APP下载

二肽基肽酶-4 与慢性肝病相关性研究进展

2015-03-18陈晓蓉

胃肠病学和肝病学杂志 2015年9期
关键词:肽酶祖细胞干细胞

俞 媛,陈晓蓉

复旦大学附属公共卫生临床中心,上海201508

二肽基肽酶-4(dipeptidyl peptidase-4,DPP-4)又称CD26,是以二聚体形式存在的高特异性丝氨酸蛋白酶,最早由大鼠肝脏中分离得到[1]。DPP-4 广泛分布在机体中,其表达主要见于上皮细胞、内皮细胞、成纤维细胞和淋巴细胞中,还可以作为可溶性循环形式存在于血浆中[2-3],这些广泛分布的形态表明,DPP-4 具有多效生物活性。健康人群肝脏中的DPP-4 具有较高的表达量,通过强染色法可以发现DPP-4 主要存在于肝腺泡2 区和3 区,这种异构小叶的分布显示DPP-4 参与到肝脏代谢的调节作用[4]。本文就DPP-4 的生物学效应及其在肝脏疾病形成和治疗中的研究进展作一概述。

1 DPP-4 生物学效应

1.1 肽酶 DPP-4 作为丝氨酸蛋白酶,可以迅速且特异性地裂解肽链N-末端第二位的脯氨酸或丙氨基残基从而导致诸多相关肽酶丧失生理活性,包括肠降血糖素、抑制食欲神经肽及各类趋化因子等。目前研究显示DPP-4 肽酶活性具有多种生理功能,主要表现在糖代谢、肠道蠕动、免疫功能和疼痛的调节方面[5]。

1.2 免疫刺激 在T 细胞静息状态下,机体内DPP-4表达呈下调趋势;然而,通过白介素细胞-12(IL-12)相关抗原及有丝分裂的刺激,DPP-4 的表达会呈现明显上调状态[6]。DPP-4 可以激活人体细胞内分子,包括磷脂酶C-γ、p56kk、丝裂原活化蛋白激酶。这种激活作用可以增强T 细胞的成熟和迁移、细胞因子的分泌、B细胞免疫球蛋白同种型转换及活化细胞毒素T 细胞[7]。此外,DPP-4 与6 磷酸甘露糖受体相结合后可以被CD14 阳性单核细胞所接受,最终增加机体抗原递呈活性和T 细胞的增殖[8]。

1.3 结合与降解细胞外基质 DPP-4 可以有效地与细胞外基质(extracellular matrixc,ECM)相结合,特别是Ⅰ型、Ⅲ型胶原蛋白和纤维连接蛋白,目前公认的DPP-4 胶原蛋白结合位点位于分子的C-末端部分[9]。DPP-4 与腺苷脱氨酶相结合,同时还可激活纤维蛋白溶酶原,从而提高血纤维蛋白溶酶水平。血纤维蛋白溶酶的增加会导致Ⅳ型胶原、纤连蛋白、层粘连蛋白和蛋白聚糖的降解,并激活基质金属蛋白酶[10],这一系列的变化最终导致ECM 的降解。

1.4 抑制抗癌剂 DPP-4 与恶性血液病抗癌药物敏感性密切相关。采用抗DPP-4 单克隆抗体治疗T 细胞淋巴瘤容易引发MAPK 和整合素β1 的去磷酸化,提高抗癌剂的敏感性和患者生存时间[11]。相似的结果已经在肾细胞癌和恶性间皮瘤的研究中得到证实[12]。在移植瘤大鼠动物模型,抗DPP-4 单克隆抗体通过结合细胞外基质部位的不同来阻止肾细胞癌的生长[13]。另外,DPP-4 通过下调MAPK 细胞外信号调节激酶1/2 的过度表达来抑制细胞的迁移和侵袭能力,最终达到诱导前列腺癌细胞的凋亡[14]。这说明DPP-4 在不同类型的肿瘤发病和治疗机制中扮演不同的角色。

1.5 脂肪堆积 DPP-4 作为已知影响机体脂肪新陈代谢的蛋白酶,主要通过多肽失活来影响机体的脂质代谢,常见的肽类有胰高血糖素样肽1(GLP-1)、神经肽Y、缩氨酸YY 等。敲除基因编码的DPP-4 可以直接激活过氧化酶体重组腺病毒受体-α 通路及导致固醇调节元件结合蛋白-1 通路的失活,达到最终阻止高脂肪膳食引起的肝脂肪变性的目的[15]。

