APP下载

黄单胞菌III型分泌系统效应蛋白的研究进展

2014-09-23易杰祥景晓辉吴伦英

热带农业科学 2014年8期

易杰祥+景晓辉+吴伦英

摘 要 黄单胞菌借助保守的III型分泌系统,将多个效应蛋白注入植物细胞,克服宿主的防卫,利于黄单胞菌在植物体内发挥毒性功能。最近对III型效应蛋白致病机理开展了大量研究,结果发现具有酶功能的效应蛋白在黄单胞菌及其宿主间的相互作用中发挥非常重要的作用。此外,黄单胞菌存在一类独特的III型效应蛋白(AvrBs3家族)。迄今为止,仅在黄单胞菌和雷尔氏菌(Ralstonia solanacearum)中发现AvrBs3家族效应蛋白,AvrBs3家族通过模拟转录激活子来操纵寄主植物易感基因的表达。

关键词 黄单胞菌 ;III型分泌系统 ;效应蛋白 ;AvrBs3 ;类转录激活子

分类号 S432.42

Research Advances on Xanthomonas Type III Secretion System Effectors

YI Jiexiang1) JING Xiaohui2) WU Lunying2)

(1 Hainan Province Tropical Crops Research Institute for Baoting, Baoting, Hainan 572311

2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources,

Hainan University, Haikou, Hainan 570228, China)

Abstract Pathogenicity of Xanthomonas and most other Gram-negative phytopathogenic bacteria depends on a conserved type III secretion (T3S) system which injects several different effector proteins into the plant cell. Extensive studies in the last years on the molecular mechanisms of type III effector function revealed that effector proteins with enzymatic functions seem to play important roles in the interaction of Xanthomonas with its host plants. In addition, Xanthomonas express a unique class of type III effectors to pursue another strategy. Effectors of the AvrBs3 family, so far only identified in Xanthomonas spp. and Ralstonia solanacearum, mimic plant transcriptional activators and manipulate the plant transcriptome.

Keywords Xanthomonas ; type III secretion system ; effector ; AvrBs3 ; transcriptional activators

黄单胞菌属的致病细菌能够侵染包括重要农作物在内的多种宿主植物。例如,水稻白叶枯病可由X. oryzae pv. oryzae(Xoo)引起。细菌可通过植物天然的孔口(气孔、水孔或伤口)进入,进而在植物组织繁殖。病原细菌III型分泌系统在病原菌与其宿主的相互作用中发挥重要作用。黄单胞菌含有革兰氏阴性细菌中所有已知的蛋白分泌系统——信号肽(信号识别粒子)和TAT通路,I型、II型、III型、IV型等不同类型的分泌系统,V型自动转运分泌系统,两个伴侣分泌系统,和一个VI型分泌系统[1-2]。其中III型分泌系统在动植物病原菌中高度保守且对黄单胞菌的致病性非常重要[3-4]。大多数III型分泌系统效应蛋白,借助病原菌形成的“分子注射器”直接转运至植物细胞,然而,大多数III型分泌系统分泌的III型效应蛋白及其在细菌毒性中发挥的功能尚未完全可知[5]。本文主要综述了近几年有关黄单胞菌III型效应蛋白的研究,主要关注它们在植物细胞中的作用模式。

