APP下载

沉默微小RNA-218表达保护STZ诱导的糖尿病大鼠肾组织

2017-08-07杨海波王清俊李苏童陈小琳

中国病理生理杂志 2017年7期
关键词:肾脏试剂盒病毒

杨海波, 王清俊, 李苏童, 陈小琳, 慕 婷

(1西安市中心医院肾脏内科, 陕西 西安 710003; 2铜川矿务局中心医院肾脏内科, 陕西 铜川 727000)

沉默微小RNA-218表达保护STZ诱导的糖尿病大鼠肾组织

杨海波△, 王清俊2, 李苏童1, 陈小琳1, 慕 婷1

(1西安市中心医院肾脏内科, 陕西 西安 710003;2铜川矿务局中心医院肾脏内科, 陕西 铜川 727000)

目的: 探讨沉默微小RNA-218(microRNA-218, miR-218)表达对链脲佐菌素(streptozotocin,STZ)诱导的糖尿病肾病大鼠肾脏组织的保护作用及其可能机制。方法: 采用单次腹腔注射STZ (50 mg/kg)方法制备糖尿病大鼠模型并构建miR-218短发夹RNA(short hairpin RNA,shRNA)慢病毒载体。SD大鼠被随机分为健康对照组、糖尿病模型组、空载慢病毒组及miR-218-shRNA组。于自动生化仪上检测不同时点(4、8和12周)大鼠血糖、24 h尿蛋白量、血清肌酐(serum creatinine,SCr)及血尿素氮(blood urea nitrogen,BUN)含量。实时荧光定量PCR(RT-qPCR)检测肾脏组织miR-218的表达。RT-qPCR和Western blot检测血红素氧合酶1(heme oxygenase-1,HO-1)、肾病蛋白(nephrin)和p38丝裂原激活的蛋白激酶(p38 mitogen-activated protein kinase, p38 MAPK)的mRNA及蛋白表达水平。Caspase-3活性检测试剂盒检测caspase-3活性。末端脱氧核苷酸转移酶介导的dUTP缺口末端标记(terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling,TUNEL)法检测肾脏组织细胞凋亡。结果: 与健康对照组相比,STZ处理后大鼠miR-218表达水平显著升高。同时模型大鼠的血糖、24 h尿蛋白量、SCr及BUN含量显著升高(P<0.05);模型大鼠肾脏组织中HO-1和nephrin的mRNA和蛋白表达水平显著降低,而p38 MAPK蛋白的磷酸化水平显著升高;另外,模型大鼠肾脏组织中的caspase-3活性也显著升高。模型大鼠感染miR-218-shRNA后,miR-218表达水平显著下降并可以显著逆转上述效应。miR-218-shRNA组肾脏组织细胞的凋亡水平显著低于糖尿病模型组及空载慢病毒组。结论: miR-218参与了糖尿病大鼠的肾脏损伤,慢病毒载体沉默其表达能有效抑制肾脏组织细胞的凋亡,提示miR-218可以作为糖尿病肾病的基因治疗靶点。

微小RNA-218; 慢病毒载体; 糖尿病; 肾脏

糖尿病肾病(diabetic nephropathy,DN)是糖尿病主要的微血管并发症,也是导致终末期肾病的主要原因[1]。微小RNA(microRNA, miRNA)是一类具有调控功能的非编码RNA分子,广泛参与生长发育、增殖及凋亡等生物学过程。已知有多种miRNA、分子及信号通路参与了DN的病理过程[2-4]。我们前期的体外研究发现[5],microRNA-218(miR-218)在高糖培养的肾小球足细胞中过表达,并且通过调节血红素氧合酶1(heme oxygenase-1,HO-1)促进足细胞凋亡。而miR-218在体内是否发挥作用还有待进一步验证。因而,本研究拟通过建立miR-218短发夹RNA(short hairpin RNA,shRNA)慢病毒载体模型,在体内探讨其对链脲佐菌素(streptozotocin,STZ)诱导的糖尿病大鼠的肾脏保护作用。

