APP下载

饲料中添加枯草芽孢杆菌对大口黑鲈幼鱼生长、肠道组织结构、抗氧化能力、免疫能力和肠炎的影响

2022-02-20张冬梅颜浩骁罗茂林胡一帆龚晨昕李志琼赵柳兰

动物营养学报 2022年1期
关键词:幼鱼枯草芽孢

张冬梅 颜浩骁 罗茂林,2 杨 懿 胡一帆 龚晨昕 李志琼 杨 淞 赵柳兰*

(1.四川农业大学动物科技学院,成都 611130;2.四川特驱投资集团有限公司,成都 611430)

我国是世界水产养殖第一大国,池塘养殖是我国渔业的重要组成部分,已经成为渔民增收和乡村振兴的主要增长点[1]。但池塘养殖过程中受环境、营养、病原感染和生长阶段等因素的影响,导致养殖动物的疾病爆发,甚至造成大规模死亡,威胁水产业发展[2-3]。因此,如何提高鱼体免疫力和抗病力显得尤为重要。肠道是鱼类最大的免疫器官之一[4],其发挥着多种作用,例如对营养物质进行消化和吸收、抵抗病原微生物和食物抗原对机体的影响、参与抗菌肽和摄食调控类激素的分泌等,一旦肠道功能出现异常,将会影响影响鱼体健康[5-6]。

在传统的水产养殖过程中,通常使用抗生素对疾病进行治疗,但滥用抗生素,不仅衍生出耐药性的问题,也会污染环境,破坏生态平衡,最终危害人和动物的健康。因此,益生菌作为抗生素时代之后的一种新型饲料添加剂逐渐得到广泛关注并成为研究热点。枯草芽孢杆菌是一种在我国已经获得批准的用于动物饲料的微生物菌株,广泛应用于水产生产。研究证明,枯草芽孢杆菌可以分泌挥发性代谢产物和抗生素,从而维持肠道的酸性环境并抑制病原菌的生长[7-9]。给莫桑比克罗非鱼(Oreochromismossambicus)饲喂补充105或107CFU/g地衣芽孢杆菌(Bacilluslicheniformis)4周后,不仅能提高莫桑比克罗非鱼的生长性能,还能改善肠道黏膜、血清免疫参数和抗氧化活性[10]。在日本鳗鲡(Anguillajaponica)饲料中补充枯草芽孢杆菌(Bacillussubtilis)后,其饲料转化率显著提高,生长性能和血清非特异性酶活性均得到改善[11]。除此之外,大量研究还发现益生菌还可以通过调控炎症因子表达和吞噬活性调节鱼类肠道氧化应激和先天性免疫[12-13],但具体机制还有待于进一步研究。

大口黑鲈(Micropterussalmoides)俗称加州鲈,隶属鲈形目(Perciformes),鲈亚目(Porcoidei),太阳鱼科(Cehtrachidae),黑鲈属(Micropterus),原产于美国,是一种淡水广温性肉食性鱼类[14]。自20世纪引入我国以来,其养殖产量和养殖面积逐年增加,据《2020中国渔业统计年鉴》,大口黑鲈全国产量为62万t,已成为我国重要的淡水经济鱼类之一[15]。近年来大口黑鲈养殖规模逐年增大,因其肉食性,集约化养殖下其肠道健康问题非常突出,严重限制了产业发展[16]。饲料营养不均衡[17]、养殖环境恶化[5]、缺氧和高温胁迫等养殖条件[18]等都会影响大口黑鲈肠道健康。因此,为减少抗生素使用量,保障养殖品安全,在大口黑鲈养殖过程中使用益生菌来改善肠道健康已经成为养殖中的重要操作,但是益生菌对鱼体肠道健康和肠炎的发生发展的调控机制还需要深入探索。因此,本试验对饲料中添加枯草芽孢杆菌对大口黑鲈生长、肠道组织结构、抗氧化能力、免疫能力和肠炎的影响进行研究,旨在为大口黑鲈养殖中枯草芽孢杆菌的添加提供一定的科学依据。

