APP下载

碳化温度对猪骨炭结构及四环素催化降解性能的影响机制

2023-07-28李坤权

农业工程学报 2023年8期
关键词:碳化自由基活性

夏 旭,李坤权

碳化温度对猪骨炭结构及四环素催化降解性能的影响机制

夏 旭,李坤权※

(南京农业大学工学院,南京 210031)

针对碳化温度对猪骨炭(black pig biochar,BPBC)物化结构变化、活性位形成和催化降解四环素(tetracycline,TC)影响机制不清的问题,该研究以富含钙磷无机模板的厨余猪骨为原料通过高温缺氧一步碳化法制备了高催化活性多孔猪骨炭,采用现代能谱和低温N2吸脱附等技术考察了碳化温度对BPBC形貌、活性矿晶、官能团结构和TC催化降解性能的影响及机制。结果表明,BPBC物化结构及其对TC的催化降解性能随碳化温度变化明显,在500、700和900 ℃ 3个不同碳化温度下制备的BPBC(500BPBC、700BPBC、900BPBC),分别呈现层状裂缝、针状团簇和空心球3种明显不同的结构;碳框架中-OH、C=O、活性羟基磷灰石及比表面积随碳化温度升高先增加而后降低,BPBC对TC的降解性能比值为7.3∶10∶4.6,700BPBC催化性能最强;自由基清除试验分析表明,700BPBC碳框架上高活性的-OH、C=O和针簇状矿物晶体结构,能高效激活过硫酸盐通过自由基和非自由基双反应途径催化降解TC。该研究结果可为通过控制温度一步碳化定向合成具有高催化降解TC活性的高值BPBC提供数据支持和理论依据。

温度;生物炭;pH值;猪骨炭;针簇状结构;四环素;去除机制

0 引 言

作为养殖业最广泛的治疗感染性疾病的药物之一,四环素(tetracycline,TC)已成为典型的抗生素类有机污染物[1]。即使自2019年起中国及多个国家早已颁布“禁抗令”,但至今在高原湿地的地表径流区域,四环素类抗生素检出量仍然可高达2 185 μg/kg[2]。由于TC具有低效的生物吸收性、高可溶性与高生物活性,被摄入后其母体分子或副产物约有20%~97%会排出体外,继而基于生物富集作用残留在生态系统中[3-4],容易导致细菌抗生素耐药性增强、生态系统干扰等持久的环境毒性危害。目前TC的去除方法有:生物降解[5]、物理吸附[6]、光降解[7]、光芬顿[8]、过硫酸盐氧化[9]等。其中,过硫酸盐高级氧化技术(sulfate radicals based-advanced oxidation processes,SR-AOPs)能够利用绿色低廉的生物炭(biochar,BC)作为非均相催化剂,高效分解过硫酸盐(persulfate,PS)产生高氧化还原电势的羟基自由基和硫酸根自由基(·OH、SO4-·),进而实现有机物的降解矿化,因而被认为是兼具环保和经济双重效益的优势手段[10]。

此外,近年来人们对畜禽肉类需求的提高,伴随而来的废骨产量也日益增加。据统计,2021年中国废骨年产量高达1 348 t[11-12]。传统的如深埋、堆肥法、化制等废骨处理方法存在实施条件受限或治病细菌滋生等缺陷,易加重农业面源污染[13],而将废弃骨骼制备为BC应用于催化PS降解TC是极具发展前景的应用,紧密贴切以废治废、绿色高效的资源化利用理念。骨骼中的无机晶体(主要为羟基磷灰石(hydroxyapatite,HAp)及含碳酸盐的羟基磷灰石(carbonated hydroxyapatite,CHAp))与有机基质(主要为胶原蛋白和脂肪)在纳米尺度上分层排列,在高温热解制备骨炭的过程中,羟基磷灰石能够作为模板剂、胶原纤维作为碳基前体,发挥内源矿质胶原掺杂的作用,促进骨炭3D多级孔结构形成的同时提供更多的富氧活性基团位点,使其能够快速激活PS,成为一种利于催化降解有机物的增值碳材料[14-15]。值得注意的是,不同热解温度制得BC的官能团、结晶度、表面形貌等理化性质具有明显差异[16-18],可直接影响对污染物的去除性能[19]。如王梦妍等[20]研究表明随热解温度500~900 ℃梯度性提升,骨料中HAp成分增多,含氧官能团含量下降,使得骨炭碱性增强、酸性减弱。LIU等[21]采用与鱼骨化学组成相近的鱼鳞为原料制备了蜂窝状结构的鱼鳞炭,发现在低温550 ℃下胶原蛋白保留了更多的氮氧原子,而在高温800 ℃下HAp的原始结构受到极大程度的破坏,形成了丰富的微介孔结构。REN等[22]发现鱼骨炭缺陷结构与含氧官能团随着制备温度提升而增多,在800 ℃下制备的生物炭1 h内可完全降解20 mg/L的苯酚。与鱼骨相比,猪骨不但含有丰富的钙磷等无机模板成份,且含有更高的胶原蛋白和脂肪有机组分含量(猪骨80.2%>鱼骨74.9%)[23],在碳化成炭的过程中具有更大的成碳与成孔潜力。更为重要的是,尽管热解温度对骨炭结构与催化的研究已经比较丰富,但有关碳化温度对猪骨炭形貌、富钙矿质晶体和含氧官能团结构及其对TC催化降解性能的影响研究还未见报道。

