APP下载

5′肌醇磷酸酶影响骨骼肌纤维发育的研究进展

2016-01-12熊琪李晓锋索效军张年陶虎刘洋陈明新

湖北农业科学 2015年24期

熊琪 李晓锋 索效军 张年 陶虎 刘洋 陈明新

摘要:5′肌醇磷酸酶(Skeletal muscle and kidney enriched inositol polyphosphate phosphatase,SKIP)基因多物种的QTL定位表明,SKIP是影响骨骼肌发育的候选基因,其在骨骼肌里面的表达由成肌转录因子MyoD所调控。SKIP在成肌分化过程中发挥着重要的负调控作用,其作用机制主要依赖于水解磷脂酰肌醇三磷酸PI(3,4,5)P3的酶活性及对PI3K-AKT信号通路的负调控。因此,对SKIP影响骨髓肌纤维发育进行了简要综述。

关键词:SKIP;QTL;PI3K-AKT;肌纤维发育

中图分类号:Q445 文献标识码:A 文章编号:0439-8114(2015)24-6127-03

DOI:10.14088/j.cnki.issn0439-8114.2015.24.005

Abstract: The QTL locations of SKIP gene in many species indicated that SKIP is a candidate gene of skeletal muscle development. The expression of SKIP in skeletal muscle is controlled by the transcription factor MyoD. SKIP plays a negative role in myoblast differentiating. The mechanism mainly dependents on its activity to hydrolyze PI(3,4,5)P3 and its negative role in the PI3K-Akt pathway.Therefore,SKIP on skeletal muscle development is reviewed.

Key words: SKIP;QTL;PI3K-AKT;muscle fiber development

1 SKIP的发现

2000年,Ijuin等[1]首先发现并分离了人的一个新肌醇磷酸酶(Skeletal muscle and kidney enriched inositol polyphosphate phosphatase,SKIP),存在3个可变性剪接体,剪接体2相比剪接体1多出230 bp的外显子序列,剪接体3的C端非编码区有937 bp序列缺失(图1A),因而SKIP的分子质量有51 ku和43 ku两种大小(图1B)。SKIP具有肌醇多磷酸5-磷酸酶典型的2个保守结构域,C端SKICH结构域介导SKIP的转移[2]。该肌醇磷酸酶在各组织中广泛表达,在心脏、骨骼肌和肾脏中高表达,故SKIP也称骨骼肌和肾脏高表达的肌醇磷酸酶。

2 SKIP的5′肌醇磷酸酶活性

Schmid等[3]发现SKIP能水解磷脂酰肌醇磷酸PI(3,4,5)P3、PI(4,5)P2以及肌醇磷酸I(1,4,5)P3、I(1,3,4,5)P4第5位的磷酸。PI(3,4,5)P3作为细胞内一种重要的第二信使,在PI3K-AKT信号通路中的作用十分关键。在多种类型的细胞中,SKIP通过水解PI3K的下游信号分子PI(3,4,5)P3的5位磷酸,负调控PI3K-Akt信号,如在CHO、L6、C2C12等胰岛素敏感细胞内,细胞内源SKIP表达的抑制可显著提高胰岛素介导的PI3K-Akt活性,促进葡萄糖载体GLUT4的转移和葡萄糖的吸收效率[4]。在静息细胞中,SKIP分布于核周内质网;在胰岛素、IGFs等细胞因子作用转移至细胞膜外;在脚手架蛋白Pak1支撑下,与磷脂酰肌醇PI(3,4,5)P3的效应物(Akt2、PDK1及Rac1)结合形成蛋白复合物,水解PI(3,4,5)P3并使效应物失活[2,5]。

PI(4,5)P2是调节肌动蛋白聚合的信号分子[6]。研究表明,SKIP水解细胞中PI(4,5)P2的能力与水解胰岛素介导的PI(3,4,5)P3的能力相同[4],相比水解PI(1,4,5)P3的能力提高6倍。肌动蛋白应力纤维在SKIP聚集处消失的研究证实SKIP通过水解PI(4,5)P2参与细胞骨架的重排[1]。

3 SKIP基因的QTL定位

人类SKIP基因定位于17号染色体短臂p13.3上。SKIP与相邻基因综合症有关,如米-迪综合征(无脑回畸形)是由17p13.3上400 kb区域内8个基因(PRP8,RILP, SREC, PITPNa, SKIP, MYO1C, CRK,and 14-3-3ζ)的杂合缺失引起[7];17p13.3区域等位基因的丢失会导致乳房、卵巢和神经的恶性肿瘤[8-10]。猪、牛、羊等经济动物基因组内SKIP基因则多影响生产性状的QTL,如猪SKIP基因定位在12号染色体长臂q1.3上,其所在位置存在影响第10肋骨背膘厚、胴体长[11]。肌纤维数目[12]和大腿重[13]的QTL区域。相关研究也表明SKIP基因的多态位点可显著影响大白猪×梅山猪F2代群体的背最长肌高度、皮率、骨率、至第一颈椎胴体长、至第一肋胸胴体长、内脂率等多项胴体性状[14]。牛的SKIP同源基因定位于19号染色体长臂q1.3上,其所在位置存在影响犊牛出生重[15]的QTL区域。绵羊SKIP基因定位于11号染色体长臂q1.5-1.6,这段区域存在影响体重、胴体重以及体内脂肪量[16]的QTL区域。

