APP下载

电化学杀菌技术在水处理中的研究进展

2014-11-28张化冰郦和生

绿色科技 2014年1期
关键词:电解水处理杀菌

张化冰 郦和生

摘要:指出了电化学杀菌是一种高效率、低成本、环境友好的新型杀菌技术,包括电解活性氯杀菌、电解·OH杀菌、电解O3杀菌、电解H2O2杀菌等。对这4种电化学杀菌技术的杀菌机理、电极材料、电解工艺条件及特点进行了探讨。

关键词:电解;杀菌;水处理

收稿日期:20131209

作者简介:张化冰(1984—),女,河南洛阳人,博士,工程师,主要从事水处理方面的相关研究工作。中图分类号:X703文献标识码:A文章编号:16749944(2014)01014603

1引言

微生物的有效控制是水处理领域的关键技术之一,常用的方法包括物理法和化学法。其中,物理法是利用物理技术进行杀菌,包括紫外线照射、超声破碎、电磁辐射、微波等。物理法对环境友好,但杀菌效果较差。化学杀菌法[1]是向水中投加无机或有机的杀菌剂,杀死或抑制微生物的生长繁殖,从而控制微生物。常用的杀菌剂包括臭氧、H2O2、氯和次氯酸盐、二氧化氯、溴及溴化物、季铵盐、戊二醛、异噻唑啉酮等,其中使用最多的是氯系杀菌剂。化学法杀菌成本低、效果好,但这些药剂均属化学品,在生产、储存、运输和使用过程中存在安全隐患,且大部分使用后对环境不友好。随着电极材料的日趋成熟,电化学杀菌作为一种“清洁技术”,有望在水处理领域得到快速发展。电化学杀菌可以根据需求实现杀菌剂的现场制备,避免了杀菌剂在储运过程和使用过程中污染环境或发生安全事故,具有高效率、低成本、对环境友好等优点。

电化学杀菌的基本原理是利用电场的物理作用和电解产物的化学作用进行杀菌,前者为直接杀菌,后者为间接杀菌。直接杀菌[2]是利用电场击穿细胞膜,造成微生物细胞质外流致死,或通过电极与微生物细胞之间的电子传递,扰乱其呼吸系统致死。具有代表性的直接杀菌是吸附-电解法杀菌[3],此类装置的吸附区为导电性吸附材料如活性炭、活性炭纤维等,对水中微生物进行吸附,吸附区两端为电极,施加电压进行杀菌。

对于间接杀菌,电解产物因电极材料及电解质溶液的组成不同而异,电解杀菌活性产物主要包括:活性氯、·OH、O3和H2O2。

2电化学杀菌技术综述

2.1电解活性氯杀菌

活性氯是Cl2、HClO和ClO-三种形式的总和,HClO和ClO-的比例由电解质溶液的pH值决定[4]。电解氯离子含量高的水(如海水)或向水中添加盐酸盐,可产生高浓度的活性氯,其杀菌效果已得到普遍认可[5~7],但高浓度氯离子和活性氯会引起水质的腐蚀性增强。为了解决水质腐蚀性增强的问题,20世纪90年代开始,研究人员开始研究Cl-浓度极低溶液的电解杀菌[8~11]。

含Cl-电解质溶液电解时,阳极产生次氯酸或次氯酸盐(式1,2,3),

伴随着析氧副反应的发生,以低Cl-浓度水(×10-6级)为电解质溶液进行电解活性氯杀菌,电极材料的电流效率是关键因素,电流效率越高,产生的活性氯越多,杀菌效果越好。对于低Cl-浓度水电解,不同的电极材料产生活性氯的效率差别很大[4,8~10]。Alexander Kraft等人[4]分别以Ti/IrO2、Ti/IrO2-RuO2、Pt、掺硼金刚石BDD(Boron-Doped Diamond)为阳极电极,对不同Cl-浓度的水进行电解。Ti/IrO2电极和Ti/IrO2-RuO2电极的电流效率和活性氯产率都明显高于Pt电极和掺硼金刚石BDD电极。当Cl-浓度为180mg/L时,Ti/IrO2电极的电流效率在10%左右,而Pt电极和BDD电极的电流效率低于2%。Joonseon Jeong等人[12]研究了Ti/IrO2、Ti/RuO2、Ti/Pt-IrO2、BDD、Pt电极材料在低Cl-浓度水溶液中(1.7×10-2M NaCl)的电化学特性,得出了相似的结论,电极材料的活性氯产率顺序为:Ti/IrO2>Ti/RuO2>Ti/Pt-IrO2>BDD>Pt,与电极材料的析氯活性(Ti/IrO2>Ti/RuO2>Ti/Pt-IrO2>BDD>Pt)相一致。