为此,本研究以猪骨为原料,在500~900℃的不同热解温度下制备不同结构的猪骨炭,通过现代能光谱方法探析热解温度对猪骨炭形貌、活性羟基磷灰石晶体结构、含氧活性官能团以及孔隙结构的影响,进而通过催化降解试验探究猪骨炭形貌、晶态、官能团、孔隙结构对TC催化性能的影响与机制以及猪骨炭制备温度-物化结构及催化降解性能间的构效关系,以期为高效催化去除环境四环素类抗生素有机物污染物的猪骨炭定向构建和应用提供数据支持。

1 试验材料与方法

1.1 试剂和仪器

骨料取自吉林东辽(约60%的矿物质(主要是HAp)、25%的有机基质(主要是I型胶原蛋白)、15%的水)。PS(过硫酸钠,99%)、四环素(TC)、盐酸(HCl)、氢氧化钠(NaOH)、甲醇(MeOH)和叔丁醇(TBA)均为分析纯,购于南京化学试剂公司。电子扫描显微镜(SEM,Hitachi Regulus8100,北京日立科学仪器有限公司)、X射线衍射仪(XRD,D8 Advance,德国布鲁克公司)、红外光谱分析仪(FTIR,Scientific Nicolet iS20,美国赛默飞科技公司)、孔径分析仪(3H-200OPM2,北京贝士德仪器科技有限公司)、紫外-可见光分光光度计(UV-5000B,上海精密仪器仪表有限公司)。

1.2 猪骨炭制备

将干燥的厨余猪骨粉碎过筛(0.15 mm)后置于管式炉中,在100 mL/min的氮气气流中以10 ℃/min的速率升温,使得煅烧温度分别升到500、700、900℃,而后保温2 h。自然冷却后取出炭化品,用去离子水反复清洗至滤液呈中性,烘干后获得3种不同热解温度的猪骨炭,分别记作500BPBC、700BPBC和900BPBC。

1.3 材料表征

通过SEM、SEM-EDS、XRD和FTIR分析猪骨炭表面形貌、元素组成、晶体结构与表面化学结构。猪骨炭比表面积、孔容及孔径分布,根据低温氮气吸附等温线通过BET、BJH、H-K、DFT等模型计算分析。

1.4 不同碳化温度下猪骨炭对TC的降解性能测定

1.4.1 不同温度猪骨炭对四环素的降解试验

按质量比1∶6分别取0.060 g猪骨炭和0.360 g PS,置于含有200 mL 250 mg/L的TC溶液(预调pH值为5)的锥形瓶中,放入摇床在转速150 r/min下反应取样,使用0.22 μm的有机滤膜过滤后获得清液,采用紫外-可见光分光光度法在波长358 nm测定溶液中剩余TC浓度。试验重复3次,取平均值。猪骨炭对TC的平衡去除量W根据式(1)计算。

W=(0-C)/(1)

式中W为平衡去除量(mg/g);0为溶液中TC的初始浓度(mg/L);C为溶液中TC的平衡浓度(mg/L);为溶液的体积(L);为猪骨炭的质量(mg)。

1.4.2 pH和PS投加量对降解性能的影响

在控制炭投加量的情况下,在反应体系中添加PS进行批量去除试验,以测试探究不同反应环境的初始pH值(3~11)、不同PS投加量(BC∶PS质量比1∶0~1∶9)条件下,反应48 h后,猪骨炭对TC的去除能力的影响。

1.4.3 降解路径分析

选取不同浓度梯度的甲醇(MeOH∶PS摩尔比20∶1~1 000∶1)和叔丁醇(TBA∶PS摩尔比20∶1~333∶1),在BC∶PS质量比1∶6、pH值为5条件下进行自由基清除试验。