材 料 和 方 法

1 动物及主要试剂

清洁级雄性SD大鼠,6周龄,体重160~200 g,购自第四军医大学实验动物中心;STZ购自Sigma;抗HO-1、肾病蛋白(nephrin)、p38丝裂原激活的蛋白激酶(p38 mitogen-activated protein kinase, p38 MAPK)、磷酸化p38 MAPK(phosphorylated p38 MAPK,p-p38)、caspase-3抗体及辣根过氧化物酶标记的 II 抗购自Santa Cruz Biotechnology;TRIzol试剂购自Invitrogen;One Step PrimeScript miRNA cDNA Synthesis Kit购自TaKaRa;M-MLV Reverse Transcriptase购自Promega;SYBR Green qPCR Master Mix购自Thermo Fisher;末端脱氧核苷酸转移酶介导的dUTP缺口末端标记(terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling,TUNEL)试剂盒购自Roche;慢病毒表达载体和包装质粒购自上海吉玛制药技术有限公司;T4 DNA连接酶购自NEB;caspase-3活性检测试剂盒购自碧云天生物技术有限公司。

2 主要方法

2.1 构建miR-128 shRNA慢病毒载体以抑制miR-218的表达 参考miRBase数据库(http://www.mirbase.org/)小鼠miR-218基因成熟序列(MIMAT0000663):5’-UUGUGCUUGAUCUAACCAUGU-3’,设计分别带有BamH I和XhoI酶切位点的miR-218 shRNA序列(5’-GGATCCCACATGGTTAGATCAAGCACAATTCAAG AGATTGTGCTTGATC-TAACCATGTTTTTTTCCTCGAG-GG-3’)和阴性对照序列,并送由上海生工生物有限公司合成;将miR-218 shRNA单链退火并通过T4DNA连接酶连接到pLenti-H1载体上,4 ℃过夜;转化DH5α感受态细胞后,均匀涂布于含氨苄青霉素的LB平板上并挑取菌落。PCR鉴定阳性菌落(PCR反应条件: 95 ℃ 5 min; 95 ℃ 20 s, 62 ℃ 20 s, 72 ℃ 30 s, 35个循环; 72 ℃ 5 min)。培养阳性克隆并测序验证。将10 μg构建好的pLenti-H1-miR-218-shRNA与6 μg Δ8.9及6 μg VSVG共转染293T细胞。72 h后,高速离心并收集细胞上清,用0.45 μm滤器过滤上清液以除去细胞碎片。采用逐孔稀释滴度测定法测定病毒滴度。

2.2 动物模型的制备及分组 大鼠饲养于(23± 2)℃,12 h昼夜交替。大鼠适应性饲养1周后,按体重随机分组。造模前禁食12 h, 然后将1% STZ以50 mg/kg腹腔注射入模型组大鼠体内,健康对照组注射等量的柠檬酸缓冲液(0.01 mmol/L,pH=4.5)。72 h后测全血血糖,血糖≥16.7 mmol/L视为造模成功。继续饲养1周后,将模型组进一步细分为糖尿病模型组(注射生理盐水,每只100 μL),空载慢病毒组[注射空载慢病毒液,感染复数(MOI)=100]及miR-218-shRNA组(注射miR-218慢病毒液,MOI=100),均经大鼠尾静脉注射。

2.3 24 h尿蛋白、血清肌酐(serum creatinine,SCr)及血尿素氮(blood urea nitrogen,BUN)含量的检测 大鼠造模成功后继续饲养1周,然后进行慢病毒注射。注射时点为分别为第1周、第5周和第9周刚开始时;并在第4周、第8周及第12周留取24 h尿蛋白、SCr和BUN并将其稀释至合适的工作浓度,于全自动生化分析仪(HITACHI)检测大鼠24 h尿蛋白、SCr和BUN含量。