2.2电解·OH杀菌

羟基自由基·OH是目前已知的水中最强的氧化剂[13],其氧化电位高达3.06V(表1[14])。·OH通过破坏微生物的蛋白质、酶和核酸使其致死[15]。

2.3电解O3杀菌

氧化过电位高的阳极材料在高电流密度、低温条件下可直接电解水产生O3(式8)[4],这类高氧化过电位阳极材料主要有PbO2[19~21]、SnO2[22,23]、玻璃碳[24]、BDD[12,25]等。Manuela Stadelmann等人[26]发明的“三明治”结构电极组件:金刚石阳极/固体聚合物(SPE,solid polymer electrolyte)/阴极,类似于质子交换膜燃料电池的三合一膜电极组件,电极结构紧凑,电流效率高,可用于电导率极低的水(如去离子水)电解产生O3。Alexander Kraft 等人[27]采用BDD/Nafion324/BDD电极结构(BDD基体为金属Nb),研究了电流密度、水流速、电导率等因素对电解O3产率和电流效率的影响,当电流密度为153mA/cm2,水的流速为95L/h,电导率为1 μS/cm时,电解水生成O3的电流效率达到24%。Kazuki Arihara等人[25]采用类似的“三明治”电极结构,以多孔BDD为阴、阳极材料,研究了孔直径、孔数、极板厚度以及总边缘长度对电解水产生O3效率的影响。采用厚度为0.54mm的D10HN410电极(孔径为1mm,孔数为410),在适宜的工艺条件下电解水产生O3的电流效率可达到47%。Choonsoo Kim等人[12]分别采用BDD、Pt、Ti/IrO2、Ti/RuO2、Ti/Pt-IrO2电极材料电解水生成O3,其中BDD电极的活性最高。研究发现叔丁醇的加入可明显抑制O3的生成,·OH在BDD电解水生成O3的过程中起关键作用,O3可由O2和·O生成(式9,10)[28]。endprint

2.4电解H2O2杀菌

多数电解杀菌活性物质(如Cl2、·OH、O3 等)都由阳极产生,而H2O2是由阴极产生。为了减少电解时阴极析氢副反应的发生,采用气体扩散阴极(GDE,gas diffusion electrode)可将氧气还原生成H2O2(式11)[4]。碳材料(石墨、活性炭、活性碳纤维、玻璃碳等)具有自催化作用,是比较理想的电解产生H2O2的阴极材料。Choonsoo Kim等人[12]分别采用BDD、Pt、Ti/IrO2、Ti/RuO2、Ti/Pt-IrO2电极材料电解水生成H2O2,其中BDD电极的活性最高,其次是Ti/RuO2电极,与产生·OH的活性[12]相一致,表明H2O2由2个·OH生成(式12)[29]。

·OH +·OH→H2O2(11)

在碳材料的基础上,加入具有氧化还原催化性能的有机物(PTFE、2-乙基蒽醌等)或贵金属(如Pt)可进一步提高H2O2的产率[30,31]。Wenying Xu等人[30]以活性碳/聚四氟乙烯PTFE作为气体扩散层电解产生H2O2,研究发现Pt担载量为3‰,NH4HCO3造孔剂用量为30%、pH<8、O2流速为1.25L/min、Na2SO4含量为10%、电流密度为6.7mA/cm2时的杀菌效果最好,成本相对较低。

O2 + H2O + 2 e-→H2O2 + 2OH-(12)

3结语

在这4种电化学杀菌技术中,电解活性氯杀菌研究的较多,且技术相对成熟,已经在饮用水和工业用水方面有所应用[4]。对于Cl-含量极少又不能添加盐酸盐,电导率极低(如高纯水、雨水)的低温水质,可通过电解O3杀菌。电解O3杀菌技术不受电导率低的限制,副反应少,电流效率高(47%[25]),但其电极材料BDD的制备目前还仅限于小尺寸,限制了该技术的规模应用。H2O2的氧化电位比O3低,稳定性较活性氯差,在高效、长时杀菌场合应用受限。·OH氧化能力极强(氧化电位3.06V),可快速杀菌灭藻,最终产物是水和二氧化碳,无二次污染,但稳定性差,其规模应用还有待进一步的研究。

参考文献:

[1] 齐冬子.敞开式循环冷却水系统的化学处理[M].北京: 化学工业出版,2005.

[2] 吴永华,韩伯平,王劲.电场杀菌的物理效应与化学效应分析[J].工业用水与废水,2007,38: 45~47.

[3] 朱又春,张乐华,林美强,等.电解杀菌和反硝化脱氮技术发展及其在水处理中的应用[J].环境保护,2001(11):21~23.

