APP下载

多功能烧结环冷机结构优化及智能化

2022-09-12杜武男

矿业工程 2022年4期
关键词:机架台车框架

杜武男

(中冶北方(大连)工程技术有限公司,辽宁 大连 116600)

0 引言

环冷机作为冶金铁前烧结生产工艺的重要设备之一,用于冷却经烧结机焙烧后再经单齿辊破碎机破碎的热烧结矿。中冶北方研发的多功能烧结环冷机以其高效冷却、节能、余热高效回收、清洁环保等综合优势,已经逐步取代原有传统烧结环冷机,被广泛应用于新建及改建的冶金工程当中,目前该产品已升级至第六代。随着对各生产现场反馈的使用情况的整理和分析,以及对新研发手段的开发和利用,对环冷机设备的进一步优化也拥有了更好的条件。本文结合某工程中280 m2环冷机的设计实例,实现了产品的结构优化与智能化。

1 多功能烧结环冷机结构优化目标

通过对烧结环冷机结构的优化设计,进一步降低设备的制造成本,减少设备、土建投资费用,优化现场使用体验,提高设备智能化水平,增强企业在烧结项目上的竞争力。

2 多功能烧结环冷机结构优化方案

主要针对烧结环冷机中重量占比较大的部件进行结构优化。其中,回转体部分约占环冷机总重量的40%,机架部分约占环冷机总重量的20%。因此,优先考虑对上述两大部件进行优化。

2.1 回转体

回转体主要由回转框架、台车、辊臂、栏板等部分组成。在满足使用要求的前提下,减少回转体重量,可以减轻支撑辊处所受压力,从而减小阻力矩和传动电机的工作电流,改善环冷机整体的运行状态。

2.1.1 回转框架

单台烧结环冷机设备中,回转框架共16个,所受总阻力矩约为3 800 kN·m,平均分布于每个回转框架。分别将内环上板、下板、立板和外环下板、立板的厚度减小2 mm,将外环上板的厚度减小4 mm,通过有限元分析得到应力和变形情况见图1、图2。其中,最大应力约为0.5 MPa,最大变形约为1.4 mm,均在合理范围内,优化后的结构强度和刚度可以满足使用需求。

图1 回转框架应力分析

图2 回转框架变形分析

2.1.2 台车

每个回转框架中有4个台车,共64个,每个台车承受料重约为13.2 t。将台车面板厚度减小4 mm,将与轴承座相连的两块长板和前后筋板的厚度各减小5 mm,通过有限元分析得到应力和变形情况见图3、图4。其中,最大应力约为50 MPa,最大变形约为3.3 mm,均在合理范围内,优化后的结构强度和刚度可满足使用需求。

图3 台车应力分析

图4 台车变形分析

2.2 机架

环冷机机架是由不同规格的轧制H型钢通过各种接点连接形成的环形框架结构,工程设计中对其截面规格的确定一般采用类比及估算的方法。通过工程实践发现,以往的机架梁、柱和斜撑截面选取偏大,为此,结合280 m2环冷机设计进行研究。

2.2.1 确定机架所受载荷

机架的计算载荷考虑+4.1 m标高以上的主要载荷,包括回转体重量(含栏板)、回转耐材重量、物料重量、上密封水重量、支承辊及底座重量等。回转体的刚度很高,可以在一定程度上减小中间梁支承辊处的变形,本次分析中,仅将载荷设定为作用于梁上的集中作用力。

载荷的作用点如图5所示(仅以单个跨距为例)。

载荷的大小为:

外梁:P1=P3=P5=165 kN(支撑辊处);

内梁:P2=P4=P6=165 kN(支撑辊处);

载荷方向均为垂直纸面向里。

图5 单个跨距框架载荷作用点

2.2.2 强度及刚度分析

1)不同截面的各项特性(见表1)。

表1 截面类型及特性

2)力学模型及分析

a) 单个跨距框架(H390×300柱+H390×300梁+φ168×6钢管斜撑)。应力及变形情况见图6、图7。

图6 单个跨距框架应力分析

图7 单个跨距框架变形分析

对于单个跨距框架的分析数据,见表2。

表2 单个跨距框架分析数据

b)环形框架。环形框架的力学分析模型中,各框架圆心角与环冷机实际相符,各个梁、柱均为H390×300×10×16,+4.1 m以下斜撑均为φ168×6钢管。对于给料、卸料区域的框架,由于其受力情况比较复杂,并且现有同规格环冷机的使用情况较为理想,因此暂不对该部分框架实施优化。应力及变形情况见图8、图9。