4 SKIP在骨骼肌细胞中的表达调控

Xiong等[17]研究发现SKIP启动子区域存在多物种保守的MyoD结合位点。该位点的缺失或定点突变都导致肌源细胞中SKIP转录水平下降,MyoD干扰试验也证明SKIP在肌源细胞中的表达活性依赖于MyoD的转录调控。该结果得到了日本神户医学研究所Tadaomi Takenawa团队的证实,研究还发现SKIP从24 h开始表达上调,48 h达到峰值,且SKIP以MyoD依赖的方式表达上调[5]。这也解释了SKIP在骨骼肌中高表达的原因,即肌肉组织中高表达的转录因子MyoD可能通过结合在SKIP 5′调控区的MyoD结合元件上增强其在骨骼肌中的转录。endprint

5 SKIP影响肌纤维发育的可能机制

研究表明肌肉特异性基因SKIP与肌纤维发育密切相关。SKIP基因杂合突变小鼠的比目鱼肌和股四头肌的重量显著提高[18]。猪、牛、羊等经济动物基因组内该基因的分布影响肌纤维发育的QTL,如猪肌纤维数目和大腿重、背最长肌高度以及犊牛出生重、绵羊胴体重等。尽管SKIP作为影响肌纤维发育的候选基因其作用机制仍有待阐明,SKIP可能通过以下机制调控肌纤维发育。

1)SKIP通过介导肌管中PI3K-Akt-mTOR的蛋白质合成信号,参与调控肌纤维的肥大过程。PI3K-Akt-mTOR信号可以通过增加特异性mRNA的翻译控制蛋白质合成,是调控骨骼肌纤维肥大的重要信号通路。研究发现SKIP可抑制CHO细胞中的PI3K-Akt信号以及蛋白合成信号关键蛋白mTOR的下游靶蛋白p70S6活性[4]。在肌管细胞中,SKIP同样也表现出了对PI3K-Akt信号的负调节作用[19],需要进一步证实的是在肌纤维形成过程中SKIP对mTOR及下游靶蛋白p70S6活性的影响。

2)SKIP通过介导成肌细胞的骨架重排,参与肌纤维的形成。当肌细胞开始分化,经历细胞迁移、细胞融合和肌动蛋白细胞骨架重排等细胞形态学和动力学上的改变。作为PI3激酶的下游信号分子,PI(3,4,5)P3能促进肌动蛋白丝的结构组装[20]。借助分子伴侣SODD[21],SKIP水解底物PI(3,4,5)P3来调控肌动蛋白丝结构组装,调节细胞骨架的重排[20];或SKIP通过PI(4,5)P2影响肌动蛋白应力纤维的聚集[1],调控成肌细胞的融合。

3)SKIP通过抑制IGF2的表达负调控成肌分化,影响肌纤维数目,由骨骼肌源细胞的成肌分化所控制[22]。饥饿时,小鼠成肌细胞内的SKIP通过抑制自分泌促分化因子IGF2的表达负调控PI3K-AKT信号介导的成肌分化[5]。IGF2的下游信号Akt在促进成肌分化的许多环节中起作用,可调节细胞周期中G1→S期的进展[23],控制着分化早期myogenin的表达,肌管的成熟[24]等。有研究表明抑制SKIP基因的表达使融入肌管的细胞核增多,肌管形成加速[5]。因此SKIP控制着成肌分化的进度,是影响肌纤维数目的关键基因。

6 展望

在成肌细胞分化过程中,SKIP从24 h开始才表达上调。相对于分化12 h内表达上调的肌肉特异性基因,SKIP属于晚期上调基因。某些磷酸酶的晚期表达能重塑细胞信号网络[25]。因此,SKIP基因上调表达很可能是MyoD对成肌分化进行自我控制的方式。而像这类成肌分化晚期表达基因的转录调控模式也需要进一步探究,这是控制骨骼肌细胞成肌分化的关键机制。

参考文献:

[1] IJUIN T, MOCHIZUKI Y, FUKAMI K, et al. Identification and characterization of a novel inositol polyphosphate 5-phosphatase[J]. J Biol Chem,2000,275(15):10870-10875.