[4] Alexander Kraft.Electrochemical Water Disinfection: A Short Review[J].Platinum Metals Review,2008,52(3): 177~185.

[5] C.-C.Hu,C.-H.Lee,T.-C.Wen.Oxygen evolution and hypochlorite production on Ru-Pt binary oxides[J].Journal of Applied Electrochemistry,1996,26(1): 72~82.

[6] M.Rudolf,I.Rousar,J.Krysa.Cathodic reduction of jypochlorite during reduction of dilute sodium chloride solution[J].Journal of Applied Electrochemistry,1995,25(2): 155~165.

[7] H.-J Heidrich,L.Muller,B.I.Podlovchenko.The influence of electrode porosity and temperature on electrochemical gas evolution at platinum and rhodium[J].Journal of Applied Electrochemistry,1990,20(4): 686~691.

[8] A.Kraft,M.Stadelmann,M.Blaschke,D.Kreysig,B.Sandt,F.Schroder,J.Rennau.Electrochemical water disinfection Part Ⅰ: Hypochlorite production from very dilute chloride solutions[J].Journal of Applied Electrochemistry,1999,29(7): 861~868.

[9] A.Kraft,M.Blaschke,D.Kreysig,B.Sandt,F.Schroder,J.Rennau.Electrochemical water disinfection Part Ⅱ: Hypochlorite production from potable water,chlorine consumption and the problem of calcareous deposits[J].Journal of Applied Electrochemistry,1999,29(8): 895~902.

[10] M.E.H.Bergmann,A.S.Koparal.Studies on electrochemical disinfectant production using anodes containing RuO2[J].Journal of Applied Electrochemistry,2005,35(12): 1321~1329.endprint

[11] A Kraft,M Blaschte,D Kreysig Electrochemical water disinfection Part Ⅲ: Hypochlorite production from potable water with ultrasound assisted cathode cleaning[J].Journal of Applied Electrochemistry,2002,32(6): 597~601.

[12] Joonseon Jeong,Choonsoo Kim,Jeyong Yoon.The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes[J].Water Research,2009,43(4): 895~901.

[13] Urs von Gunten.Ozonation of drinking water: Part Ⅰ.Oxidation kinetics and product formation[J].Water Research,2003,37(7): 1443~1467.

[14] 高廷耀,顾国维,周琪.水污染控制工程(下册)[M].北京: 高等教育出版社,2007.

[15] 刘刚,杜俊琪,童志勇,等.羟基自由基活性氧用于中水处理[J].工业水处理,2009,29(3):81~83.

[16] B.Marselli,J.Garcia-Gomez,P.-A.Michaud,M.A.Rodrigo,Ch.Comninellis.Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes [J].Journal of The Electrochemical Society,2003,150(3):79~83.

[17] P.Canizares,F.Martinez,M.Diaz,J.Garcia-Gomez,M.A.Rodrigo.Electrochemical Oxidation of Aqueous Phenol Wastes Using Active and Nonactive Electrodes [J].Journal of The Electrochemical Society,2002,149(8):118~124.

[18] Christos Comninellis.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J].Electrochimica Acta,1994,39(11-12):1857-1862.

[19] Kazuo Onda,Takahiro Ohba,Hironobu Kusunoki,Shinya Takezawa,Daisuke Sunakawa,Takuto Araki.Improving Characteristics of Ozone Water Production with Multilayer Electrodes and Operating Conditions in a Polymer Electrolyte Water Electrolysis Cell [J].Journal of The Electrochemical Society,2005,152(10):177~183.

[20] Jianren Feng,Dennis C.Johnson,Stephen N.Lowery,James J.Carey.Electrocatalysis of Anodic Oxygen-Transfer Rdactions [J].Journal of The Electrochemical Society,1994,141(10):2708~2711.

[21] Pallay Tatapudi,James M.Fenton.Synthesis of Ozone in a Proton Exchange Membrane Electrochemical Reactor [J].Journal of The Electrochemical Society,1993,140(12):3527~3530.

[22] Shao-an Cheng,Kwong-Yu Chan.Electrolytic Generation of Ozone on an Antimony-Doped Tin Dioxide Coated Electrode [J].Electrochemical and Solid-State Letters,2004,7(3):4~6.

[23] Yun-Hai Wang,Shaoan Cheng,Kwong-Yu Chan,Xiao Yan Li.Electrolytic Generation of Ozone on Antimony- and Nickel-Doped Tin Oxide Electrode [J].Journal of The Electrochemical Society,2005,152(11):197~200.