2 结果与分析

2.1 猪骨炭的表面特性及元素组成

2.1.1 热解温度对猪骨炭表面形貌的影响

从图1a的SEM图中可以看出,在500、700和900 ℃下制备的3组猪骨炭的表面虽都呈现不同程度凹凸不平的孔隙结构,但形态各异。500BPBC表面主要呈现为相对平整的层状结构,拥有较多大块的矿质残留体;而700BPBC表面呈现大量细长的纤维丝状结构,且以团簇形式相互缠绕在一起;当热解升高至900 ℃时,制得的900BPBC具有明显的空心球形结构。相比于500BPBC,700BPBC表面呈现纤维丝状团簇结构,并且残留矿质颗粒更小,这可能是由于猪骨中钙磷在高温形成的晶体与猪骨炭中的sp2杂化结构碳框架结合在一起形成所致。900BPBC中团簇结构消失而呈现空心球形结构,可能是丝状团簇晶体成分高温下分解所致[24]。从SEM-EDS能谱元素图1b及成分含量表(表1)可以看出,碳和氧的含量均随着热解温度的升高呈先增加后减少的趋势,而钙和磷的含量变化情况正好与之相反,说明钙磷形成的磷酸钙无定形相和羟基磷灰石晶体在700~900 ℃的高温下相互转换[25]。

2.1.2 热解温度对猪骨炭晶格结构的影响

不同热解温度下制备得到的猪骨炭的XRD结果如图 2所示,从3组猪骨炭的XRD衍射峰的形状来看,热解温度明显影响着猪骨炭的晶型结构。在衍射角为10.8°、25.7°、32.2°、39.8°、49.5°时存在明显的特征峰,分别对应于类石墨物质、CHAp的B型碳酸盐取代物(Ca10(PO4)3(CO3)3(OH)2)、A型碳酸盐取代物(Ca10(PO4)6CO3)、HAp和氮化碳物质的(002)、(-202)、(310)和(201)晶面。图谱在2为10.8°和39.8°处存在明显的特征衍射峰,对应于猪骨炭的碳构型中球壳状的类石墨碳簇分子以及无机相的HAp,并且随着猪骨炭碳化温度的升高结晶程度越高,说明猪骨炭是一种富含钙磷的生物炭。

700BPBC在25.7°和32.2°峰位相比于500BPBC,在活性较高的B型CHAp衍射峰强度更大(700BPBC 522 > 500BPBC 498),而化学性质更稳定的A型CHAp结晶度适中,因而700BPBC的磷灰石矿物拥有更好的晶型配比,这可能促进单线态氧与超氧自由基的产生提供更多的催化活性位点[26-27]。而900BPBC在全谱扫描范围内存在许多粗糙的尖锐峰型,这表明过高的热解温度使猪骨炭中形成了更为复杂的无机晶型结构,可能会覆盖或阻塞碳结构并影响猪骨炭的催化活性[27]。

注:500BPBC、700BPBC、900BPBC分别代表在碳化温度为500、700、900 ℃下制得的猪骨炭。下同。

表1 能量色散X射线光谱扫描的元素质量分数(10 μm)

图2 猪骨生物炭的XRD图

2.1.3 热解温度对猪骨炭表面官能团的影响

图3为不同热解温度下猪骨炭的FTIR图。如图3所示,3种猪骨炭在3 417、1 622、1 457、1 415、1 035、603、564 cm-1具有明显的吸收峰位。位于3 417 cm-1处的-OH振动特征峰,能够为降解反应中自由基途径的激活提供活性[28];在1 622 cm-1处为酰胺Ⅰ由C=O的振动拉伸引起的特征峰[29],能够作为电子受体提供电子转移途径的活性位点[27];在1 415和1 457 cm-1附近出现碳酸盐特征峰的双态带,表明CaCO3的存在,是由于CO32-取代HAp结构中的PO43-位点,使得C-O发生拉伸振动而形成的活性CHAp[30];在564、605和1 035 cm-1处出现磷酸盐的特征峰,表现为明显的磷酸盐的反对称弯曲以及不对称的三重变性O-P-O拉伸振动,这归属于猪骨炭中的无机组分HAp,而磷具有较强的给电子能力,其存在形式可能提供了良好的电子传递性能,对于降解反应所需的催化活性起支撑作用[31]。

