APP下载

脱氧熊果苷和氢醌对人黑素小体结构完整性及Pmel17蛋白表达影响的差异研究

2021-11-19史赢苏梦云江珊

新医学 2021年11期

史赢?苏梦云?江珊

【摘要】目的 探討脱氧熊果苷和氢醌对人黑素小体结构完整性和前黑素小体蛋白17(Pmel17)表达影响的差异。方法 体外分离并纯化黑素瘤细胞系MNT1中黑素小体,实验分3组,对照组、氢醌组、脱氧熊果苷组分别加入磷酸盐缓冲液(PBS)、10 μmol/L氢醌、100 μmol/L脱氧熊果苷,37℃孵育30 min,通过透射电镜观察各组黑素小体超微结构的改变。体外培养MNT1细胞,实验分3组,对照组、氢醌组、脱氧熊果苷组分别加入PBS、10 μmol/L氢醌、100 μmol/L脱氧熊果苷, 37℃孵育24 h,蛋白免疫印迹法检测各组Pmel17蛋白的表达水平。 采用单因素方差分析和Bonferroni法比较组间差异。结果 对照组黑素小体超微结构完整,黑素小体破坏率为(14.80±3.70)%,Pmel17蛋白相对表达量为0.84±0.04;氢醌组黑素小体膜结构破坏,黑素小体裂解,黑素小体破坏率为(54.40±3.65)%,Pmel17相对表达量为0.61±0.03;脱氧熊果苷组黑素小体膜结构也遭破坏,部分黑素小体裂解,黑素小体破坏率仅为(27.60±3.65)%,Pmel17蛋白相对表达量为0.49±0.03。氢醌组与对照组、脱氧熊果苷组与对照组、脱氧熊果苷组与氢醌组在黑素小体结构完整性和Pmel17蛋白表达量比较差异均有统计学意义(P均 < 0.05)。结论 在体外实验中,与氢醌相比,脱氧熊果苷仅轻度破坏黑素小体超微结构,但更明显抑制了Pmel17蛋白的表达。

【关键词】脱氧熊果苷;氢醌;黑素小体;超微结构;前黑素小体蛋白17

Comparison of effects of deoxy-arbutin and hydroquinone on structural integrity of melanosomes and expression of Pmel17 in human melanocyte Shi Ying, Su Mengyun, Jiang Shan. Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China Corresponding author, Jiang Shan, E-mail: ShanJiang@whu.edu.cn

【Abstract】Objective To compare the effects between deoxy-arbutin and hydroquinone on the structural integrity and the expression of Pmel 17 protein of human melanosome. Methods Melanosomes were isolated and purified in vitro from melanoma cell line MNT1 and divided into the control, hydroquinone and deoxy-arbutin groups. In each group, PBS, 10 μmol/L hydroquinone and 100 μmol/L deoxy-arbutin were supplemented and incubated at 37℃ for 30 min. The ultrastructure of melanosomes in each group was observed by transmission electron microscopy. MNT1 cells were cultured in vitro and divided into three groups: control group, hydroquinone group and deoxy-arbutin group supplemented with PBS, 10 μmol/L hydroquinone and 100 μmol/L deoxy-arbutin, respectively. The cells were incubated at 37℃ for 24 h. The expression level of Pmel17 protein in each group was detected by Western blot. One-way ANOVA analysis and Bonferronis multiple comparisons test were used for comparison among different groups. Results In the control group, the ultrastructure of melanosomes was intact, the destruction rate of melanosomes was (14.80±3.70)%, and the relative expression level of Pmel17 protein was 0.84±0.04. In the hydroquinone treatment group, the membrane structure of melanosomes was destroyed and melanosomes were disrupted. The destruction rate of melanosomes was (54.40±3.65)%, and the relative expression level of Pmel17 protein was 0.61±0.03. In the deoxy-arbutin treatment group, the membrane structure of melanosomes was also destroyed, and some melanosomes were disrupted. The destruction rate of melanosomes was only (27.60±3.65)%, and the relative expression level of Pmel17 protein was 0.49±0.03. There was significant difference in melanosome structural integrity and Pmel17 protein expression between any two groups (all P < 0.05). Conclusions Compared with hydroquinone, deoxy-arbutin can cause less damage to the ultrastructure of melanosomes, but more significantly down-regulate the expression level of Pmel17 protein in vitro.