2.4 RT-qPCR方法检测miRNA及mRNA的表达水平[5]肾脏组织研磨后裂解组织,用TRIzol试剂抽提总RNA并用分光光度发测定其含量和浓度。miR-218检测方法参照miRNA逆转录试剂盒说明书反转录合成cDNA,并参照SYBR Green qPCR Master Mix试剂盒操作方法检测miR-218表达水平(以U6为内参照)。miR-218的上游引物为5’-GCGCTTGTGCTTGATCTAA-3’,下游引物为5’-GTGCAGGG-TCCGAGGT-3’; U6的上游引物为5’-CTCGCTTCGGCAGCACA-3’,下游引物为5’-AACGCTTCACGAA-TTTGCGT-3’。目标基因mRNA的检测方法为:参照mRNA逆转录试剂盒操作说明反转录合成cDNA,并参照SYBR Green qPCR Master Mix试剂盒操作方法检测目标基因mRNA表达水平(以β-actin为内参照)。HO-1的上游引物为5’-CCATAGGCTCCTTCCTCCTTTC-3’,下游引物为5’-GGCCTTCTTTCTA-GAGAGGGAATT-3’; nephrin的上游引物为5’-AGCTCGTGTCTCCCAGAGT-3’,下游引物为5’-CGTTCACGTTTGCAGAGATGT-3’; β-actin的上游引物为5’-TTCCTTCTTGGGTATGGAAT-3’,下游引物为5’-GAGCAATGATCTTGATCTTC-3’)。均采用2-ΔΔCt方法计算相对表达量。

2.5 Western blot检测蛋白表达 肾脏组织研磨后裂解组织并测定蛋白的浓度。取30 μg样品,经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分离后将其转移到硝酸纤维素膜上;然后用含3% 脱脂奶粉和0.1% Tween-20的PBS缓冲液对膜进行封闭,37 ℃, 封闭1 h后,用含0.1% Tween-20的PBS清洗膜2次;加入抗HO-1 (1∶1 000)、抗nephrin (1∶1 500)、抗p38 (1∶1 000)、抗p-p38(1∶1 000)及抗β-actin(1∶2 000)抗体,4 ℃孵育过夜;加入辣根过氧化物酶标记的Ⅱ抗(1∶ 1 000), 37 ℃孵育闭1 h;测定蛋白条带。

2.6 Caspase-3活性的检测 肾脏组织经裂解匀浆后,按caspase-3检测试剂盒说明书进行操作,于405 nm处检测吸光度。

2.7 TUNEL试剂盒检测细胞凋亡率 将肾脏组织做成石蜡切片(5 μm)。按照Roche TUNEL试剂盒说明进行操作。组织常规脱蜡水化,然后加入100 μL蛋白酶K室温孵育15 min;加入50 μL TUNEL反应混合液,37 ℃避光孵育1 h;浸入0.3% H2O2中20 min再加入HRP标记的链亲合素,37 ℃避光孵育30 min,DAB染色;经苏木素复染,每个肾脏组织标本选取6张切片,并用Image-Pro Plus 6.0图像分析软件计算凋亡指数。凋亡指数(%)=凋亡细胞数/总细胞数×100%。

3 统计学处理

实验数据采用统计学软件SPSS 22.0进行分析。数据采用平均数±标准差(mean±SD)表示。多组间比较采用单因素方差分析,用Bonfferoni校正的t检验进行各组均数间的两两比较。以P<0.05为差异有统计学意义。

结 果

1 肾脏组织miR-218表达

RT-qPCR实验表明,随着STZ注射后大鼠饲养时间的延长,肾脏组织中糖尿病模型组miR-218水平显著高于健康对照组(P<0.05)。注射miR-218-shRNA慢病毒载体可显著降低miR-218水平,说明了miR-218-shRNA慢病毒载体构建成功,见图1。

Figure 1.The expression of miR-218 in the kidney tissues at different time points. W: weeks. Mean±SD.n=4.*P<0.05vshealthy control group;#P<0.05vsempty vector group.