其中,在700BPBC的图谱上在564、605、1 415、1 457以及3 417 cm-1处的特征峰曲线呈现有更大的峰面积和清晰的峰形,表明该温度下猪骨炭表面具有更多的-OH以及活性CHAp,这可能为700BPBC提供更高的催化活性。在热解温度为500 ℃时,由于碳化不充分导致猪骨中有机胶原和无机磷灰石裂解不完全,使500BPBC在活性-OH、CO32-和PO43-峰位未获得突出的特征峰曲线。而当碳化温度上升至900 ℃后,-OH与C=O等含氧官能团特征峰峰形曲线模糊,同时在872、1 415和1 457 cm-1的B型碳酸盐特征峰在900BPBC上消失,表明CO32-取代羟基磷灰石结构中的-OH位点,转化为979 cm-1处的A型碳酸盐特征峰,这是由于制炭温度过高而导致活性CHAp的失活,形成稳定的A型CHAp[32-33],表明过高的碳化温度不利于猪骨炭表面的催化活性。

图3 猪骨炭的FTIR谱图

2.1.4 热解温度对猪骨炭孔结构的影响

不同热解温度下制备的猪骨炭的N2吸脱附等温线以及全孔、中孔、微孔径分布如图4所示。由图4a可知,当热解温度为700 ℃时,700BPBC的氮吸附量在0低中高压段相较于500BPBC和900BPBC均明显上升;图4b~4d中可以看出在700BPBC不仅具有优异的中孔结构,还具有更多的微孔。因此综合图4a~4d和表2中数据可知,比表面积及孔体积随着热解温度的升高呈先增加后减小的趋势,700BPBC可能由于在热解过程中有机物挥发更充分,相比于500BPBC拥有更多比例的微孔体积(0.053 mL/g)和更大的比表面积(134 m2/g),与SEM图中观察到的狭缝型短孔的现象相印证,更密集且短小的表面结构能够更好地富集PS分解产生的小分子自由基,为催化降解提供更多的增强效应。900BPBC的孔结构最差,这可能是由于裂解温度过高,使得孔隙结构在一定程度上扩散变形,破坏并导致相邻的孔隙壁坍塌[34]。

表2 猪骨炭的孔结构及比表面积

图4 碳化温度为500、700、900 ℃的猪骨炭孔径分析

2.2 不同碳化温度下猪骨炭对TC的催化降解

图5描述了3组不同温度下猪骨炭在pH值为5、投加量BC∶PS为1∶6条件下的不同反应时间对TC的降解性能。从图中可以看出,不同碳化温度下的猪骨炭对TC的降解性能差异明显,降解能力由大到小顺序为700BPBC、 500BPBC、900BPBC。当反应进行到30 min时,700BPBC、500BPBC和900BPBC对TC的去除能力之比为10∶4.7∶2.8,至反应210 min去除能力之比仍高达10∶7.3∶4.6。相比于500BPBC和900BPBC,700BPBC对TC具有更优的催化降解能力,究其原因可能是有机基质裂解、HAp构型以及原位物理模板作用的协同结果:在700 ℃的热解温度下,胶原蛋白等充分碳化形成丰富的活性氧基团,并且骨料中HAp开始发挥模板作用,保留活性CHAp的同时形成具有针簇状特征的三维微-介孔结构,使得700BPBC拥有的更优异的化学活性位点和孔隙结构。由2.1节分析可知,纤维丝状团簇和更丰富的扁平狭缝型孔隙结构能够迅速发生吸附行为将TC与PS紧密富集,更有利于大分子TC的固定浓缩,从而提高其与活性位点和S2O82-的接触效率;同时,700BPBC表面具有丰富的高活性官能结构-OH、C=O和B型CHAp,在sp2碳网络以及富电子含氧基团的作用下,促进形成PS的激发态加速自由基的分解[35],促进自由基途径(SO4-·、·OH、超氧自由基(O2-·))的产生;而“TC-700BPBC-PS”三元体系的形成大大增加了非自由基反应途径的贡献度[36],并且C=O的存在也可以促进电子转移、单线态氧(1O2)等非自由基途径;此外B型CHAp活性矿物成分的存在,不仅说明内源矿质组分在700 ℃的热解温度下获得了较好的晶型配比、形成了特定的表面形貌,还能够刺激活性氧物种的产生。以上活性氧物种产生机理见式(2)~(6)[27,37]。

BC-OH+S2O82-→SO4-·+HSO4-+BC-O· (2)

BC-OOH+S2O82-→SO4-·+HSO4-+BC-OO· (3)

SO4-·+H2O→SO42-+H++·OH(4)

·OH+O2-·→1O2+OH-(5)

H++2O2-·→1O2+H2O2(6)

注:R为剩余浓度与初始浓度比值。

2.3 700BPBC催化降解TC的参数影响与路径分析

S2O82-+2H2O(OH-)→2SO42-+3H++HO2-(7)