【Key words】Deoxy-arbutin; Hydroquinone; Melanosome; Ultrastructure; Pmel17 protein

黑素小体是黑素细胞内的特异性细胞器,是黑素生物合成的重要场所,其结构和功能的完整性对维持正常肤色至关重要[1]。多种皮肤增白剂通过抑制黑素生物合成酶(主要是酪氨酸酶)活性或抑制黑素小体向角质形成细胞转运而减轻皮肤色素沉着,但影响黑素小体完整性的增白剂研究罕见[2]。前黑素小体蛋白17(Pmel17,也称为gp100或Silver)是涉及人黑素生物合成所必需的一种蛋白质,Pmel17淀粉样蛋白在黑素小体腔内呈丝状排列,作为支架,对黑素小体内真黑素的沉积至关重要[3]。研究显示,调节Pmel17纤维的形成可影响黑素生成[4]。本研究旨在体外观察氢醌及其糖酐衍生物——脱氧熊果苷对纯化人表皮黑素小体完整性和Pmel17蛋白表达的影响,评估两者作为皮肤增白剂的有效性及安全性,并为新型皮肤增白剂的开发提供一种思路。

材料与方法

一、材料与方法

1.人黑素瘤细胞MNT1培养

MNT1细胞是高度色素化黑素瘤细胞株,采自美国国立卫生院癌症研究所Dr. Vincent Jr. Hearing,用含20% 胎牛血清的DMEM培养基进行传代培养。

2.分离纯化黑素小体

本实验室根据参考文献[5]所建立方法,常规消化MNT1细胞并计数,获取细胞团块。按每2×106细胞加入1 mL的比例加入黑素小体裂解液(1 mol/L Tris·HCl,pH7.5 1 mL,Igepal CA-630 0.1 mL,0.1% SDS 1 mL,ddH2O 7.9 mL),吹打混勻。4℃放置10 min。颠倒混匀后继续在4℃放置10 min。分装至1.5 mL Ep管中,每管1 mL。1000 ×g离心5 min,将上清转移至一新Ep管内,1000×g离心5 min,再将上清转移至一新Ep管内,17 000×g离心5 min,弃上清,D-PBS轻轻洗涤离心团块2次。17 000×g离心5 min。弃上清,每管加入100 μL D-PBS,-20℃保存备用,每100 μL相当于6 μg黑素。

3.氢醌、脱氧熊果苷分别与黑素小体共孵育

氢醌购自美国Sigma公司,溶解于二甲基亚砜(DMSO)中制备储液,保存于-20℃备用。选取本课题组前期实验所探索的最适浓度[5]。临用前,用磷酸盐缓冲液(PBS)稀释储液至20 μmol/L,

200 μL化合物与等量纯化黑素小体混合,氢醌终浓度为10 μmol/L;脱氧熊果苷为本实验室配制,溶解于DMSO中制备储液,保存于-20℃备用,200 μL浓度为200 μmol/L化合物与等量所纯化黑素小体混合,脱氧熊果苷终浓度为100 μmol/L;用含相同浓度DMSO的PBS与纯化黑素小体混合作为对照,37℃孵育30 min后离心、PBS洗涤去除处理药物。

4.黑素小体超微结构观察

收集上述孵育后的纯化黑素小体,用2.5%戊二醛PBS前固定黑素小体团块24 h,1%四氧化饿后固定,乙醇及丙酮脱水后,Epon包埋固化制备超薄切片,醋酸双氧铀和枸橼酸铅染色后于FEI Tecnai G2 20 TWIN透射电子显微镜下观察超微结构改变。从每个黑素小体样本中随机获取至少5张透射电镜图像,计算损坏的黑素小体的百分比,以黑素小体破坏率(%)表示,代表黑素小体降解程度。

5.氢醌、脱氧熊果苷分别与MNT1细胞共孵育

待MNT1细胞的密度长至70% ~ 80%后,弃去陈旧培养基,用1 ~ 2 mL D-PBS液漂洗1 ~ 2遍,加入约1 mL 0.05%的胰酶消化 2 ~ 3 mL,待细胞形态改变后,加入等体积的10%胎牛血清+DMEM培养基中和,以1000转/分离心5 min,弃去上清液,加入新鲜培养基混悬,加入6孔板中,每孔约2 mL,放入37℃培养箱中继续培养。待细胞密度长至70%左右,弃去陈旧培养基,用D-PBS清洗1次,分别加入含 PBS、10 μmol/L氢醌、100 μmol/L脱氧熊果苷的新鲜培养基2 mL,用锡箔纸避光遮盖,共孵育24 h。