1 III型效应蛋白是重要的毒性因子

III型分泌系统缺失的病原菌不能在植物体内很好的生长,且在感病寄主上不引发症状,这说明III型分泌系统分泌的效应蛋白对病原菌致病至关重要[6-7]。虽然单个黄单胞菌菌株分泌多个III型效应蛋白[1-8],但是只有少数效应蛋白是重要的毒力因子,因为它们的敲除会显著降低细菌毒力。例如,来自辣椒和西红柿病原菌(X. campestris pv. vesicatoria,Xcv)的AvrBs2对寄主的致病性至关重要,AvrBs2的毒性功能依赖保守的glycerolphosphodiesterase(GDE)结构域,AvrBs2强烈地促进细菌在植物体内的增殖,而寄主抗性蛋白Bs2特异识别AvrBs2后调节Xcv的TTSS,进而抑制TTSS分泌的效应蛋白[9-10]。Xcv效应蛋白XopQ能够抑制MAP kinase cascade MAPKKKα诱导的细胞死亡。XopQ 能够抑制无毒Xcv在抗性胡椒(Capsicum annuum)上激发的ETI相关的细胞死亡,并促进在抗性胡椒和番茄(Solanum lycopersicum)上的细菌生长[11]。番茄蛋白14-3-3 SlTFT4 能够与XopQ互作。TFT4在寄主植物对Xcv的抗性中发挥重要作用,沉默烟草NbTFT4也显著降低 MAPKKKα诱发的细胞死亡,沉默胡椒CaTFT4也推迟ETI相关的细胞死亡表型[11]。XopQ 的毒性功能依赖于其与TFT4互作,进而抑制ETI及免疫相关的细胞死亡[11]。相比之下,编码其他效应蛋白(来自X. campestris pv. campestris的AvrXccC及XopXccN)基因的突变只会微弱地影响细菌的生长[12-13]。最新的多个研究表明,假单胞菌的许多效应蛋白通过抑制植物的防卫机制来发挥毒性功能[14]。至今只有少数Xanthomonas的III型效应蛋白具有推测的防卫抑制作用。如来自X. campestris pv. vesicatoria的XopX,它促进坏死斑的形成,这意味着XopX抑制植物的基础防卫反应[15]。endprint

2 黄单胞菌效应蛋白的酶功能

多个丁香假单胞菌的效应蛋白表现出酶活性,通过修饰寄主蛋白来实现它们的生物学功能[14]。例如,HopAO1是丁香假单胞菌的一个效应蛋白,它具有酪氨酸磷酸酶活性,而且抑制基础防卫和过敏性反应,现已发现与HopAO1具有同源性的效应蛋白[16-17]。XopE1和XopE2属于假谷氨酰胺酶的HopX家族 (AvrPphE),有对发挥其功能至关重要的基于半胱氨酸的具有催化活性的triad[18-19]。然而,黄单胞菌效应蛋白已表现出酶活性,但是尚不清楚它们的毒力作用。

2.1 SUMO蛋白酶 XopD

最近人们详细研究了源自X. campestris pv. vesicatoria的效应蛋白XopD。有趣的是,这个效应蛋白利于细菌在番茄中生长,并推迟番茄感染后期的叶片缺绿及坏死[20]。XopD蛋白有一个模块化结构,而且具有不同的生化活性。C末端包含一个C48家族的半胱氨酸蛋白酶域,它和酵母类泛素蛋白酶(ubiquitin-like protease,ULp1)具有同源性,ULp1是一个小的类泛素修饰因子(SUMO)蛋白酶[20]。已在离体及活体条件下证明XopD具有植物SUMO蛋白酶活性[20-21]。类似泛素共价结合,SUMO共价结合到靶蛋白,但是不同于泛素修饰,SUMO修饰靶蛋白后常增加蛋白的稳定性。在植物中,SUMO修饰和deSUMOylation调控一系列生物学过程。例如,对非生物胁迫做出的反应,病原菌防卫,开花诱导等[23]。XopD在植物细胞的亚细胞核定位表明,它可能靶向核SUMO共轭蛋白。此外,XopD包含:N末端与DNA结合的螺旋-环-螺旋结构域,还有EAR motif[20]。最近发现,XopDXccB100 N端DNA结合结构域能够与正调植物先天免疫的拟南芥转录因子MYB30互作,稳定MYB30蛋白,但改变MYB30的亚细胞定位,导致MYB30不能正常发挥转录激活的功能,进而抑制MYB30靶基因的表达,达到抑制拟南芥防卫的目的[20]。2013年Kim等[21]发现,XopDXcv催化番茄PTI信号通路正调因子SlERF4赖氨酸K53上SUMO的水解,导致SlERF4蛋白不稳定,进而阻断了植物对Xcv的PTI抗性。这进一步表明,XopD家族效应蛋白功能的多样,既可改变靶蛋白的亚细胞定位,又可降解靶蛋白,还能够稳定靶蛋白。