2 DPP-4 与肝脏疾病相关性研究

2.1 丙型肝炎病毒(hepatitis C virus,HCV) 与健康人群相比,HCV 感染与机体回肠、肝脏及血清中的DPP-4 含量表达上升有着密切关联[16]。对HCV 非结构基因区的4B/5A cDNA 的转染可以诱导肝细胞株中DPP-4 的表达。研究发现采用干扰素疗法根除HCV 病毒会导致血清DPP-4 水平的下降,而采用DPP-4 抑制剂可以显著改善HCV 感染引起的葡萄糖耐受不良[17]。对血清进行淋巴细胞亚群分析来看,HCV 患者肝门区和肝门静脉区分布大量的CD8+T 细胞,实验研究证实CD8+T 细胞可以有效激活HCV 患者血清中DPP-4 的活性[18]。虽然HCV 患者的血清DPP-4 表达含量与疾病严重程度之间没有必然的联系,但HCV 感染后会直接导致DPP-4 表达的升高,损伤胰岛素受体底物1/2,最终出现胰岛素抵抗和葡萄糖耐受不良[19]。

2.2 非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD) NAFLD 是一种与乙醇摄入无关、肝细胞脂肪变性及脂质蓄积为临床特点的肝脏脂肪变性。与健康人群相比,NAFLD 患者的高糖负荷状态可以提高人肝细胞癌细胞中DPP-4 及肝脏DPP-4 mRNA表达水平[20]。DPP-4 缺陷型大鼠发生脂肪肝的几率较低,其原因主要是DPP-4 缺陷型大鼠的肝脏促炎因子和促纤维化因子处于低水平[21]。在NAFLD 患者的血清与肝脏中,DPP-4 表达水平与肝损伤标志物含量密切相关,如血清谷氨酰转肽酶、谷丙转氨酶,但与患者空腹血糖、糖化血红蛋白含量无关[22]。近期研究显示DPP-4 抑制剂可以改善小鼠肝脂肪变性[23]。另外,DPP-4 抑制剂还可以改善NAFLD 患者转氨酶水平及肝细胞气球样变[24]。Itou 等[25]采用DPP-4 抑制剂-西他列汀成功治疗1 例难治性NAFLD。总之,这些研究结果都表明DPP-4 抑制剂可以有效缓解NAFLD 患者的肝损伤和糖耐量异常情况。

2.3 肝细胞癌(hepatocellular carcinoma,HCC)DPP-4 表达含量的增加可见于多种恶性肿瘤的发病中,如乳腺癌、乳腺癌、脑胶质瘤、恶性间皮瘤和鳞状细胞喉癌,同样的研究结果也可以在HCC 患者及大鼠模型的肝脏标本和血清中发现[26-28]。

研究报道显示抑制HCC 中DPP-4 的表达,可以降低酪氨酸激酶活性,最终影响机体肿瘤细胞的增殖与分化[29]。Yamamoto 等[30]运 用DPP-4 抑 制 剂 治 疗HCC 后获得了较好的疗效。目前并不清楚DPP-4 抑制剂是否直接参与了HCC 的转归,但研究证实在HCC 组织周围可以见到被标记的CD+T 细胞,我们认为HCC 的转归可能与DPP-4 抑制剂可以提高机体的免疫应答有关。临床治疗中发现外源性胰岛素或磺脲类药物治疗糖尿病过程中都会增加机体患HCC 的风险,但是DPP-4 抑制剂在对糖尿病小鼠治疗中并未发现任何促进肿瘤发生的可能性[31]。

2.4 干细胞与肝再生 在过往报道中已经有研究人员提出肝硬化患者中DPP-4 的表达含量明显高于健康人群[32]。Lee 等[33]最近研究证实肝脏中DPP-4 的表达可以作为机体造血干细胞和内皮祖细胞的标记物,我们认为DPP-4 可能参与了慢性肝病发展过程中干细胞与内皮祖细胞的再生。CXCL12/SDF-1 作为肝再生的一个重要趋化因子,可以引起机体造血干细胞的新生[34]。CXCL12/SDF-1 是DPP-4 的靶肽,当机体造血干细胞/造血祖细胞表面DPP-4 的活性受到抑制时,则会增加CXCL12/SDF-1 定向趋化、归巢及移植[35]。因此,抑制DPP-4 的表达可以有效提高HSC/造血祖细胞移植的成功率,且DPP-4 抑制也可以增加机体祖细胞的数量,提高内源性CXCL12/SDF-1 的稳定性,加强再生干细胞的封存[36]。