1 材料与方法

1.1 试验材料

试验鱼为健康的“优鲈1号”大口黑鲈,购于四川某水产有限公司。试验用大口黑鲈商品饲料购自江苏某饲料有限公司,其组成及营养水平见表1。试验用枯草芽孢杆菌制剂购自上海某生态工程有限公司,活菌数≥1.0×1010CFU/g。

表1 基础饲粮组成及营养水平(风干基础)Table 1 Composition and nutrient levels of the basal diet (air-dry basis) %

1.2 试验设计

1.2.1 饲养试验及取样

本试验设对照组(基础饲料)、0.5%枯草芽孢杆菌组(在基础饲粮中添加0.5%的枯草芽孢杆菌制剂,使饲料中枯草芽孢杆菌活菌数≥5.0×1010CFU/kg)和1.0%枯草芽孢杆菌组(在基础饲粮中添加1.0%的枯草芽孢杆菌制剂,使饲料中枯草芽孢杆菌活菌数≥10.0×1010CFU/kg)。枯草芽孢杆菌添加量参照王成强等[19]的试验,每组设置3个重复,每个重复20尾大口鲈鱼幼鱼[初始体重(16.0±0.5) g]。试验前,将大口黑鲈暂养于实验室塑料桶中,暂养用水为曝气24 h的自来水,每天换水1/4,水温(20.0±1) ℃,pH 7.0~8.0,自然光照。每天在09:00和15:00定时投喂2次,饱食投喂,每天09:30底部吸污排水,采用空气泵连续增氧,保持溶解氧浓度8.0 mg/L以上。暂养2周后开始正式试验,正式试验期间的日常管理同暂养期间保持一致,饲养试验持续6周,于试验初始以及第2周、第4周、第6周进行称重。并且分别计算所有组的特定生长率(SGR)和增重率(WGR):

特定生长率(%/d)=[(lnWt-lnW0)/t]×100;增重率(%)=[(Wt-W0)/W0]×100。

式中:Wt为终末体重(g);W0为初始体重(g);t为试验天数(d)。

试验结束后,所有鱼被禁食24 h,于每个养殖桶随机选取9尾试验鱼,用200 mg/L MS-222迅速麻醉,测量其体长、体重后每个重复随机选取3尾鱼的中肠,10%甲醛固定,用于肠道组织学观察;另外的6尾试验鱼放入无菌管中,-80 ℃保存,用于肠道免疫和抗氧化指标测定。

1.2.2 2,4,6-三硝基苯磺酸(TNBS)诱导肠炎及取样

取样后选择剩下的试验鱼按照Morris等[20]的方法诱导肠炎,以文献[21]介绍的TNBS适宜剂量(100 mg/kg BW)为基础,设置5个剂量浓度梯度进行剂量预试验,根据肠道炎症症状和死亡率确定TNBS诱导肠炎的适宜剂量。用适量的MS-222(60 mg/L)麻醉试验鱼3~5 min,注射TNBS前用棉签刺激肛门,轻轻挤掉后肠末端粪便,以减少粪便对肠道黏液的污染。按照每千克鱼体100 mg(TNBS-50%乙醇溶液)的用量将针管(事先磨平,除去尖端)插入肛门上端2 mm进行灌注。肛门插管后,鱼头朝下放置10 s,避免灌肠漏肛。每天记录TNBS诱导的死亡情况,计算累积死亡率。

累积死亡率(%)=(Nd/Nt)×100。

式中:Nd为累积死亡鱼数;Nt为初始鱼数。

TNBS诱导处理后的第3天,所有鱼禁食24 h,于每个养殖桶随机选取9尾试验鱼,用200 mg/L MS-222迅速麻醉。每个重复随机选取3尾鱼的后肠,10%甲醛固定,用于肠道组织学观察;剩下的试验鱼取全肠放入无菌管中,-80 ℃保存,用于肠道免疫和抗氧化指标以及炎性因子表达测定。

