APP下载

作物化学调控研究进展

2017-07-12张晓明

现代农业科技 2017年10期
关键词:植物生长调节剂作物

张晓明

摘要 本文主要从化学调控技术的研究与发展历程、化学调控技术在主要作物上的应用及实际应用中存在的问题几方面进行了综述,以期为以后进一步的深入研究提供参考。

关键词 作物;化学调控;植物生长调节剂

中图分类号 S311 文献标识码 A 文章编号 1007-5739(2017)10-0135-02

植物生长调节剂是一种人工合成、具有植物激素活性剂功能的化学物质,英文名为plant growth regulator(简写为PGRs)。PGRs具有影响植物内源激素系统的作用,进而对植物的生长发育具有一定的调控作用[1]。作物化学调控技术(crop chemical regulation)是指人们为了使作物朝着人们预期方向或目标生长而采取的一系列调控手段,而利用添加植物生长调节剂(PGRs)的手段进行物质代谢改变植物内源激素的构成[2],且PGRs已经被公认为是21世纪国内外农业产业中的关键性技术手段[3]。传统的农业生产技术通常通过调节外界环境因素(例如水、气、光、热等)提升农产品的品质及产量,而作物化学调控方法则更加注重内在因素的刺激与调控,根据人们的需求对作物生长发育进行调节。

1 化学调控技术的研究与发展历程

1928年荷兰人Went首先发现植物激素,经过近100年的发展,植物激素在作物花期及坐果期的调控作用十分突出,并取得了巨大成就[4]。随着研究的快速发展,这一领域已成为学界研究的热点,有近100种的PGRs广泛应用于农业生产。由于各地区的农业发展水平不同,地貌、气候差异巨大,PGRs的具体使用种类也各异。例如植物脱叶剂、矮化剂、干燥剂等在欧美国家普遍使用,原因在于欧美国家农业机械化程度较高,采用上述PGRs能够有效提高机械化生产效率。而在日本,GA3被广泛用于生产无核葡萄、打破马铃薯的休眠期,其原因在于日本农业更加注重提升农产品的品质[5]。由于中国人口众多,其农业生产通常更加注重农产品的产量,我国科学家将多效唑应用于水稻、油菜的生产中,实现了显著的增产效果,根据统计数据显示,我国是世界上应用推广多效唑最多的国家[6]。

可以说,国外作物化学调控市场已经趋于成熟,PGRs已经进入了一个高速更新换代的阶段。随着全球经济的不断发展,对农产品的需求提出了更高要求,这也对PGRs的研究与推广提出了更高的标准,也预示着PGRs具有非常广阔的市场前景。

2 化学调控在主要作物上的应用

2.1 农作物提质增产

农作物生产的最终目的是产量,地理气候和品种的差异是影响作物产量最关键的两大因素。PGRs的调控作用很难一概而论,不同时期、不同作用部位、不同作用机理条件下,PGRs的调控效果可能存在很大的差异性[7],进而对农作物的产量与品质的调控效果也千差万别。马雪梅等[8]发现,通过探索在水稻不同生长时期使用不同的PGRs,最终可以实现增加产量、提升品质的目的。具体而言,在水稻分化期时使用吨田宝能够有效促进细胞组织分化、提升叶绿素含量、加快水稻生长发育,研究数据表明,可以有效增产9.8%~17.3%;除此之外,水稻齐穗后期联合喷施多效唑和6-BA,可以提高籽粒中胚乳淀粉含量,有效提升水稻品质,也可以利用PGRs定向调控米粉稻中稻米直链淀粉的含量来改善稻米品质[9]。

2.2 作物株型结构塑造

作物获得高产,良好的株型和合理的群体结构是基础[10]。农作物倒伏问题的出现,关键原因在于农作物的植株较高、较细。因此,在农作物生长的关键时期,合理施用PGRs可抑制农作物徒长,进而降低农作物高度、增加植株的直径,并能够有效提升茎秆中木质素、纤维素等的含量,进而提升茎秆韧性,最终提升农作物的抗倒伏能力,降低倒伏带来的经济损失[11]。此外,作物的抗茎倒能力也是衡量作物特性的重要指标之一。研究结果表明,对于玉米等作物,可通过施用植物生长调节提升抗茎倒能力[12]。