图1 各组不同时点(4周、8周和12周)肾脏组织中miR-218的表达水平

2 血尿生化指标检测结果

与健康对照组相比,糖尿病模型组血糖、24 h尿蛋白、SCr及BUN含量显著升高(P<0.05)。与糖尿病模型组及空载病毒组相比,沉默miR-218后miR-218-shRNA组血糖、24 h尿蛋白、SCr及BUN含量显著下降,差异具有统计学意义(P< 0.05),见表1~3。

表1 4周时大鼠血尿生化指标的检测结果

*P<0.05vshealthy control group;#P<0.05vsempty vector group.

表2 8周时大鼠血尿生化指标的检测结果

*P<0.05vshealthy control group;#P<0.05vsempty vector group.

表3 12周时大鼠血尿生化指标的检测结果

*P<0.05vshealthy control group;#P<0.05vsempty vector group.

3 HO-1、nephrin和p38 MAPK表达及caspase-3活性检测

体外实验表明,miR-218可以靶向作用于HO-1并激活p38 MAPK的表达。因而我们从体内实验去验证这一结果。如图2所示,miR-218-shRNA慢病毒转染大鼠后继续饲养8周,与健康对照组相比,糖尿病模型组HO-1和nephrin的mRNA及蛋白水平显著降低,总p38 MAPK蛋白水平不变,但p38 MAPK蛋白磷酸化水平升高。与此同时,沉默miR-218表达后,HO-1水平显著升高,总p38 MAPK蛋白水平不变,p38 MAPK蛋白磷酸化水平降低。Caspase-3活性检测结果表明,与健康对照组相比,糖尿病模型组的caspase-3活性显著升高(P<0.05),而沉默miR-218表达会使caspase-3活性降低。

Figure 2. The expression of HO-1, nephrin and p38 MAPK, and the caspase-3 activity in the kidney tissues of rats. A: the caspase-3 activity; B: the mRNA expression of HO-1 and nephrin; C: the protein expression of HO-1, nephrin and p38 MAPK (p38). Mean±SD.n=4.*P<0.05vshealthy control group;#P<0.05vsempty vector group.

图2 各组大鼠肾组织HO-1、nephrin和p38 MAPK表达及caspase-3活性的变化

4 TUNEL法检测肾脏组织细胞凋亡

TUNEL实验结果表明,4周、8周和12周时健康对照组大鼠肾组织的TUNEL阳性细胞数分别为(3.16±0.53)%、(5.13±0.57)%和(7.05±0.56)%,糖尿病模型组凋亡指数分别为(6.59±0.74)%、(10.43±1.76)%和(15.65±1.03)%,与同一时点健康对照组相比显著升高(P<0.05)。而miR-218-shRNA组4周、8周和12周时TUNEL阳性细胞数为(5.25±0.86)%、(7.75±0.97)%和(9.26±1.12)%,显著低于同一时点糖尿病模型组,说明miR-218的沉默可以有效减少肾脏组织的细胞凋亡,见图3。

Figure 3.The numbers of TUNEL positive cells in the kidney tissues of the rats at different time points (×200). W: weeks. Mean±SD.n=4.*P<0.05vshealthy control group;#P<0.05vsempty vector group.