S2O82-+HO2-→SO42-+H++SO4-·+O2-· (8)

图6c为PS投加量对700BPBC催化降解TC性能的影响,从图6c可以看出,700BPBC催化降解TC能力随PS投加量增大而增大,BC∶PS上升为1∶6时,700BPBC对TC的降解率为70%,降解性能高达629 mg/g,比500BPBC和900BPBC分别高37%和117%。降解率为70%。随着PS投量的增加,猪骨炭催化PS的分解从而生成更多的·OH和SO4-·等自由基,能够破坏四环素结构生成副产物(degradation product,DP*)进而逐步矿化,实现对TC的催化降解,TC降解反应见式(9)[37]。而当PS投量过多时,其分解产生的一部分SO4-·转而与过硫酸盐离子发生猝灭反应,生成活性较弱的S2O8-·和无活性的SO42-,导致700BPBC的催化性能减弱,PS猝灭反应见式(10)[40]。

S2O82-+SO4-·→SO42-+S2O8-· (10)

甲醇可以同时猝灭·OH和SO4-·,而叔丁醇则更容易与·OH发生反应[41],为确定700BPBC/PS体系对TC的主要降解途径,采用不同浓度梯度的甲醇和叔丁醇进行自由基清除试验,结果如图6d所示。现有研究一般选用甲醇浓度为MeOH/PS=1 000∶1认为能够有效淬灭·OH和SO4-·自由基[42]。试验结果显示,随着甲醇(MeOH)浓度的大幅度提升,700BPBC对TC的去除率相对于对照组下降了14%、38%和57%,证明该去除部分主要来源于·OH和SO4-·引发的自由基反应途径。而叔丁醇(TBA)浓度的增加使去除量相对于对照组降低了9%、36%和44%,可见相对于MeOH,TBA对700BPBC催化降解性能的影响较大,证明该反应体系下·OH贡献度更多,且高浓度的TBA可能由于较强的疏水性从而阻止S2O82-与700BPBC发生催化反应,这与LIU等[43]研究磺胺甲恶唑降解路径的观点相似。此外,700BPBC/PS的反应体系中近60%为·OH和SO4-·发挥对TC的降解作用,说明其余贡献可能来自于1O2、电子传递等非自由基途径,根据前文分析这与C=O以及活性矿质成分CHAp有关。综上,本文深入研究碳化温度对猪骨炭结构与催化降解性能间的作用及影响,为高性能骨炭调控提供参考依据。

图6 700BPBC催化降解TC的参数影响与活性氧猝灭

3 结 论

1)猪骨炭形貌和碳框架钙磷晶态结构随着碳化温度升高变化显著。猪骨炭500BPBC、700BPBC和900BPBC分别呈现层状裂缝、针状团簇和空心球的独特形貌,碳框架中磷钙晶态分别以B型CHAp、A型CHAp和无机晶型为主,活性P(21.11%)和Ca(8.87%)含量在700BPBC中最高。

2)猪骨炭孔隙结构和活性含氧官能团随碳化温度变化明显。随着碳化温度从500℃提升到900℃,猪骨炭表面积和表面活性-OH、C=O和活性CHAp官能位含量先升高后降低。700BPBC具有更大的活性位载体表面积(134 m2/g) 、适中的孔径(8.371 nm)以及丰富的-OH、C=O 和活性 CHAP等活性官能团点位。

3)猪骨炭对TC的催化降解性能随碳化温度变化差异显著。700BPBC 对 TC 的降解性能高达 629 mg/g,比 500BPBC和900BPBC分别高37%和117%,主要归因于其丰富的针状团簇狭缝型孔隙载体表面以及-OH、C=O、B型CHAP高活性点位引起的自由基/非自由基双反应高效催化氧化途径。

[1] 刘倩,张航,蒋开拓,等. 便携式水产品四环素含量检测装置研制[J]. 农业工程学报,2023,39(5):8-14. LIU Qian, ZHANG Hang, JIANG Kaituo, et al. Development of a portable device for the detection of tetracycline contents in the aquatic products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 8-14. (in Chinese with English abstract)

[2] 秦荣,喻庆国,刘振亚,等. 人类活动影响下的高原湿地四环素类抗生素抗性基因赋存与微生物群落共现性[J]. 环境科学,2023,44(1):169-179. QIN Rong, YU Qingguo, LIU Zhenya, et al. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities[J]. Environmental Science, 2023, 44(1): 169-179. (in Chinese with English abstract)

[3] PROIA L, ANZIL A, SUBIRATS J, et al. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem[J]. Chemosphere, 2018, 206: 70-82.