综上所述,本文描述了DPP-4 的组织分布及生物学效应,探讨了DPP-4 对慢性肝病的影响及DPP-4 抑制剂在慢性肝病治疗中的作用。虽然相关研究已证实DPP-4 抑制剂对机体免疫系统有着重要的调节作用,但其具体作用机制尚未明确,还有待进一步研究。今后针对DPP-4 抑制剂的研究重点可以向抗感染及抑癌方面转移。

[1] Misumi Y,Hayashi Y,Arakawa F,et al. Molecular cloning and sequence analysis of human dipeptidyl peptidase Ⅳ,a serine proteinase on the cell surface[J]. Biochim Biophys Acta,1992,1131(3):333-336.

[2] Drucker DJ,Nauck MA. The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet,2006,368(9548):1696-1705.

[3] Holst JJ. Glucagon-like peptide-1:from extract to agent. The Claude Bernard Lecture,2005[J]. Diabetologia,2006,49(2):253-260.

[4] Irie M,Suzuki N,Sohda T,et al. Hepatic expression of gamma-glutamyltranspeptidase in the human liver of patients with alcoholic liver disease[J]. Hepatol Res,2007,37(11):966-973.

[5] Itou M,Kawaquchi T,Taniquchi E,et al. Dipeptidyl peptidase-4:a key player in chronic liver disease[J]. World J Gastroenterol,2013,19(15):2298-2306.

[6] Yamabe T,Takakura K,Sugie K,et al. Induction of the 2B9 antigen/dipeptidyl peptidase Ⅳ/CD26 on human natural killer cells by IL-2,IL-12 or IL-15[J]. Immunology,1997,91(1):151-158.

[7] Matteucci E,Giampietro O. Dipeptidyl peptidase-4 (CD26):knowing the function before inhibiting the enzyme[J]. Curr Med Chem,2009,16(23):2943-2951.

[8] Ohnuma K,Uchiyama M,Yamochi T,et al. Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1[J]. J Biol Chem,2007,282(13):10117-10131.

[9] Cheng HC,Abdel-Ghany M,Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase Ⅳadhesion and metastasis[J]. J Biol Chem,2003,278(27):24600-24607.

[10] Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders[J]. Clin Sci (Lond),2005,108(4):277-292.

[11] Sato T,Yamochi T,Yamochi T,et al. CD26 regulates p38 mitogenactivated protein kinase-dependent phosphorylation of integrin beta1,adhesion to extracellular matrix,and tumorigenicity of T-anaplastic large cell lymphoma Karpas 299[J]. Cancer Res,2005,65(15):6950-6956.

[12] Inamoto T,Yamada T,Ohnuma K,et al. Humanized anti-CD26 monoclonal antibody as a treatment for malignant mesothelioma tumors[J].Clin Cancer Res,2007,13(14):4191-4200.

[13] Inamoto T,Yamochi T,Ohnuma K,et al. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation,cyclin-dependent kinase 2 reduction,p27(kip1)enhancement,and disruption of binding to the extracellular matrix[J]. Clin Cancer Res,2006,12(11 Pt 1):3470-3477.

[14] Wesley UV,McGroarty M,Homoyouni A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway[J]. Cancer Res,2005,65(4):1325-1334.

[15] Conarello SL,Li Z,Ronan J,et al. Mice lacking dipeptidyl peptidase Ⅳare protected against obesity and insulin resistance[J]. Proc Natl Acad Sci U S A,2003,100(11):6825-6830.

[16] Itou M,Kawaguchi T,Taniguchi E,et al. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase Ⅳ in patients with HCV-related glucose intolerance[J]. J Gastroenterol Hepatol,2008,23(2):244-251.

[17] Arase Y,Suzuki F,Kobayashi M,et al. Efficacy and safety in sitagliptin therapy for diabetes complicated by chronic liver disease caused by hepatitis C virus[J]. Hepatol Res,2011,41(6):524-529.