[24] P.C.Foller,G.H.Kelsall.Ozone Generation via the electrolysis of fluoboric acid fsing glassy carbon anodes and air depolarized cathodes [J].Journal of Applied Electrochemistry,1993,23(10):996~1010.endprint

[25] Kazuki Arihara,Chiaki Terashima,Akira Fujishima.Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes [J].Journal of The Electrochemical Society,2007,154(4):71~75.

[26] Manuela Stadelmann,Manfred Blaschke.Electrode assembly for the electrochemical treatment of liquids with a low conductivity [P].US7704353B2.

[27] Alexander Kraft,Manuela Stadelmann,Maja Wunsche,Manfred Blaschke.Electrochemical ozone production using diamond anodes and a solid polymer electrolyte [J].Electrochemistry Communications,2006,8(5):883~886.

[28] P-A.Michaud,M.Panizza,L.Ouattara,T.Diaco,G.Foti,Ch.Conminellis.Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes [J].Journal of Applied Electrochemistry,2003,33(2):151~154.

[29] Joonseon Jeong,Jee Yeon Kim,Jeyong Yoon.The role of reactive oxygen species in the electrochemical inactivation of microorganisms [J].Environmental Science & Technology,2006,40 (19):6117~6122.

[30] Wenying Xu,Ping Li,Bin Dong.Electrochemical disinfection using the gas diffusion electrode system[J].Journal of Environmental Sciences,2010,22(2):204~210.

[31] J.C.Forti,R.S.Rocha,M.R.V.Lanza,R.Bertazzoli.Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J].Journal of Electroanalytical Chemistry,2007,601(1-2):63~67.endprint

[25] Kazuki Arihara,Chiaki Terashima,Akira Fujishima.Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes [J].Journal of The Electrochemical Society,2007,154(4):71~75.

[26] Manuela Stadelmann,Manfred Blaschke.Electrode assembly for the electrochemical treatment of liquids with a low conductivity [P].US7704353B2.

[27] Alexander Kraft,Manuela Stadelmann,Maja Wunsche,Manfred Blaschke.Electrochemical ozone production using diamond anodes and a solid polymer electrolyte [J].Electrochemistry Communications,2006,8(5):883~886.

[28] P-A.Michaud,M.Panizza,L.Ouattara,T.Diaco,G.Foti,Ch.Conminellis.Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes [J].Journal of Applied Electrochemistry,2003,33(2):151~154.

[29] Joonseon Jeong,Jee Yeon Kim,Jeyong Yoon.The role of reactive oxygen species in the electrochemical inactivation of microorganisms [J].Environmental Science & Technology,2006,40 (19):6117~6122.

[30] Wenying Xu,Ping Li,Bin Dong.Electrochemical disinfection using the gas diffusion electrode system[J].Journal of Environmental Sciences,2010,22(2):204~210.

[31] J.C.Forti,R.S.Rocha,M.R.V.Lanza,R.Bertazzoli.Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J].Journal of Electroanalytical Chemistry,2007,601(1-2):63~67.endprint

[25] Kazuki Arihara,Chiaki Terashima,Akira Fujishima.Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes [J].Journal of The Electrochemical Society,2007,154(4):71~75.

[26] Manuela Stadelmann,Manfred Blaschke.Electrode assembly for the electrochemical treatment of liquids with a low conductivity [P].US7704353B2.

[27] Alexander Kraft,Manuela Stadelmann,Maja Wunsche,Manfred Blaschke.Electrochemical ozone production using diamond anodes and a solid polymer electrolyte [J].Electrochemistry Communications,2006,8(5):883~886.

[28] P-A.Michaud,M.Panizza,L.Ouattara,T.Diaco,G.Foti,Ch.Conminellis.Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes [J].Journal of Applied Electrochemistry,2003,33(2):151~154.

[29] Joonseon Jeong,Jee Yeon Kim,Jeyong Yoon.The role of reactive oxygen species in the electrochemical inactivation of microorganisms [J].Environmental Science & Technology,2006,40 (19):6117~6122.

[30] Wenying Xu,Ping Li,Bin Dong.Electrochemical disinfection using the gas diffusion electrode system[J].Journal of Environmental Sciences,2010,22(2):204~210.

[31] J.C.Forti,R.S.Rocha,M.R.V.Lanza,R.Bertazzoli.Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J].Journal of Electroanalytical Chemistry,2007,601(1-2):63~67.endprint

猜你喜欢

电解水处理杀菌
果汁饮料如何杀菌
罐头食品杀菌技术研究进展
水电解实验探究及装置创新
杀菌技术在食品加工中的应用进展
食品加工中的热杀菌技术和非热杀菌技术分析
负载于三维镍网上的磷化钴纳米珠链阵列的高效水电解性能研究
曝气在环境工程水处理中的应用
浅谈高锰酸盐复合药剂在水厂水处理中的应用
曹天叙电解理论摘要