[4] LIU L L, WU W, ZHANG J Y, et al. Progress of research on the toxicology of antibiotic pollution in aquatic organisms[J]. Acta Ecologica Sinica, 2018, 38: 36-41.

[5] MOUNI R, RAJNARAYAN S, SHALABY A R. Dyes and their removal technologies from wastewater: A critical review[M]// SIDDHARTHA B, NABA K M, JAN P, et al. Intelligent Environmental Data Monitoring for Pollution Management. San Diego, CA, USA, Academic Press, 2021: 127-160.

[6] WANG T, XUE L, LIU Y H, et al. N self-doped hierarchically porous carbon derived from biomass as an efficient adsorbent for the removal of tetracycline antibiotics[J]. Science of the Total Environment, 2022, 822: 153567.

[7] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review[J]. Science of the Total Environment, 2021, 753: 141975.

[8] 姚鹏城,陈嘉瑜,张永明,等. 废水处理系统中抗生素抗性基因分布特征[J]. 环境科学,2019,40(11):5024-5031. YAO Pengcheng, CHEN Jiayu, ZHANG Yongming, et al. Distribution characteristics of antibiotic resistance genes in wastewater treatment plants[J]. Environmental Science, 2019, 40(11): 5024-5031. (in Chinese with English abstract)

[9] ZHONG Q, LIN Q, HUANG R, et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar[J]. Chemical Engineering Journal, 2020, 380: 122608.

[10] WANG B, LI Y N, WANG L. Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: Activation factors and degradation mechanism[J]. Chemosphere, 2019, 237: 124454.

[11] XIAO J, HU R, CHEN G C, et al. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism[J]. Journal of Hazardous Materials, 2020, 399: 123067.

[12] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2022.

[13] PARK J H, YUN J J, KANG S W, et al. Removal of potentially toxic metal by biochar derived from rendered solid residue with high content of protein and bone tissue[J]. Ecotoxicology and environmental safety, 2021, 208: 111690.

[14] AHMED I, NICOLE M, JAMES G, et al. Hardness, an important indicator of bone quality, and the role of collagen in bone hardness[J]. Journal of Functional Biomaterials, 2020, 11(4): 85.

[15] ZHOU X R, ZENG Z T, ZENG G M, et al. Persulfate activation by swine bone char-derived hierarchical porous carbon: Multiple mechanism system for organic pollutant degradation in aqueous media[J]. Chemical Engineering Journal, 2020, 383: 123091.

[16] TASKIN E, BUENO C C, ALLEGRETTA I, et al. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications[J]. Chemosphere, 2019, 233: 422-430.

[17] 牛文娟,邓继猛,冯雨欣,等. 不同温度下水稻秸秆多孔生物炭结构与电化学性能[J]. 农业工程学报,2022,38(2):231-240. NIU Wenjuan, DENG Jimeng, FENG Yuxin, et al. Structure and electrochemical performances of porous biochar from rice straw at different temperatures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(2): 231-240. (in Chinese with English abstract)

[18] 高亮,李志合,易维明,等. 棉秆生物炭去除水中 Pb(Ⅱ)吸附机理的量化分析[J]. 农业工程学报,2022,38(3):230-238. GAO Liang, LI Zhihe, YI Weiming, et al. Quantifying the adsorption mechanisms of Pb(Ⅱ) in aqueous solution by cotton stalk biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 230-238. (in Chinese with English abstract)

[19] LI B, LIU D J, LIN D, et al. Changes in biochar functional groups and its reactivity after volatile-char interactions during biomass pyrolysis[J]. Energy & Fuels, 2020, 34(11): 14291-14299.

[20] 王梦妍,刘烨,姚玉梅,等. 动物骨热解过程中产物特性变化规律研究[J]. 农业机械学报,2022,53(5):357-365. WANG Mengyan, LIU Ye, YAO Yumei, et al. Product characteristics changes during animal bone pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 357-365. (in Chinese with English abstract)

[21] LIU M Y, NIU J, ZHANG Z P. Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors[J]. Journal of Power Sources, 2019, 414: 68-75.

[22] REN X Y, WANG J J, YU J F, et al. Waste valorization: Transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant[J]. Journal of Cleaner Production, 2021, 291: 125225.