2.2 YopJ/AvrRxv 家族效应蛋白

植物和哺乳动物病原菌中YopJ/AvrRxv家族的效应蛋白常有SUMO蛋白酶的活性。在X. campestris pv. vesicatoria中有四个预测的C55肽酶YopJ/AvrRxv家族—AvrRxv、AvrXv4、AvrBsT和XopJ[9]。每个蛋白都含有推测的催化triad(组氨酸、谷氨酸和半胱氨酸)[9]。如果在植物体内过表达AvrXv4,导致SUMO修饰蛋白的减少[22-23]。源自人类病原菌Yersinia spp.的YopJ(一个研究的最清楚的效应蛋白),也降低SUMO修饰蛋白的数量[24-26]。然而,YopJ/AverRxv家族蛋白酶的作用是一个有争议的问题,因为YopJ有乙酰转移酶活性[27]。YopJ调控有丝分裂原激活的蛋白激酶(MAPK)中重要丝氨酸和苏氨酸残基的乙酰化,这种MAPK激酶在免疫反应阻止YopJ磷酸化和活化。在AvrBsT的研究中证实,YopJ/AvrRxv家族成员是乙酰转移酶[28]。植物中抗性基因介导的AvrBsT识别需要催化triad,这说明它依赖于效应蛋白酶的功能[24,28]。Cunna等找出一种特异的抑制子—SOBER1(suppressor of AvrBsT-elicited resistance),它作用于AvrBsT导致的过敏反应,由离体试验发现其编码羧化酶,导致底物的去乙酰[28]。

3 AvrBs3 家族:宿主转录的操控者

部分效应蛋白通过III型分泌系统进入真核生物细胞核,并在细胞核内发挥转录因子的功能,激活靶基因的表达。最近,报道了源自Xanthomonas campestris pv. vesicatoria(Xcv)的AvrBs3具有类转录激活子(transcription activator-like-TAL)活性,起着转录因子的作用,直接诱导植物基因的表达[29-30]。AvrBs3家族是目前研究最清楚的、数量最多的一类具有TAL活性的III型效应蛋白[31]。AvrBs3家族多个成员具有毒性功能。例如,AvrXa7、PthXo1和其他源自水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)的类AvrBs3蛋白强烈促进细菌在水稻的生长以及坏死斑的形成[32-37]。Avrb6和其他源自棉花病原菌X. campestris pv. malvacearum的 AvrBs3同源物,会促进叶片水浸斑的发展[38]。同样会导致细菌从质外体释放到植物体[39]。源自Xcv的AvrBs3会导致叶肉细胞肥大,也会促使侵染后期植物表面细菌的扩散释放[38],导致细菌在田间的扩散[40]。

4 AvrBs3及其它相关效应蛋白的靶标是植物启动子

AvrBs3和相关蛋白包含一中间重复结构域,该重复域常由几乎完全相同的34个氨基酸组成,并介导蛋白质的二聚化[41]及DNA的结合[29]。该重复序列只在氨基酸位点的12位和13位存在差异,重复的数量及顺序决定了蛋白质与DNA的特异性结合[9,42]。另外,这些蛋白质的C末端包含核定位信号(Nuclear Localization Signal, NLS)和酸激活结构域(Acidic Activation Domain, AD),它们分别介导效应蛋白进入细胞核及激活植物基因的表达,对蛋白质的功能很重要[9]。最近对水稻的微阵列分析识别了Xoo中几个类AvrBs3蛋白的靶基因[43-44]。例如,受PthXo1诱导的Os8N3。因为这个植物基因是细菌毒性所必需的,所以它被认为是感病基因[43]。UPA20编码碱性螺旋-环-螺旋(basic helix-loop-helix, bHLH)家族的转录因子,bHLH家族是AvrBs3引起的植物细胞肥大的关键调节子[29]。启动子分析显示在UPA20及其他AvrBs3靶基因存在一个保守的AvrBs3反应元件,即UPA框,该UPA框直接和效应蛋白结合[29-30]。迄今为止,AvrBs3是唯一的已证实直接结合植物启动子的TAL效应蛋白。然而,我们相信AvrBs3的同源物具有一样的分子作用机理,即启动子为它们的直接靶标。endprint