1.3 肠道组织形态观察

肠道标本用生理盐水冲洗,4%多聚甲醛固定,组织病理学标本经梯度脱水后石蜡包埋,4 μm切片,进行苏木精-伊红(HE)染色,封片后自然风干。采用倒置荧光显微镜(Nikon Eclipse Ti-S,Nikon Instruments Inc,日本)进行图像采集,所观察切片先于低倍镜下观察,选择合适区域在高倍镜下采集图片。用Image Pro Plus软件对绒毛根数、高度和宽度及肌层厚度等数据进行测定。

1.4 肠道生化指标检测

将-80 ℃保存的肠道组织置于冰上进行解冻,按照试剂盒说明书往组织中加入适量的组织匀浆液,在1.5 mL离心管中使用碾磨棒充分研磨,4 ℃、2 500 r/min离心10 min,取上清液为组织匀浆液,分装后于4 ℃冰箱暂存。利用分光光度计或酶标仪测定肠道免疫和抗氧化指标。所用试剂盒均购自南京建成生物工程研究所。

1.5 肠道炎性因子表达测定

将肠道组织放入研钵内,每次加入15 mL的液氮,将组织敲碎,用棒研磨至粉末。用Trizol法(TaKaRa,日本)从肠道组织中提取出总RNA。用1%琼脂糖聚丙烯酰胺凝胶电泳和NanoDrop 1000分光光度计(Thermo Scientific,美国)检测RNA的完整性和浓度。根据说明书,使用试剂盒(产品编号RR047A,TaKaRa)合成第1链cDNA。逆转录方案:37 ℃进行15 min;85 ℃持续5 s。根据本课题组已发表文献[5,17],并结合本课题组测定的大口黑鲈基因组中的白细胞介素-1β(IL-1β)、白细胞介素-8(IL-8)、白细胞介素-10(IL-10)、白细胞介素-15(IL-15)、肿瘤坏死因子-α(TNF-α)、转化生长因子-β1(TGF-β1)基因的编码序列设计PCR引物(表2),并以β-肌动蛋白(β-actin)作为内参基因。PCR程序:95 ℃,3 min;95 ℃,30 s,62 ℃,30 s,循环39次;72 ℃,60 s。以二乙基焦碳酸酯(DEPC)水作为阴性对照的模板,每个反应包括3个技术重复,以避免误差。

表2 PCR引物序列Table 2 Primer sequences of PCR

1.6 数据分析

数据均采用单因素方差分析。在分析之前,检查数据的正态性和等方差。采用Bonferroni POST检验,找出3组在某一特定因素上的显著差异。使用GraphPad Prism 6进行数据分析。P<0.05时,差异有统计学意义。

2 结果与分析

2.1 饲料中添加枯草芽孢杆菌对大口黑鲈幼鱼生长性能的影响

饲养试验结束时,各组均未出现死亡情况,存活率均为100%。由表3可知,经过6个周的饲养试验,枯草芽孢杆菌组大口黑鲈的体重、增重率和特定生长率与对照组均无显著差异(P>0.05)。

表3 饲料中添加枯草芽孢杆菌对大口黑鲈幼鱼生长性能的影响Table 3 Effects of dietary Bacillus subtilis on growth performance of juvenile largemouth bass

2.2 注射TNBS后大口黑鲈幼鱼的累积死亡率

在本试验中,对大口黑鲈肛门灌注TNBS,并连续3 d记录死亡情况。如图1所示,在注射TNBS后,对照组在第1天即出现死亡情况,且累积死亡率随时间的延长迅速上升,0.5%枯草芽孢杆菌组在第2天出现死亡情况,而1.0%枯草芽孢杆菌组在第3天才出现死亡情况。第3天时,对照组的累积死亡率为33.3%,而2个枯草芽孢杆菌组的累积死亡率均约为8.3%。