6.蛋白免疫印迹法检测黑素小体结构蛋白Pmel17表达

用D-PBS缓冲液润洗贴壁细胞2 ~ 3次,最后一次尽量吸干残留液。加入适当体积的细胞总蛋白提取试剂(使用前数分钟内加入蛋白酶抑制剂)于培养板/瓶内裂解3 ~ 5 min。期间反复晃动培养板/瓶,使试剂与细胞充分接触。用细胞刮刀将细胞及试剂刮下,收集到1.5 mL离心管中。冰浴30 min,期间用移液器反复吹打,确保细胞完全裂解。4℃,13 000×g离心5 min,收集上清,即为总蛋白溶液。使用BCA蛋白质浓度测定试剂盒测定样品蛋白浓度。SDS-聚丙烯酰胺凝胶电泳后转移到PVDF膜上,清洗后置于5%脱脂奶粉液中室温封闭。加一抗4℃过夜后加二抗,避光条件下摇床振荡1 h,清洗后应用UVP凝胶成像分析系统采集图像,Image J软件分析灰度,以GAPDH作为内参,计算目的条带与内参灰度比值作为最终结果。

二、统计学处理

所有数据分析使用GraphPad Prism软件包。计量资料以  表示,进行单因素方差分析,多重比较采用Bonferroni法,α= 0.05。

结果

一、氢醌、熊果苷对纯化黑素小体超微结构的影响

对照组黑素小体结构完整,可见明显的膜结构,少部分黑素小体超微结构破坏;10 μmol/L氢醌、100 μmol/L脱氧熊果苷与纯化黑素小体在37℃条件下孵育30 min,均可见黑素小体膜结构破坏,其中氢醌组黑素小体结构破坏更明显,见图1。对照组、氢醌组、脱氧熊果苷组黑素小体破坏率分别为(14.80±3.70)%、(54.40±3.65)%、(27.60±3.65)%(F = 152.0,P < 0.001),多重比较组间差异有统计学意义(P均< 0.001)。

二、氫醌、脱氧熊果苷对MNT1细胞Pmel17蛋白表达的影响

PBS、10 μmol/L氢醌、100μmol/L脱氧熊果苷与MNT1细胞37℃共孵育24 h后,提取蛋行蛋白免疫印迹法检测Pmel17蛋白表达,以GAPDH为内参,对照组、氢醌组和脱氧熊果苷组Pmel17蛋白相对表达量分别为0.84±0.04、0.61±0.03和0.49±0.03(F = 116.4,P < 0.001),多重比较组间差异有统计学意义(P均< 0.001),见图2。

讨论

氢醌(对苯二酚)作为一种有效的皮肤脱色剂被用于临床治疗表皮色素增加性皮肤病如黄褐斑、炎症后色素沉着斑等已长达60年[6-7]。无论是体内研究还是体外研究均显示,氢醌是一种有效抑制黑色素生成的化合物,并长期作为评价新型皮肤脱色剂药效的金标准[8-9]。

氢醌引起皮肤脱色的具体作用机制涉及对酪氨酸酶活性的抑制,但也呈现专一的黑素细胞毒性。临床发现,长期使用含氢醌的外用制剂有导致外源性褐黄病、人工白癜风,甚至皮肤癌等风险[10]。基于氢醌的安全性,FDA于2006年颁布法令禁止非处方药物中使用氢醌[11]。因此,亟待寻找可以替代氢醌的高效安全皮肤脱色剂,以满足制备脱色外用制剂或皮肤美白化妆品的需要。

熊果苷是从天然熊果中成功分离到的一种活性氢醌糖苷衍生物。既往的研究表明熊果苷能有效抑制酪氨酸酶活性,阻断黑色素的生成,且细胞毒性较小[5]。本研究组通过移去熊果苷分子糖苷侧链上的羟基,合成得到脱氧熊果苷,发现脱氧熊果苷也能有效抑制酪氨酸酶活性并具有一定的抗氧化活性和较小的黑素细胞毒性[12]。本研究结果也表明,脱氧熊果苷对体外纯化黑素小体超微结构的完整性破坏要小于氢醌,体现出良好的安全性。