[23] 程小飞,向劲,李传武,等. 病死猪肉骨粉与鱼粉营养成分对比分析[J]. 江苏农业科学,2020,48(16):208-211. CHENG Xiaofei, XIANG Jin, LI Chuanwu, et al. Comparative analysis of the nutritional composition of pork and bone meal and fish meal in the dead pigs[J]. Jiangsu Agricultural Sciences, 2020, 48(16): 208-211. (in Chinese with English abstract)

[24] MUHAMMAD K S, JUN Y K, GWYAM S, et al. Effect of pyrolysis conditions on characteristics and fluoride adsorptive performance of bone char derived from bone residue[J]. Journal of Water Process Engineering, 2020, 37: 101499.

[25] NAHUM A M C, ERIKA P O, LEONARDO D T G, et al. Removal of fluoride from aqueous solution using acid and thermally treated bone char[J]. Adsorption, 2016, 22(7): 951-961.

[26] ZWETSLOOT M J, LEHMANN J, BAUERLE T, et al. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae biochar interactions[J]. Plant Soil, 2016, 408, 95-105.

[27] ZHOU X R, ZENG Z T, ZENG G M, et al. Insight into the mechanism of persulfate activated by bone char: Unraveling the role of functional structure of biochar[J]. Chemical Engineering Journal, 2020, 401: 126127.

[28] SUSAN S A, RAED A A, JOCHEN B, et al. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal[J]. Environmental Pollution, 2020, 262: 114221.

[29] PARTHA P B, LIANG B Q, GORDON T W, et al. Systematic changes of bone hydroxyapatite along a charring temperature gradient: An integrative study with dissolution behavior[J]. Science of The Total Environment, 2021, 766: 142601.

[30] INTHAPANYA X, WU S H, HAN Z F, et al. Adsorptive removal of anionic dye using calcined oyster shells: Isotherms, kinetics, and thermodynamics[J]. Environmental Science and Pollution Research International, 2019, 26(6): 5944-5954.

[31] Niu C X, LI S L, ZHOU G, et al. Preparation and characterization of magnetic modified bone charcoal for removing Cu2+ions from industrial and mining wastewater[J]. Journal of Environmental Management, 2021, 297: 113221.

[32] HONEY M, BARBARA P, MARY M J T. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite[J]. Journal of Solid State Chemistry, 2017, 255: 27-35.

[33] GARSKAITE E, GROSS K A, YANG S W, et al. Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp)[J]. Crystengcomm, 2014, 16: 3950-3959.

[34] FAN X H, WANG X Q, ZHAO B, et al. Sorption mechanisms of diethyl phthalate by nutshell biochar derived at different pyrolysis temperature[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107328.

[35] LIU H Y, LIU Y N, TANG L, et al. Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate[J]. Science of the Total Environment, 2020, 745: 141095.

[36] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups [J]. Environmental Science & Technology, 2020, 54(2): 1267-1275.

[37] CHEN J H, YU X L, LI C, et al. Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate[J]. Chemical Engineering Journal, 2020, 382: 211916.

[38] 曾少毅,李坤权. 窄孔径含磷棉秆生物质炭的制备及对四环素的吸附机制[J]. 环境科学:2023,44(3):1519-1527. ZENG Shaoyi, LI Kunquan. Preparation of narrow pore diameter phosphorus containing cotton stalk carbon and its adsorption mechanism for tetracycline[J]. Environmental Science, 2023, 44(3): 1519-1527. (in Chinese with English abstract)

[39] DIAO Z H, XU X R, CHEN H, et al. Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism[J]. Journal of Hazardous Materials, 2016, 316: 186-193.

[40] WANG B, ZHU C, AI D, et al. Activation of persulfate by green nano-zero-valent iron-loaded biochar for the removal of p-nitrophenol: Performance, mechanism and variables effects[J]. Journal of Hazardous Materials, 2021, 417: 126106.

[41] ZHU C, ZHU F, DIONYSIOU D D, et al. Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process[J]. Water Research, 2018, 139: 66-73.

[42] 孙鹏,张凯凯,张玉,等. 生物炭/过一硫酸盐体系同时去除Cu2+和对硝基苯胺[J]. 化工进展,2020,39(10):4268-4274. SUN Peng, ZHANG Kaikai, ZHANG Yu, et al. Simultaneous removal of Cu2+and p-nitroaniline from aqueous solution by biochar/peroxymonosulfate system[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4268-4274. (in Chinese with English abstract)

[43] LIU F, DING J, ZHAO G S, et al. Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation [J]. Chemosphere, 2022, 302: 134868.