图1 注射TNBS后大口黑鲈幼鱼的累积死亡率Fig.1 Cumulative mortality of juvenile largemouth bass after TNBS injection

2.3 大口黑鲈幼鱼肠道形态学观察和组织病理学检查

大口黑鲈幼鱼中肠组织结构见图2,中肠绒毛特征见表4。对照组大口黑鲈中肠肠绒毛较为稀疏、较短,绒毛数量较少,肌层厚度较窄。而2个枯草芽孢杆菌组大口黑鲈中肠绒毛纤长紧密、排列整齐,肠绒毛高度、数量和肌层厚度较对照组显著增加(P<0.05)。

表4 大口黑鲈幼鱼中肠绒毛特征Table 4 Characteristics of midgut villi in juvenile largemouth bass (n=6)

一定剂量的TNBS会导致硬骨鱼的炎症和组织病理学恶化。经TNBS注射后的组织病理学检查和评估(图3)表明,TNBS诱导的肠炎损害了以绒毛融合、黏膜下层增宽和肌层为特征的肠道结构;同时,在2个枯草芽孢杆菌组中,TNBS对后肠的损害明显减轻。

2.4 大口黑鲈肠道抗氧化指标变化

大口黑鲈肠道抗氧化指标变化如图4所示。为期6周的饲养试验结束时,饲料中添加枯草芽孢杆菌提高了大口黑鲈幼鱼肠道总超氧化物歧化酶(T-SOD)、过氧化氢(CAT)、谷胱甘肽过氧化物酶(GSH-Px)的活性,其中0.5%枯草芽孢杆菌组GSH-Px活性显著高于对照组(P<0.05),1.0%枯草芽孢杆菌组T-SOD、CAT、GSH-Px活性显著高于对照组和0.5%枯草芽孢杆菌组(P<0.05);此外,2个枯草芽孢杆菌组肠道丙二醛(MDA)含量显著低于对照组(P<0.05)。经注射TNBS诱导肠炎之后,3组大口黑鲈幼鱼肠道CAT和T-SOD活性均显著升高(P<0.05),对照组和0.5%枯草芽孢杆菌组GSH-Px活性显著升高(P<0.05),对照组和1.0%枯草芽孢杆菌组MDA含量显著降低(P<0.05);0.5%、1.0%枯草芽孢杆菌组大口黑鲈幼鱼肠道T-SOD、CAT、GSH-Px活性均显著高于对照组(P<0.05),MDA含量显著低于对照组(P<0.05);同时,1.0%枯草芽孢杆菌肠道组T-SOD活性还显著高于0.5%枯草芽孢杆菌组(P<0.05)。

2.5 大口黑鲈幼鱼肠道免疫酶活性变化

大口黑鲈幼鱼肠道免疫酶活性变化如图5所示。为期6周的饲养试验结束时,饲料中添加枯草芽孢杆菌提高了大口黑鲈幼鱼肠道免疫酶活性,其中酸性磷酸酶(ACP)、溶菌酶(LZM)活性随着枯草芽孢杆菌添加量的增加显著升高(P<0.05),1.0%枯草芽孢杆菌组碱性磷酸酶(AKP)活性显著高于对照组与0.5%枯草芽孢杆菌组(P<0.05)。经注射TNBS诱导肠炎之后,3组大口黑鲈幼鱼肠道ACP、LZM和AKP活性均显著升高(P<0.05);0.5%、1.0%枯草芽孢杆菌组大口黑鲈肠道ACP、LZM活性均显著高于对照组(P<0.05),但二者之间并没有显著差异(P>0.05),而AKP活性则随着枯草芽孢杆菌添加量的增加而显著升高(P<0.05)。