图3 不同时点各组大鼠肾组织TUNEL阳性细胞数的比较

讨 论

研究表明在糖尿病肾病中miRNA发挥着重要的调节因子和药物靶点作用[6]。足细胞特异性敲除Dicer (一种在miRNA合成过程中起重要作用的核酸内切酶)会导致蛋白尿的增多及肾小球硬化[7- 8]。miR-29c在db/db糖尿病鼠肾小球中高表达且沉默其表达可以显著降低蛋白尿和肾小球系膜基质的聚集[9]。本实验组前期的研究也表明,miR-218在高糖培养的肾小球足细胞中过表达,且可以通过调节HO-1和p38 MAPK的活性诱导足细胞凋亡[5]。但miR-218在体内是否参与肾脏保护作用尚不清楚。研究表明miR-218在癌症的发生发展中发挥着重要作用。在髓母细胞瘤病人中,miR-218下调并扮能够抑制肿瘤的发生[10]。在口腔鳞状细胞癌中,DNA甲基化使miR-218沉默并抑制蛋白激酶B(protein kinase B, Akt)的磷酸化[11]。在宫颈癌中,过表达miR-218可通过靶向结合LIM和SH3蛋白1(LIM and SH3 protein 1,LASP1)抑制HeLa细胞生长[12]。本文以STZ诱导的大鼠为动物模型,验证了miR-218在糖尿病肾病中的作用。首先,研究将50 mg/kg STZ腹腔注射入大鼠体内,72 h后全血血糖结果表明注射STZ的大鼠血糖≥16.7 mmol/L,表明动物模型构建成功。RT-qPCR结果表明在STZ诱导的大鼠肾脏组织内,miR-218表达水平显著高于健康对照组,与体外实验结果一致。与此同时,Kanki等[13]也表明miR-218在高糖诱导的肾细胞中高表达,说明miR-218可能参与了糖尿病引起的肾病的发展进程。本文研究也发现抑制miR-218的表达可显著改善由STZ引起的大鼠24 h尿蛋白量、SCr及BUN水平升高。同时,抑制miR-218表达也会影响大鼠血糖水平。研究表明在胰岛细胞MIN6中,过表达miR-218可显著降低胰岛素分泌,并降低葡萄糖敏感性,而抑制miR-218可显著促进胰岛素分泌[14]。Chang等[15]发现在3T3-L1脂肪细胞中,胰岛素可通过PI3K和蛋白激酶C依赖的信号通路上调HO-1蛋白表达。因而我们推测,抑制miR-218升高可促进细胞内胰岛素分泌,从而降低动物血糖水平。体外实验表明,miR-218是通过靶向作用于HO-1,进而调节p38 MAPK的活性发挥促进足细胞凋亡的作用,抑制p38 MAPK的活性可减弱足细胞的凋亡。研究表明在糖尿病肾病患者及小鼠体内,p38 MAPK的磷酸化水平升高[16-17]。HO-1是一个血红素分解代谢的限速酶,可降解血红素为等摩尔一氧化碳、胆绿素和铁离子。抑制HO-1会导致胞内血红素的堆积[18],而血红素可通过活化Toll样受体4活化p38 MAPK[19]。近期的研究也表明,在骨髓来源的不成熟树突细胞中,抑制HO-1表达后,血红素表达升高,从而使磷酸化p38 MAPK的表达水平显著升高,达到调节树突细胞的功能和表型的作用[20]。Liu等[21]发现,在急性肾损伤骨髓来源的间充质干细胞,HO-1可负调节p38 MAPK磷酸化。上述研究表明HO-1可通过调节血红素的表达水平负调节p38 MAPK磷酸化。本研究进一步验证了miR-218作用的分子机制,实验结果表明miR-218能够下调HO-1的表达,上调p38 MAPK的活性。大量研究表明,磷酸化p38 MAPK水平在糖尿病肾病患者中升高,且激活p-p38 MAPK会促进肾小球系膜细胞增殖及系膜外基质大量合成和积聚[22]。同时HO-1可通过上调系膜细胞p21蛋白(一种与细胞凋亡相关的细胞周期蛋白)表达抑制肾小球系膜细胞增殖[23]。本文研究提示,HO-1可能是通过抑制p-p38 MAPK活化,从而延缓肾小球系膜增殖达到保护肾脏的作用。

慢病毒载体是一种新型的病毒载体系统,可有效地将目的基因导入到动物或人的脑、肾脏等组织及原代细胞和稳定细胞系中,具有感染效率高,安全和持续稳定的表达目的基因特点,具有潜在的生物基因治疗价值[24]。Espana-Agusti等[25]通过超声引导注射慢病毒载体至肾小管,建立了长效的体内调节基因表达的方法。本文通过构建慢病毒介导的miR-218-shRNA载体并转染大鼠肾脏,发现miR-218-shRNA可有效沉默miR-218基因的表达,为糖尿病肾病的治疗提供了有效的靶点。

综上所述,本实验结果表明miR-218在STZ诱导的大鼠肾脏组织中高表达,慢病毒载体沉默miR-218基因表达可以显著抑制肾脏组织的凋亡,提示miR-218有望成为治疗糖尿病肾病的治疗靶点。

[1] Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment[J]. Nat Rev Endocrinol, 2013, 9(12):713-723.