[2] GURUNG R, TAN A, OOMS L M, et al. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation[J]. J Biol Chem,2003,278(13):11376-11385.

[3] SCHMID A C,WISE H M,MITCHELL C A,et al. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation[J]. FEBS Lett,2004,576(1-2):9-13.

[4] IJUIN T, TAKENAWA T. SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation[J]. Mol Cell Biol,2003,23(4):1209-1220.

[5] IJUIN T, TAKENAWA T. Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation[J]. J Biol Chem,2012,287(37):31330-31341.

[6] PARKER M H, PERRY R L, FAUTEUX M C, et al. MyoD synergizes with the E-protein HEB beta to induce myogenic differentiation[J]. Mol Cell Biol,2006,26(15):5771-5783.endprint

[7] CARDOSO C, LEVENTER R J, WARD H L, et al. Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller-Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3[J]. Am J Hum Genet,2003,72(4):918-930.

[8] SCHULTZ D C, VANDERVEER L, BERMAN D B, et al. Identification of two candidate tumor suppressor genes on chromosome 17p13.3[J]. Cancer Res,1996,56(9):1997-2002.

[9] CVEKL A J R, ZAVADIL J, BIRSHTEIN B K, et al. Analysis of transcripts from 17p13.3 in medulloblastoma suggests ROX/MNT as a potential tumour suppressor gene[J]. Eur J Cancer,2004,40(16):2525-2532.

[10] RONCUZZI L, BROGNARA I, BAIOCCHI D, et al. Loss of heterozygosity at 17p13.3-ter, distal to TP53, correlates with negative hormonal phenotype in sporadic breast cancer[J]. Oncol Rep,2005,14(2):471-474.

[11] THOMSEN H, LEE H K, ROTHSCHILD M F, et al. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine[J]. Journal of Animal Science,2004,82(8):2213-2228.

[12] WIMMERS K, FIEDLER I, HARDGE T, et al. QTL for microstructural and biophysical muscle properties and body composition in pigs[J]. Bmc Genetics,2006,7:1-15.

[13] MILAN D, BIDANEL J P, IANNUCCELLI N, et al. Detection of quantitative trait loci for carcass composition traits in pigs[J]. Genetics Selection Evolution,2002,34(6):705-728.

[14] XIONG Q, CHAI J, DENG C, et al. Characterization of porcine SKIP gene in skeletal muscle development: Polymorphisms, association analysis, expression and regulation of cell growth in C2C12 cells[J]. Meat Sci,2012,92(4):490-497.

[15] THOMASEN J R, GULDBRANDTSEN B, SORENSEN P, et al. Quantitative trait loci affecting calving traits in Danish Holstein cattle[J]. J Dairy Sci,2008,91(5):2098-2105.

[16] CAVANAGH C R, JONAS E, HOBBS M, et al. Mapping Quantitative Trait Loci (QTL) in sheep. III. QTL for carcass composition traits derived from CT scans and aligned with a meta-assembly for sheep and cattle carcass QTL[J]. Genet Sel Evol,2010,42:36-50.

[17] XIONG Q, CHAI J, ZHANG P P, et al. MyoD control of SKIP expression during pig skeletal muscle development[J]. Mol Biol Rep,2011,38(1):267-274.

[18] IJUIN T, YU Y E, MIZUTANI K, et al. Increased insulin action in SKIP heterozygous knockout mice[J]. Mol Cell Biol,2008,28(17):5184-5195.

[19] XIONG Q, DENG C Y, CHAI J, et al. Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts[J]. Bmb Reports,2009,42(2):119-124.endprint

[20] HILPELA P, VARTIAINEN M K, LAPPALAINEN P. Regulation of the actin cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3[J]. Curr Top Microbiol Immunol,2004,282:117-163.

[21] RAHMAN P, HUYSMANS R D, WIRADJAJA F, et al. Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol 5-phosphatase (SKIP) and regulates phosphoinositide 3-kinase(PI3K)/Akt signaling to the actin cytoskeleton[J]. J Biol Chem,2011,286(34):29758-29770.

[22] DAVOLI R, BRAGLIA S, RUSSO V, et al. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs[J]. J Anim Breed Genet,2011,128(1): 15-27.

[23] BOONSTRA J. Identification of a restriction point at the M/G1 transition during the ongoing cell cycle[J]. Adv Enzyme Regul,2007,47:208-221.

[24] ROTWEIN P, WILSON E M. Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation[J]. J Cell Physiol, 2009,219(2):503-511.

[25] GUASCONI V, PURI P L. Chromatin: The interface between extrinsic cues and the epigenetic regulation of muscle regeneration[J]. Trends Cell Biol,2009,19(6):286-294.endprint