A:对照组 control group;B:0.5%枯草芽孢杆菌组 0.5% Bacillus subtilis group;C:1.0%枯草芽孢杆菌组 1.0% Bacillus subtilis group。下图同 the same as below。图2 大口黑鲈幼鱼中肠组织结构 Fig.2 Histological structure of midgut in juvenile largemouth bass (100×)

红色箭头代表绒毛萎缩;黄色箭头代表肠上皮细胞坏死。Red arrow represented atrophy of villi; yellow arrow represented intestinal epithelial cell necrosis.图3 注射TNBS后大口黑鲈幼鱼后肠组织病理学观察Fig.3 Histopathological observation of hindgut in juvenile largemouth bass after injection of TNBS (100×)

数据柱形标注不同小写字母表示注射TNBS前不同组之间差异显著(P<0.05),标注不同大写字母表示注射TNBS后不同组之间差异显著(P<0.05)。*表示同一组内注射TNBS前后差异显著(P<0.05)。图5同。Value columns with different small letters mean significant difference among different groups before TNBS injection (P<0.05), and with different capital letters mean significant difference among different groups after TNBS injection (P<0.05). * mean significant difference between before and after TNBS injection in the same group (P<0.05). The same as Fig.5.图4 大口黑鲈幼鱼肠道抗氧化指标变化Fig.4 Changes of intestinal antioxidant indices in juvenile largemouth bass

图5 大口黑鲈幼鱼肠道免疫酶活性变化Fig.5 Changes of intestinal immune enzyme activities in juvenile largemouth bass

2.6 大口黑鲈肠道炎性因子表达

TNBS触发肠道炎症的最典型的炎症反应特征是促炎因子表达增加,抗炎因子表达下降。本试验检测了TNBS诱导肠炎后大口黑鲈肠道中炎性因子的mRNA相对表达量,如图6所示。与对照组相比,0.5%、1.0%枯草芽孢杆菌组大口黑鲈幼鱼肠道促炎因子IL-1β、IL-15、TNF-α、IL-8的mRNA相对表达量显著下降(P<0.05),抗炎因子IL-10、TGF-β1的mRNA相对表达量显著上升(P<0.05),说明枯草芽孢杆菌能有效调节TNBS诱导肠炎后炎性因子的表达。

3 讨 论

3.1 枯草芽孢杆菌对大口黑鲈幼鱼生长性能的影响

有研究表明,饲料中添加适量的芽孢杆菌能够提高消化酶活性,减少抗营养因子,提高对营养物质的利用,从而促进鱼体的生长[22-23]。但从本研究的试验数据看,各组大口黑鲈幼鱼的生长性能没有显著差异,且均低于生产实践中的生长性能。推测其原因可能是在为期6周的养殖过程中,一直采用每天定时投喂2次的方式,而生产上在养殖初期每日投喂3次,然后随着鱼类生长调整为每日2次。投喂次数减少可能降低了试验鱼的采食量,影响了生长性能。

3.2 枯草芽孢杆菌促进大口黑鲈幼鱼肠道健康

数据柱形标注不同小写字母表示差异显著(P<0.05)。Value columns with different small letters mean significant difference (P<0.05).图6 饲粮中添加枯草芽孢杆菌对TNBS注射后大口黑鲈肠道炎性因子表达的影响Fig.6 Effects of dietary Bacillus subtilis on expression of intestinal inflammatory factors of juvenile largemouth bass after TNBS injection