[2] Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease[J]. Nat Rev Nephrol, 2015, 11(1): 23-33.

[3] Fernandez-Fernandez B, Ortiz A, Gomez-Guerrero C, et al. Therapeutic approaches to diabetic nephropathy-beyond the RAS[J]. Nat Rev Nephrol, 2014, 10(6):325-346.

[4] 赵乐萍, 金雷钢, 施立华, 等.CXCL16缺失缓解STZ诱导的糖尿病小鼠的肾脏病变[J]. 中国病理生理杂志, 2016, 32(2):327-332.

[5] Yang H, Wang Q, Li S. MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1[J]. Biochem Biophys Res Commun, 2016, 471(4):582-588.

[6] Kato M, Putta S, Wang M, et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN[J]. Nat Cell Biol, 2009, 11(7):881-889.

[7] Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease[J]. J Am Soc Nephrol, 2008, 19(11):2150-2158.

[8] Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria andglomerulosclerosis[J]. J Am Soc Nephrol, 2008, 19(11): 2159-2169.

[9] Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and itsinvivoknockdown prevents progression of diabetic nephropathy[J]. J Biol Chem, 2011, 286(13):11837-11848.

[10]Venkataraman S, Birks DK, Balakrishnan I, et al. MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma[J]. J Biol Chem, 2013, 288(3):1918-1928.

[11]Uesugi A, Kozaki K, Tsuruta T, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer[J]. Cancer Res, 2011, 71(17):5765-5778.

[12]邱 瑜, 黄建平, 周勤仙, 等. Hsa-miR-218 靶向调控LASP1对宫颈癌HeLa细胞生长的影响[J]. 中国病理生理杂志, 2015, 31(9):1572-1577.

[13]Kanki M, Moriguchi A, Sasaki D, et al. Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats[J]. Toxicology, 2014, 324:158-168.

[14]Lang H, Ai Z, You Z, et al. Characterization of miR-218/322-Stxbp1 pathway in the process of insulin secretion[J]. J Mol Endocrinol, 2015, 54(1):65-73.

[15]Chang CL, Au LC, Huang SW, et al. Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation[J]. Endocrinology, 2011, 152(2):384-393.

[16]Maestroni A, Tentori F, Meregalli G, et al. Inhibition of MAP-kinase cascade normalizes the proliferation rate of fibroblasts from patients with type 1 diabetes and nephropathy[J]. J Diabetes Complications, 2005, 19(5):291-296.

[17]Lim AK, Nikolic-Paterson DJ, Ma FY, et al. Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice[J]. Diabetologia, 2009, 52(2):347-358.

[18]Wagener FA, Volk HD, Willis D, et al. Different faces of the heme-heme oxygenase system in inflammation[J]. Pharmacol Rev, 2003, 55(3):551-571.

[19]Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of Toll-like receptor 4[J]. J Biol Chem, 2007, 282(28): 20221-20229.

[20]Al-Huseini LM, Aw Yeang HX, Hamdam JM, et al. Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling[J]. J Biol Chem, 2014, 289(23):16442-16451.

[21]Liu N, Wang H, Han G, et al. Alleviation of apoptosis of bone marrow-derived mesenchymal stem cells in the acute injured kidney by heme oxygenase-1 gene modification[J]. Int J Biochem Cell Biol, 2015, 69:85-94.

[22]Adhikary L, Chow F, Nikolic-Paterson DJ, et al. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy[J]. Diabetologia, 2004, 47(7):1210-1222.

[23]Kumar D, Bhaskaran M, Alagappan L, et al. Heme oxygenase-1 modulates mesangial cell proliferation by p21waf1upregulation[J]. Ren Fail, 2010, 32(2): 254-258.