2.3 提高作物抗逆性

首先,遗传因素是影響作物抗逆性最关键的因素。其次,植物激素含量、活性的变化也是影响作物抗逆性的重要因素,因而通过调控植物体内激素含量及活性机理能够有效提升作物的抗逆能力[13]。盐胁迫会阻碍种子中核酸与蛋白的合成,破坏有丝分裂,影响种子发芽及幼苗的生长发育。例如,在我国长江中上游地势较低的小麦产区,由于经常遭受涝渍灾害的影响,小麦的产量及品质受到严重威胁,可通过使用PGRs来提升小麦中抗氧化酶含量,提升小麦根系活力,进而抵抗涝渍带来的影响[14]。除此之外,另有研究发现,通过采用PGRs浸种处理,能够有效缓解玉米苗期干旱带来的影响[15]。某些富含赤霉素、水杨酸以及脱落酸等低分子PGRs对提升农作物的抗干旱、抗低温能力有显著作用,为农业生产防灾减灾生产带来了新的启示。

3 化学调控技术在应用中存在的问题

PGRs虽然具备提升产量、提高品质、增强作物抵抗力等一系列优势,但其毕竟是一种人工合成的化学物质,从某种程度上说可视为一种植物农药。通常情况下,其毒性较低且残留较少,经过微生物分解、雨水冲释等作用后不会对人畜、作物、土壤等造成危害。但如果PGRs使用不当,在用量不断增大的情况下其所造成的危害也日益凸显,应引起人们的高度重视。

4 展望

随着农业科技的飞速发展,作物化学防控技术已逐步成为业界研究与推广的热点。众所周知,化学调控给农业生产注入了强劲动力,不仅实现了农产品的高产、稳产,还有效提升了品质、效益。例如打破环境因子的限制,简化常规栽培技术体系,有助于提高生物效应、生产效果、经济效益和安全性。目前,我国在大田作物化学调控方面已走在了世界前列,取得了丰硕成果。近年来,随着化控调节技术研究的深入,向混合型试剂方面发展、注重试剂多重功效和相互配合使用,以及防止污染、残留等成为今后研究的主流。

5 参考文献

[1] OGUCHI R,HIKOSAKA K,HIROSE T.Does the photosynthetic lighta-ccli-mation need change in leaf anatomy[J].Plant Cell Environ,2003,26:505-512.

[2] 张卫中,姚满生.化学调控技术在农业生产中的应用及其展望[J].高效农业,2007(1):11-13.

[3] 顾万荣,葛自强,陈源,等.中国作物化控栽培工程技术研究进展及展望[J].农业工程科学,2005,21(7):400-405.

[4] 刘拉平.化学调控技术在农业抗旱中的应用[J].陕西农业科学,2000(7):33-34.

[5] 赵昌用.植物生长调节剂的使用与作物的化学调节[J].湖北农业科学,1988(10):39-41.

[6] 张锋,潘康标,田子华.植物生长调节剂研究进展及应用对策[J].现代农业科技,2012(1):193-195.

[7] 翟丙年,郑险峰,杨岩荣,等.植物生长调节物质的研究进展[J].西北植物学报,2003(6):1069-1075.

[8] 马雪梅,杨靖韬,戴兴玉.水稻应用化控剂吨田宝及加其助剂试验总结[J].北方水稻,2011(4):66-67.

[9] 王法宏,赵君实,秦月秋,等.化控條件下小麦基本苗密度对产量的效应[J].莱阳农学院学报,1993(3):183-187.

[10] 陈静彬,刘强,荣湘民,等.几种植物生长调节剂对水稻氮素积累与转运及贮存的影响[J].湖南农业大学学报(自然科学版),2003(2):99-102.

[11] 张建军.植物生长调节剂对早稻垩白的影响及机理研究[D].长沙:湖南农业大学,2002:34.

[12] 孟彦,李艳萍,王文化.化控技术在玉米生产上的应用与研究[J].安徽农学通报,2011(10):110-111.

[13] CROOK M J,ENNOS A R.Stem and root characteristics associated with lodging resistance in four winter wheat cultivars[J].The Journal of Agri-cultural Science,1994,123(2):167-174.

[14] 傅腾腾,朱建强,张淑贞,等.植物生长调节剂在作物上的应用研究进展[J].长江大学学报(自然科学版),2011(10):233-235.

[15] 司贤超.使用植物生长调节剂应注意的问题[J].基层农技推广,2014(6):42.

猜你喜欢

植物生长调节剂作物
为什么要多元
无公害水稻病虫害防治要点
挖掘这些基因,让作物抗各种病(2020.3.27 科技日报)
农庄主牌含氨基酸水溶肥
香水百合组织培养和快速繁殖条件的优化
香水百合组织培养和快速繁殖条件的优化
摘心和植物生长调节剂处理对山杏果实品质的影响
UPLC—MS/MS法同时测定葡萄中4种植物生长调节剂研究
地下作物