5 植物抵御TAL效应蛋白的防卫策略

为应对TAL效应蛋白毒性的分子机理,植物进化出了一个复杂的识别策略,即利用抗性基因启动子作为分子诱捕。特定的TAL效应蛋白激活启动子,进而诱导抗性基因的表达及随后的细胞死亡[30,45]。Bs3和Bs3-E分别识别AvrBs3和AvrBs3的衍生物AvrBs3Δrep16,研究证实了Bs3和Bs3-E启动子序列的差异(UPA框附近存在一个13 bp的缺失),而不是编码区存在的差异引起相应抗性胡椒植物中各个效应蛋白的特异结合[30]。相反,水稻的遗传抗性基因Xa13赋予的抗性不是由抗性基因启动子诱导的,而是依赖于诱导性的丧失[46]。Xa13与易感基因Os8N3极可能是等位基因,Os8N3是由TAL效应蛋白PthXo1诱导的[43]。启动子序列差异导致xa13的诱导,因此水稻对依赖于PthXo1作为毒力因子的Xoo菌株表现出抗性[42,45]。有趣的是,这种抗性可以被另外一种TAL效应蛋白(AvrXa7)克服,AvrXa7并不诱导Os8N3,很可能诱导水稻中另一个易感基因[43]。总之,对于Bs3和Xa13(Os8N3),植物抗性是由效应蛋白靶启动子突变介导的。然而,对Bs3来说,抗性的结果是诱导一个自杀基因的表达[31]或者丧失基因诱导[43,46]。

另外一种植物抗性机理是基于一个基础转录元件的亚单位,它是水稻TAL效应蛋白识别的成分。水稻隐性抗性基因Xa5编码转录因子TFIIA的γ亚单位,TFIIA与易感等位基因Xa5的产物只存在一个氨基酸(E39V)的不同[47]。TFIIA γ参与到真核转录因子转录机制。来自Xoo的Avrxa5很可能是AvrBs3家族的成员[33],可能由于Avrxa5不能与Xa5蛋白互作,因此,在水稻Xa5/xa5中不能促进感病基因的转录。

6 结论

黄单胞菌常利用III型效应蛋白提高致病性。迄今为止,在其他病原菌T3SS尚未发现这种新的活性。然而,XopD效应蛋白以及YopJ/AvrRxv家族成员显示了酶的活性,AvrBs3家族成员起着真核转录激活子的功能,而且通过结合靶基因启动子的方式直接调节宿主基因的转录。对于III型效应蛋白靶标的深入分析可进一步阐明黄单胞菌毒性机理,甚至可能有助于阐明到植物存在的普遍抗性机理。

参考文献

[1] Thieme F, Koebnik R, Bekel T et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence[J]. JOURNAL OF BACTERIOLOGY BACTERIOLOGY,2005,187(21):7 254-7 266.

[2] Shrivastava S, and Mande S S. Shrivastava S et al.Identification and functional characterization of gene components of type VI secretion system in bacterial genomes[J]. PLoS PLOS ONE ONE,2008, 3(8):e2955.

[3] Buttner D, Noel L, Thieme F, and Bonas U.Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes[J]. JOURNAL OF BIOTECHNOLOGYJ. Biotechnol. 2003, 106(2-3):203-214.

[4] Tampakaki A P, Fadouloglou V E, Gazi A D Tampakaki AP et al.Conserved features of type III secretion[J]. CELLULAR MICROBIOLOGYCell Microbiol. 2004, 6(9):805-816.