[18] Rahman W,Huang P,Belov L,et al. Analysis of human liver disease using a cluster of differentiation (CD)antibody microarray[J].Liver Int,2012,32(10):1527-1534.

[19] Pazienza V,Clément S,Pugnale P,et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms [J]. Hepatology,2007,45(5):1164-1171.

[20] Miyazaki M,Kato M,Tanaka K,et al. Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism [J]. Mol Med Rep,2012,5(3):729-733.

[21] Ben-Shlomo S,Zvibel I,Shnell M,et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase[J]. J Hepatol,2011,54(6):1214-1223.

[22] Firneisz G,Varga T,Lengyel G,et al. Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty liver disease:a novel liver disease biomarker[J]. PLoS One,2010,5(8):e12226.

[23] Shirakawa J,Fujii H,Ohnuma K,et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice[J]. Diabetes,2011,60(4):1246-1257.

[24] Yilmaz Y,Yonal O,Deyneli O,et al. Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis[J]. Acta Gastroenterol Belg,2012,75(2):240-244.

[25] Itou M,Kawaguchi T,Taniguchi E,et al. Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient:a case report[J]. Case Rep Gastroenterol,2012,6(2):538-544.

[26] Leccia F,Nardone A,Corvigno S,et al. Cytometric and biochemical characterization of human breast cancer cells reveals heterogeneous myoepithelial phenotypes [J]. Cytometry A,2012,81 (11):960-972.

[27] Wilson CH,Abbott CA. Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines[J]. Int J Oncol,2012,41(3):919-932.

[28] Aoe K,Amatya VJ,Fujimoto N,et al. CD26 overexpression is associated with prolonged survival and enhanced chemosensitivity in malignant pleural mesothelioma [J]. Clin Cancer Res,2012,18(5):1447-1456.

[29] Gaetaniello L,Fiore M,de Filippo S,et al. Occupancy of dipeptidyl peptidase Ⅳactivates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells [J]. Hepatology,1998,27(4):934-942.

[30] Yamamoto S,Tokuhara T,Nishikawa M,et al. Spontaneous regression of hepatocellular carcinoma after improving diabetes mellitus:possibly responsible for immune system[J]. Kanzo,2012,53:164-167.

[31] Kissow H,Hartmann B,Holst JJ,et al. Glucagon-like peptide-1 (GLP-1)receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice[J]. Regul Pept,2012,179(1-3):91-100.

[32] Reynard MP,Turner D,Navarrete CV. Allele frequencies of polymorphisms of the tumour necrosis factor-alpha,interleukin-10,interferongamma and interleukin-2 genes in a North European Caucasoid group from the UK[J]. Eur J Immunogenet,2000,27(4):241-249.

[33] Lee JH,Park HJ,Kim YA,et al. The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver[J].Transplant Proc,2012,44(4):1110-1112.

[34] Tsuchiya A,Imai M,Kamimura H,et al. Increased susceptibility to severe chronic liver damage in CXCR4 conditional knock-out mice[J]. Dig Dis Sci,2012,57(11):2892-2900.

[35] Campbell TB,Broxmeyer HE. CD26 inhibition and hematopoiesis:a novel approach to enhance transplantation[J]. Front Biosci,2008,13:1795-1805.

[36] Jungraithmayr W,De Meester I,Matheeussen V,et al. CD26/DPP-4 inhibition recruits regenerative stem cells via stromal cell-derived factor-1 and beneficially influences ischaemia-reperfusion injury in mouse lung transplantation[J]. Eur J Cardiothorac Surg,2012,41(5):1166-1173.

猜你喜欢

肽酶祖细胞干细胞
干细胞:“小细胞”造就“大健康”
猪δ冠状病毒氨基肽酶N的研究进展
造血干细胞移植与捐献
干细胞产业的春天来了?
Wnt3a基因沉默对内皮祖细胞增殖的影响
内皮祖细胞在缺血性脑卒中诊治中的研究进展
2型糖尿病患者代谢综合征组分与血清谷氨酰转肽酶的相关性研究
干细胞治疗有待规范
靶向二肽基肽酶维药体外筛选模型的建立及应用
悬滴和悬浮法相结合培养胰腺祖细胞