作为一种黑素细胞特异性糖蛋白,Pmel17在前黑素小体腔内富集,组成成分不明的特征性纤维横嵴,随后合成的黑色素沉积在纤维横嵴上[13]。利用针对其腔内段的单克隆抗体,Pmel17蛋白很容易在早期黑素小体内检测到,但随着黑色素在纤维横嵴上的不断沉积,晚期黑素小体内的Pmel17蛋白则不容易被检测到。抑制Pmel17蛋白的表达被认为是抑制黑素生成的机制之一[14]。本研究结果显示,氢醌、脱氧熊果苷均可抑制Pmel17的表达,且后者作用更强,这一发现为氢醌及其衍生物的脱色作用阐明了新的可能机制。

既往对皮肤增白剂的研究主要采用体外细胞培养、临床试验以及动物实验,缺乏对黑素小体直接作用的研究,同时对结构蛋白Pmel17表达的影响也少有报道。本研究在比较观察了氢醌和脱氧熊果苷对体外分离纯化的人黑素细胞黑素小体超微结构影响,并观察上述物质对Pmel17结构蛋白表达的影响,希望能为皮肤增白剂脱色机制研究提供新的理论依据。

(致谢:感谢雷铁池教授提供MNT1细胞、脱氧熊果苷等实验材料及对本实验的指导)

参  考  文  献

[1] DAlba L, Shawkey M D. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol Rev,2019,99(1):1-19.

[2] Lee E J, Kim J, Jeong M K, Lee Y M, Chung Y J, Kim E M. Whitening effect of novel peptide mixture by regulating melanosome biogenesis, transfer and degradation. Korean J Physiol Pharmacol,2021,25(1):15-26.

[3] McGlinchey R P, Shewmaker F, McPhie P, Monterroso B, Thurber K, Wickner R B. The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc Natl Acad Sci U S A,2009,106(33):13731-13736.

[4] Kawaguchi M, Hozumi Y, Suzuki T. ADAM protease inhibitors reduce melanogenesis by regulating PMEL17 processing in human melanocytes. J Dermatol Sci,2015,78(2):133-142.

[5] Ando H, Niki Y, Ito M, Akiyama K, Matsui M S, Yarosh D B, Ichihashi M. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol,2012,132(4):1222-1229.

[6] Draelos Z D. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther,2007,20(5):308-313.

[7] Hu Z M, Zhou Q, Lei T C, Ding S F, Xu S Z. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: biosafety as skin whitening agents. J Dermatol Sci,2009,55(3):179-184.

[8] Parvez S, Kang M, Chung H S, Cho C, Hong M C, Shin M K, Bae H. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res,2006,20(11):921-934.

[9] Makino E T, Herndon J H, Sigler M L, Gotz V, Garruto J, Mehta R C. Clinical efficacy and safety of a multimodality skin brightener composition compared with 4% hydroquinone. J Drugs Dermatol,2012,11(12):1478-1482.

[10] Westerhof W, Kooyers T J. Hydroquinone and its analogues in dermatology - a potential health risk. J Cosmet Dermatol,2005,4(2):55-59.

[11] Levitt J. The safety of hydroquinone: a dermatologists response to the 2006 Federal Register. J Am Acad Dermatol,2007,57(5):854-872.

[12] Miao F, Shi Y, Fan Z F, Jiang S, Xu S Z, Lei T C. Deoxyarbutin possesses a potent skin-lightening capacity with no discernible cytotoxicity against melanosomes. PLoS One,2016,11(10):e0165338.

[13] Pedersen J N, Jiang Z, Christiansen G, Lee J C, Pedersen J S, Otzen D E. Lysophospholipids induce fibrillation of the repeat domain of Pmel17 through intermediate core-shell structures. Biochim Biophys Acta Proteins Proteom,2019,1867(5):519-528.

[14] Liu Y J, Lyu J L, Kuo Y H, Chiu C Y, Wen K C, Chiang H M. The anti-melanogenesis effect of 3,4-Dihydroxybenzalacetone through downregulation of melanosome maturation and transportation in B16F10 and human epidermal melanocytes. Int J Mol Sci,2021,22(6):2823.

(收稿日期:2021-06-25)

(本文編辑:杨江瑜)