图8 环形框架变形分析

图9 环形框架应力分析

对于环形框架的分析数据,见表3。

表3 环形框架分析数据

由表3可见,对于环形框架,其最大位移、支承辊处最大位移、最大应力和斜撑处最大应力均略小于单个跨距框架。

2.2.3 机架优化效果

1)横梁和立柱采用H390×300替代原有H488×300,刚度和强度均满足使用要求,较之前设计可节省钢材重量约16%。

2)φ168×6钢管斜撑在满足压杆稳定,刚度、强度满足使用要求的情况下,较之前槽钢斜撑可节省钢材重量约66%。

3)环形框架由于框架间互相约束,整体强度、刚度均略好于单个框架。

4)机架在截面优化组合后的减重效果见表4。

表4 机架减重效果

2.3 环冷机优化效果

由表5可见,通过优化回转框架、台车体相应部位的钢板厚度,减小机架横梁和立柱部位H型钢规格,以及在机架斜撑部位采用φ168×6钢管替换原有][250×82槽钢,可以保证环冷机的使用要求,同时相较于原设计共可减重约50 t。

表5 环冷机优化效果

3 多功能烧结环冷机智能化

通过设置环冷机驱动打滑监测、减速机故障监测、安全装置、上密封水位监测、上罩温度监测等多个智能监测单元,以及全景监控系统和智能润滑系统,实时、远程监测设备运行状况,保护设备平稳、良好运行,并能在出现故障时及时做出响应,提升设备的数字化、智能化水平。

3.1 驱动打滑监测

实时监测环冷机运行转速和驱动电机转速,当摩擦轮出现打滑时,可及时发出声光报警并停机保护设备本体。

3.2 减速机故障智能监测

驱动装置使用行星齿轮减速机,配备智能监测单元,实时监测减速机震动和轴承温度并在主控室显示,当超过设定值时可及时发出报警。

3.3 安全装置

安全装置位于环冷机卸料处,当监测到台车翻转不灵活时,可辅助台车进行翻转;当监测到台车完全卡死时,触发感应开关,及时报警并停机。

3.4 上密封水位监测

可根据设定的水位和监测到的水位情况,对上密封水槽自动进行给水和补水。

3.5 上罩温度监测

通过对上罩内各个冷却段温度的实时监测和对比,全面、实时地掌握环冷机所有区域内的烧结矿冷却情况,并可根据温度变化情况,预先做出判断和给出操作指令。

3.6 全景监控系统

通过对环冷机内外圈、台车翻转位置及卸料处实施全景视频监控,多视角、实时地掌握环冷机运行状况并可对潜在运行风险进行预判,数据存储于硬盘,方便随时查阅和分析。

3.7 智能润滑系统

环冷机在运行过程中有众多需要润滑的点,其主要分布于支撑辊、侧挡辊、传动装置、复位辊以及板式给矿机等处。智能润滑系统的应用,可根据对应装置的运行情况,定时、定量地进行干油润滑,润滑点压力、给油量、润滑周期可任意调节,同时实现故障监测和报警,运行状态在主控室实时显示,有效地保护设备平稳、安全运行。

4 结语

本文所述环冷机结构优化和智能化方案,同样适用于其它规格的多功能烧结环冷机。在烧结工程以及环冷机新建和改造项目中,通过结构优化及智能化设计,可降低设备整体重量,从而降低环冷机制造成本,提高项目利润率,全面提升设备的数字化、智能化水平,为智能烧结生产提供技术支持,进而增强产品和企业在市场上的竞争力。

猜你喜欢

机架台车框架
无人驾驶替代农药喷雾车机架动静态特性分析
质子治疗装置旋转机架滚轮支撑结构及本体稳定性分析
散货船舱口盖舾装工事焊接工艺改进方法
内外模台车滑移法在明挖隧道二衬施工中的应用
有机框架材料的后合成交换
框架
兆瓦级风电机组前机架结构强度优化设计研究
自行式砼衬砌钢模台车在隧道工程中的应用
浅谈框架网页的学习
最多支持36块显卡 德国水冷品牌AlphaCool推出矿机机架