[24]Naldini L, Trono D, Verma IM. Lentiviral vectors, two decades later[J]. Science, 2016, 353(6304):1101-1102.

[25]Espana-Agusti J, Tuveson DA, Adams DJ, et al. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules[J]. Sci Rep, 2015, 5:11061.

(责任编辑: 林白霜, 罗 森)

Protective effect of microRNA-218 silencing on kidney tissue in STZ-induced diabetic rats

YANG Hai-bo1, WANG Qing-jun2, LI Su-tong1, CHEN Xiao-lin1, MU Ting1

(1DepartmentofNephrology,Xi’anCentralHospital,Xi’an710003,China;2DepartmentofNephrology,TongchuanMiningCentralHospital,Tongchuan727000,China.E-mail:haiboyangsea@163.com)

AIM: To investigate the protective effect of microRNA-218 (miR-218) silencing on kidney tissue of streptozotocin (STZ)-induced diabetic nephropathy rats and the potential mechanism. METHODS: The diabetic rat model was established by a single intraperitoneal injection of STZ (50 mg/kg). Meanwhile, the miR-218 short hairpin RNA (shRNA) lentiviral vector was constructed. The Sprague-Dawley rats were randomly divided into 4 groups: healthy control group, diabetes group, empty vector group and miR-218-shRNA group. The blood glucose, 24 h urinary protein, serum creatinine (SCr) and blood urea nitrogen (BUN) in the rats at different time points (4, 8 and 12 weeks) were measured by an automated analyzer. The expression of miR-218 was detected by RT-qPCR, while the expression of heme oxygenase-1 (HO-1), nephrin and p38 mitogen-activated protein kinase (p38 MAPK) at mRNA and protein levels in the kidney tissues was determined by RT-qPCR and Western blot. The caspase-3 activity was detected by caspase-3 activity assay kit, and the cell apoptosis of the kidney tissues was analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). RESULTS: Compared with healthy control group, the expression of miR-218 was significantly increased in STZ-treated rats. Meanwhile, the concentrations of blood glucose, 24 h urinary protein, SCr and BUN were significantly increased in STZ-treated rats (P<0.05). The mRNA and protein expression of HO-1 and nephrin was significantly decreased, while the level of phosphorylated p38 MAPK was significantly increased in STZ-treated rats. In addition, the activity of caspase-3 was also significantly increased in STZ-treated rats. When the model rats were infected with miR-218-shRNA, the expression of miR-218 was significantly decreased and the above effects were markedly reversed. Furthermore, TUNEL results showed that compared with diabetic group and empty vector group, miR-218 silencing significantly attenuated the cell apoptosis in the kidney tissues in miR-218-shRNA group. CONCLUSION: miR-218 is involved in the kidney injury in diabetic rats, and silencing of miR-218 by lentiviral vector-mediated miR-218-shRNA transfection effectively inhibits kidney cell apoptosis, suggesting that miR-218 is a potential target for the treatment of diabetic nephropathy.

MicroRNA-218; Lentiviral vector; Diabetes; Kidney

1000- 4718(2017)07- 1251- 07

2016- 09- 19

2017- 04- 10

R587.2; R363.2

A

10.3969/j.issn.1000- 4718.2017.07.016

杂志网址: http://www.cjpp.net

△通讯作者 Tel: 029-87218916; E-mail: haiboyangsea@163.com

猜你喜欢

肾脏试剂盒病毒
保护肾脏从体检开始
人人享有肾脏健康
病毒
6种非洲猪瘟荧光PCR试剂盒对比试验
感冒病毒大作战
3种冠状病毒感染后的肾脏损伤研究概述
农药残留快速检测试剂盒的制备方法及其应用研究
4种非洲猪瘟核酸检测试剂盒性能比较分析
病毒,快滚开
3 个不同国产乙肝病毒DNA 实时荧光定量PCR 检测试剂盒检测结果的比较