[5] Greenberg J T and Yao, Net al. The role and regulation of programmed cell death in plant–pathogen interactions[J]. CELLULAR MICROBIOLOGYCell Microbiol. 2004,6(3):201-211.

[6] Bonas BONAS U, SCHULTE R, FENSELAU S et al. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol. Plant- Microbe Interact 1991, 4(1): 81-88.

[7] Lindgren P B. The role of hrp genes during plant-bacterial interactions[J]. ANNUAL REVIEW OF PHYTOPATHOLOGY Annu. Rev. Phytopathol. 1997, 35:129-152.endprint

[8] He Y Q, Zhang L , Jiang B L et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris[J]. GENOME BIOLOGYGenome Biol. 2007, 8(10): R218.

[9] Gurlebeck D, Thieme F and Bonas U et al.Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant[J]. JOURNAL OF PLANT PHYSIOLOGYJ Plant Physiol. 2006,163(3):233-255.

[10] Doron Teper, Salomon D, Sunitha S et al. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14–3–3 isoforms to suppress effector-triggered immunity[J]. PLANT JOURNALPlant J 2013,77(2):297-309.

[11] Zhao B Y, Dahlbeck D, Krasileva K V Bingyu Zhao et al.Computational and Biochemical Analysis of the Xanthomonas Effector AvrBs2 and Its Role in the Modulation of Xanthomonas Type Three Effector Delivery[J]. PLOS PATHOGENS.Plos pathogen 2011,287(12): 735-744

[12] Wang L F, Tang X Y and He C ZWang L et al. The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane-anchoring for host recognition[J]. MOLECULAR PLANT PATHOLOGYMol Plant Pathol. 2007, 8(4): 491-501.

[13] Jiang B L, He Y Q, Cen W J Jiang B-L et al.The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence[J]. RESEARCH IN MICROBIOLOGY Res Microbiol. 2008, 159(3): 216-220.

[14] Gohre V and Robatzek S. Breaking the barriers: microbial effector molecules subvert plant immunity[J]. ANNUAL REVIEW OF PHYTOPATHOLOGY. 2008 ,46:189-215.

[15] Metz M M, Dahlbeck D , Morales C Q et al. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana[J]. PLANT JOURNALPlant J. 2005, 41(6): 801-814.

[16] Espinosa A, Guo M, Tam V C et al. The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants[J]. MOLECULAR MICROBIOLOGYMol. Microbiol. 2003, 49(2):377-387.

[17] Underwood W, Zhang S Q and He S Y et al. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana[J]. PLANT JOURNALPlant J. 2007, 52(4): 658-672.

[18] Thieme F, Szczesny R, Urban A et al. et al. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2007,20(10): 1 250-1 261.endprint

[19] Nimchuk Z L, Fisher E J , Desveaux D et al. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2007,20(4): 346-357.

[20] Canonne J, Marino D, Jauneau A et al. The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense[J]. PLANT CELLPlant Cell[J]. 2011, 23(9): 3498-3511.

[21] Kim J G ,Stork W, Mudgett M B et al. Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SlERF4 to Suppress Ethylene Responses and Promote Pathogen Growth[J]. Cell Host & Microbe[J], 2013, 13(2): 143-154.

[22] Novatchkova M, Budhiraja R, Coupland G et al. SUMO conjugation in plants[J]. Planta 2004, 220(1): 1-8.

[23] Roden J, Eardley L, Hotson A et al. Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol Plant- Microbe Interact 2004, 17(6):633-643.

[24] Orth K, Xu Z H, Mudgett M B et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease[J]. SCIENCE.Science 2000, 290(5496): 1 594-1 597.

[25] Zhou H, Monack D M, Kayagaki N et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kB activation[J]. JOURNAL OF EXPERIMENTAL MEDICINE. J. Exp Med 2005, 202(10):1 327-1 332.17: 1 192-1 200.

