed with different structures, which are open-cell porous structure, comb-type structure, and microsphere-composited structure. This review provides valuable information and guidance for rational design of novel stimuli-responsive smart hydrogels with rapid responsive characteristics.

Key words:smart hydrogels; polymers; environmental stimuli-response; rapid responsive property

Corresponding author:Prof. CHU Liangyin, chuly@scu.edu.cn

基金项目:国家自然科学基金项目(20825622, 21136006)。

中图分类号:TB 381

文献标志码:A

文章编号:0438—1157(2016)01—0202—07

DOI:10.11949/j.issn.0438-1157.20151015

猜你喜欢

聚合物
聚合物改善水泥石渗透性评价方法研究
环保型抗高温抗盐聚合物降粘剂的合成及评价
复合型高分子导电材料浅析
磷酸镁水泥的聚合物改性研究
对聚合物改性水泥基材料的探析