氧化应激是动物机体内羟基自由基和超氧阴离子等自由基产生的一种负面影响,易引起机体衰老与疾病[26-27]。动物机体中存在着2种抗氧化物,一类是酶类抗氧化物,另外一类是非酶类抗氧化物,其作用是清理动物体内的过氧化物,以保护机体免受氧化应激带来的损伤。酶类抗氧化物的种类繁多,常见的几种有CAT、超氧化物歧化酶(SOD)和GSH-Px[28]。研究已经证明,动物体内的抗氧化酶是应激和免疫反应生物标志物,其活性决定了动物的抗氧化能力,可以作为评估鱼类健康的指标[29-30]。本研究测定了大口黑鲈幼鱼肠道的抗氧化酶活性,结果显示枯草芽孢杆菌组的T-SOD、CAT和GSH-Px活性显著增加,这表明枯草芽孢杆菌可以增强大口黑鲈幼鱼的抗氧化能力。MDA是由生物膜中多不饱和脂肪酸氧化而产生的,动物体内MDA的含量可以直接反映脂质过氧化和细胞受损的情况,MDA含量高,说明细胞膜质过氧化程度高,细胞膜受到的伤害严重[31]。本研究发现,适宜添加量的枯草芽孢杆菌能显著降低大口黑鲈幼鱼肠道中MDA含量。这与其他研究人员对其他水产动物所得结果一致,在对罗非鱼[32]、克氏原螯虾(Procambarusclarki)[33]的研究中均发现了在饲料中添加枯草芽孢杆菌能够使得抗氧化酶活性显著升高,MDA含量显著降低,表明组织抗氧化能力被提高。

鱼类自身的免疫系统可以有效抵抗生活环境中病原微生物的入侵,以保证各项生理功能正常运行[34]。LZM、AKP和ACP是鱼类重要的非特异免疫酶,在参与机体的代谢和免疫方面发挥着重要作用,是衡量机体免疫能力的标准[35]。在本研究中,与对照组相比,枯草芽孢杆菌添加显著提高了大口黑鲈幼鱼肠道LZM、ACP和AKP活性。类似地,在军曹鱼(Rachycentroncanadum)[36]、鸭嘴鲶(Pseudoplatystomafasciatum)[37]和大黄鱼(Larimichthyscrocea)[38]中研究也发现枯草芽孢杆菌会显著影响其免疫酶活性。这表明枯草芽孢杆菌能够增强鱼类肠道的免疫能力。

3.3 枯草芽孢杆菌缓解大口黑鲈幼鱼肠炎

在鱼类的免疫应答中,通常以抗病能力作为益生菌的选择标准[39]。水产养殖过程中,肠炎问题频发,为了研究肠炎的免疫发病机制,人们建立了实验性结肠炎模型,常用于评估新的抗炎策略[40-41]。使用最广泛的模型之一是由TNBS诱导的结肠炎,其简便易行、易于复制,是一种较为理想的肠炎动物模型。TNBS触发肠道炎症的可能机制是导致上皮单层衬里破裂,诱导细菌侵入黏膜并导致炎症反应,其典型的炎症反应特征是促炎因子表达增加,抗炎因子表达下降[42]。在本研究中,投喂了枯草芽孢杆菌的试验鱼在注射TNBS后显示出较高的存活率。组织病理学检查和评估表明,TNBS诱导的肠炎损害了以绒毛、黏膜层和肌层为特征的肠道结构。然而,饲料中添加枯草芽孢杆菌明显减轻了TNBS诱导的肠道损害。与本研究结果一致,Daniels等[24]和Asaduzzaman等[43]分别对欧洲龙虾和吉罗罗非鱼(Tortambroides)进行研究时也发现益生菌能够保护动物的肠道。这表明,饲料中添加枯草芽孢杆菌能提高大口黑鲈幼鱼的存活率,维护机体注射TNBS后的肠道正常组织结构,保护肠道免受TNBS带来的损伤。