Mechanism for the effects of carbonization temperature on the structure of pig bone biochar and tetracycline catalytic degradation performance

XIA Xu, LI Kunquan※

(,,210031,)

Tetracycline (TC) can easily lead to persistent environmental toxicity via bio-enrichment effects, due to the inefficient bio-absorption, high solubility, and high bio-activity. Advanced oxidation processes based on sulfate radicals (SR-AOPs) can be expected to serve as an alternative means. Green low-cost biochar (BC) can be also used as an uneven catalyst. The persulfate (PS) was efficiently decomposed to generate the high-oxidation to restore power free radicals (OH, and SO4-·) during the degradation mineralization of organic matter. In addition, the annual waste bone production has reached 1348 tons in 2021 in China. Traditional treatments of waste bone can also be limited in the implementation conditions or cure such defects as bacterial reproduction. The waste bone can be prepared to catalyze the PS degradation TC. There are different properties of thermal temperature, crystallization, and surface shape made of BC, leading to the removal performance of pollutants. In this study, the different structures of pig bones coal with cooking pig bones were prepared as the raw materials at different temperatures of thermal resolution from 500 ℃ to 900 ℃. Energy spectroscopy was selected to analyze the effect of heat resolution on the pig bone's carbon shape, active phosphorus (hydroxyapatite, HAP) crystal structure, oxygenic acid, as well as the active functional units and cavity structure. Then, the material performance was compared to determine the optimal material pH, and PS parameters impact. The optimal system was achieved in the active oxygen sudden extinction to investigate the interaction between bone carbonization temperature and structure for the catalyst degradation performance. The results showed that there was a noticeable carbonization structure of the pig’s bone with the change in the carbonization temperature, indicating three distinct structures of layered cracks, needle-shaped clusters, and empty heart balls at three supply temperatures. Compared with 500 ℃ and 900 ℃, the crystalline structure formed at 700 ℃, and the fully volatile organic components presented the 700BPBC surface calcium phosphorus in the high-temperature formed crystal and the sp2structural carbon frame in the pig coal combined to form the needle-shaped fiber structure in the form of cluster. The more fine and shorter narrow conveyor was formed with a more microporous structure and better crystal comparison of phosphatic minerals. Energy and infrared spectrum analysis showed that the non-crystalline transformation was significantly influenced by the thermal resolution temperature, and then the content of C, O, Ca, and P, due to the full splitting of organic collagen and inorganic phosphorus and crystalline composition in HAp. As such, the 700BPBC was superior to the other two kinds of pig bone biochar with the rich -OH and active CHAp. The catalytic degradation experiment showed that the degrading capacity order from large to small is 700BPBC, 500BPBC, 900BPBC. Among them, the 700BPBC shared a stronger performance of catalytical degeneration for the TC, due to the small, narrow conveyor, rich active functional agglomeration spots, and better crystalline comparison. Furthermore, the ion form of quercetin was easier to capture than pig coal, when the solution environment was weakly acidic (pH value is 5). The best activity was achieved in the free radicals produced by sulfate (PS). The moderate overdose of sulphate (BC:PS = 1:6) produced the most effective free radical. The OH contributed the most under the 700BPBC/PS system. The free radical reaction was the dominant pathway to catalyze the degradation reaction. There were active CHAp and C=O-induced non-free radical reactions.

temperature; biochar; pH value; pig bone biochar; needle cluster structure; tetracycline; removal mechanism

2022-11-25

2023-04-06

国家自然科学基金项目(21876086);江苏省重点研发计划项目(BE2018708)

夏旭,研究方向为功能生物质炭材料调控与污染控制。Email:3502325728@qq.com

李坤权,博士,教授,博士生导师,研究方向为水污染控制与固体废弃物利用研究。Email:kqlee@njau.edu.cn

10.11975/j.issn.1002-6819.202211218

X705;S216.1

A

1002-6819(2023)-08-0231-08

夏旭,李坤权. 碳化温度对猪骨炭结构及四环素催化降解性能的影响机制[J]. 农业工程学报,2023,39(8):231-238. doi:10.11975/j.issn.1002-6819.202211218 http://www.tcsae.org

XIA Xu, LI Kunquan. Mechanism for the effects of carbonization temperature on the structure of pig bone biochar and tetracycline catalytic degradation performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 231-238. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202211218 http://www.tcsae.org

猜你喜欢

碳化自由基活性
碳化对飞灰稳定化加药量测评的影响
阳桃根化学成分及其体外抗肿瘤活性
自由基损伤与鱼类普发性肝病
自由基损伤与巴沙鱼黄肉症
简述活性包装的分类及应用(一)
陆克定:掌控污染物寿命的自由基
金丝草化学成分及其体外抗HBV 活性
9608聚合物防水防腐涂料在混凝土防碳化处理中的应用
檞皮苷及其苷元清除自由基作用的研究
PTEN通过下调自噬活性抑制登革病毒2型感染