[26] Sweet C R, Conlon J, Golenbock D T et al. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kB, MAPK and IRF3 signal transduction[J]. CELLULAR MICROBIOLOGY . Cell Microbiol 2007, 9(11): 2 700-2 715. 20: 934-943.

[27] Mukherjee S, Keitany G , Li Y et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation[J].SCIENCE.2006,312(5777):1211-1214.

[28] Cunnac S, Wilson A, Nuwer J et al. A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis[J]. PLANT CELL. Plant Cell 2007, 19(2):688-705.

[29] Kay S, Hahn S, Marois E et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator[J]. SCIENCE .Science 2007, 318(5 850): 648-651.

[30] Romer P, Hahn S, Jordan T et al. Plant-pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene[J]. SCIENCE .2007, 318(5850): 645-648.

[31] Nissan G G, Manulis-Sasson S, Weinthal D et al. The type III effectors HsvG and HsvB of gall-forming Pantoea agglomerans determine host specificity and function as transcriptional activators[J]The type III effectors HsvG and HsvB of gall-forming for pollen development result in disease resistance in rice. MOLECULAR MICROBIOLOGYGenes Dev. 2006, 2061(5): 1 118-1 131,1 250-1 255.endprint

[32] Bai J F, Choi S H, Ponciano G et al. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol. Plant-Microbe Interact 2000, 13(12): 1 322-1 329.

[33] Yang B et al and White F F. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2004,,17(11): 1 192-2 000.

[34] SWARUP S, DEFEYTER R, BRLANSKY R H Swarup S et al. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus[J]. PHYTOPATHOLOGY .Phytopathology 1991, 81(8):802-809.

[35] Kanamori H et al and Tsuyumu S. Comparison of nucleotide sequences of canker-forming and non-canker-forming pthA homologues in Xanthomonas campestris pv. citri[J]. Annals of the Phytopathological Society of Japan. Ann Phytopathol Soc Jpn 1998, 64(5): 462-470.

[36] El Yacoubi B , Brunings A M , Yuan Q et al. In planta horizontal transfer of a major pathogenicity effector gene[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.Appl Environ Microbiol 2007, 73(5):1612-1621.

[37] Al-Saadi A, Reddy J D, Duan Y P et al. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation[J]. MOLECULAR PLANT-MICROBE INTERACTIONS Mol Plant-Microbe Interact 2007, 20(8):934-943.

[38] Marois E, Van den Ackerveken G and Bonas U et al. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol Plant-Microbe Interact 2002, 15(7): 637-646.

[39] Yang Y Y N,Yuan Q P,Gabriel D W et al. Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family[J]. MOLECULAR PLANT-MICROBE INTERACTIONS. Mol Plant-Microbe Interact 1996, 9(2):105-113.

[40] Wichmann G et al and Bergelson J. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field[J]. Genetics GENETICS.2004, 166(2):693-706.

[41] Gurlebeck D, Szurek B, Bonas U. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import[J]. PLANT JOURNAL.2005, 42(2): 175-187.endprint

[42] Schornack S S, Meyer A, Romer P et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins[J]. JOURNAL OF PLANT PHYSIOLOGY. Plant Physiol 2006, 163(3):256-272.

[43] Yang B et al, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA .Proc Natl Acad Sci U S A 2006, 103(27): 10 503-10 508.

[44] Sugio A A, Yang Bing, Zhu T et al. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAg1 and OsTFX1 during bacterial blight of rice[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA .Proc Natl Acad Sci USA 2007, 104(25): 10 720-10 725.

[45] Gu K K, Yang B, Tian D S et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature NATURE.2005, 435(7045): 1 122-1 125.

[46] Chu Z, Yuan M, Yao L L et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. GENES & DEVELOPMENT. Genes & Dev 2006, 20(10): 1 250-1 255.

[47] Jiang G H H, Xia Z H, Zhou Y L et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5(Xa5) in comparison with its homolog TFIIAg1[J]. MOLECULAR GENETICS AND GENOMICS.Mol Genet Genomics 2006,275(4):1-13354-366.endprint