此外,在本研究中,我们发现注射TNBS诱导肠炎后增加了肠道抗氧化酶和免疫酶的活性,并且,枯草芽孢杆菌组的肠道抗氧化酶和免疫酶活性均高于对照组,这表明枯草芽孢杆菌可以通过增加肠道抗氧化酶和免疫酶的活性增强其抗氧化能力和免疫能力,降低TNBS对肠道的损伤。这与前人的研究结果一致,Ringø等[44]发现凝结芽孢杆菌(Bacilluscoagulans)可以增加锦鲤的体重,提高锦鲤对病毒感染的抵抗能力和免疫能力;宫秀燕等[45]发现,肠炎沙门氏菌感染可降低肉鸡的抗氧化能力,而饲粮中添加凝结芽孢杆菌能够通过提高肉鸡的抗氧化能力而缓解因肠炎沙门氏菌感染所造成的氧化应激。综上可知,在饲料中加入适量的枯草芽孢杆菌能够增强鱼类抗氧化能力和免疫能力,从而增强其对疾病的抵抗力。

细胞因子介导的炎症反应在鱼类机体免疫中发挥重要作用,其可以通过增强或抑制细胞因子的产生,进而调节免疫反应[46]。根据细胞因子在炎症反应中发挥的作用,鱼类的细胞因子可以分为抗炎因子(如IL-10和TGF-β1等)和促炎因子(如TNF-α、IL-1β、IL-15和IL-8等)[47]。肠炎会增加促炎因子的表达,降低抗炎因子的表达,因此它们能够在分子水平上指示炎症性损伤[48-49]。研究发现,益生菌可以通过调控炎症因子表达调节鱼类肠道先天性免疫,增强鱼体对致病菌的抵抗能力,从而减缓炎症[45,50]。但目前关于枯草芽孢杆菌对注射TNBS后大口黑鲈幼鱼肠道炎性因子表达的调节还尚不清楚。本研究发现,与对照组相比,枯草芽孢杆菌表现出显著降低大口黑鲈幼鱼肠道促炎因子IL-1β、IL-15、TNF-α、IL-8的mRNA相对表达量,并显著升高抗炎因子IL-10、TGF-β1的mRNA相对表达量。与本研究结果一致,Midhun等[51]研究发现地衣芽孢杆菌可以显著上调罗非鱼免疫相关基因及IL-10等抗炎因子的表达。我们推测,枯草芽孢杆菌对炎性因子表达的影响可能部分归因于核因子-κB(NF-κB)信号通路。已有研究发现,在人类中,NF-κB可以促进IL-1β、TNF-α和γ-干扰素(IFN-γ)的表达,而抑制IL-10的表达[52]。促炎因子(IL-1β、IL-8、TNF-α等)mRNA相对表达量与NF-κBp65 mRNA相对表达量呈正相关,所以枯草芽孢杆菌组较低的促炎因子IL-1β、IL-8、IL-15和TNF-αmRNA相对表达量可能部分与该鱼肠道NF-κB p65转录丰度降低有关。同时,本研究发现枯草芽孢杆菌增强了大口黑鲈幼鱼肠道IL-10和TGF-β1的表达,猜测这可能是通过其他信号途径发挥的作用,其机制需要进一步研究。综上可知,适宜添加量的枯草芽孢杆菌可以改善TNBS注射后大口黑鲈幼鱼肠道的炎症状态,从而降低TNBS引起的肠道损伤。

4 结 论

综上所述,饲料中添加枯草芽孢杆菌可以有效改善大口黑鲈幼鱼的肠道抗氧化能力和免疫能力。在注射TNBS诱导肠炎后,1.0%枯草芽孢杆菌对于大口黑鲈幼鱼肠炎的缓解作用更佳,可作为生产参考用量。

猜你喜欢

幼鱼枯草芽孢
饲料中添加枯草芽孢杆菌 对三疣梭子蟹生长性能的影响
抽气负压发酵法对丁酸梭菌生长及芽孢形成的影响
rpoB、gyrA、cheA基因在芽孢杆菌鉴定上的应用
岁末
购买锦鲤幼鱼有诀窍
暮春
购锦鲤幼鱼有诀窍
北方树的性格(外一首)
草坪枯草层的处理
投喂频率对网箱养殖长吻鮠幼鱼生长的影响