APP下载

断路器在线监测与故障诊断技术综述

2017-01-23严会君黄煜铭张雄伟

价值工程 2016年35期
关键词:在线监测断路器故障诊断

严会君+黄煜铭+张雄伟

摘要:断路器作为电力系统最重要的设备之一,其运行状态对电力系统的可靠性至关重要。不同于定期巡检和故障维修,状态检修具备的主动性和预见性更适合智能电网安全性和经济性的要求。本文对断路器的在线监测与故障诊断技术的内容和方法作了综述。

Abstract: Circuit Breaker (CB) is one of the most important devices in power system. Its running status is crucial to the power system reliability. Rather than traditional maintenance strategies such as regular inspection and troubleshooting, condition monitoring suits the requirement of intelligent grid better because of its initiative and predictability. This article gives a review on the online monitoring and fault diagnosis technology for circuit breaker.

关键词:断路器;状态检测;在线监测;故障诊断

Key words: circuit breaker;condition monitoring;online monitoring;fault diagnosis

中图分类号:TM561 文献标识码:A 文章编号:1006-4311(2016)35-0226-04

0 引言

电力系统的稳定性对于人们的生产生活至关重要,断路器作为电力系统中最重要的保护和控制设备,承担着关合、开断电力线路、线路故障保护、监测运行电量数据等的重要作用。当电力系统发生故障时,断路器能够将故障部分迅速从电网中隔离出去,断路器的故障将带来线路和设备受损甚至可能影响到居民生活和社会生产,因此,断路器的状态好坏直接影响到电力系统的可靠性,断路器的运行维护是保障电力系统安全稳定运行的前提和基础。由于断路器的寿命一般为20-40年,一些部件会随着使用时间的增加而不断老化,因此及时对其进行维护和检修是十分必要的。

当前电力设备的维护方式主要有定期检修、故障维修以及状态检修三种。定期检修就是根据预先规定的时间周期对设备进行检修,故障维修是在故障发生后才对设备进行修理,这两种方式作为目前最常用的检修方式,存在着针对性较差、效率低下、维护成本较大的问题。为了提高设备运行可靠性及运维效率,状态检修开始得到了关注。

状态检修是基于设备状态监测和故障诊断的检修方式,它能够根据先进的状态监测和诊断技术提供的设备状态信息,判断设备的异常,预知设备的故障,并做出针对性的检修计划。对断路器的重要参数进行长期连续的状态监测,不仅能够及时判断出故障的位置和严重程度,而且可以对故障设备进行原因诊断。这不仅对于提高设备的利用率、降低维修费用、增大设备的维护保养周期十分有效,而且可以提高电力系统的坚强性、可靠性及自动化程度。作为主动性和预见性的检修方式,状态检修更能适应现代智能电网对于安全性和经济性的要求,真正做到防患于未然。断路器的在线检测及故障诊断已经成为电力行业的热点问题并受到国内外研究机构的持续关注。

1 国内外研究现状

断路器一般包括操动机构、开断元件、绝缘支柱、基座、二次回路和中间传动机构等等。断路器的故障即为某部分元件丧失其规定动作的现象。国内外的故障统计显示,断路器常见的故障表现见表1。

这些故障不单会造成断路器功能的缺失,甚至会危害电力系统的整体安全,因此,进行有效的在线监测和故障诊断至关重要。

1.1 状态监测

对断路器的状态监测最早是通过离线的方式进行,这种测试方法主要对断路器的分合机械参数进行测试。国外在上世纪90年代就有这样的断路器试验设备,代表厂商如德国WEIS公司和美国Doble公司等等都有相关产品,国内如国电南瑞、华天电力后来也有类似的产品。但是这种机械特性测试仪只适合进行出厂检测和故障检修,无法满足状态监测的要求,因此,对断路器检测进行智能化改造成为了新的研究热点。国外在这一领域的研究起步较早,Goto K. 等人在1989年就提出了针对气体绝缘断路器(GIS)的在线监测和故障诊断系统,并在断路器动作时间、气体压力、局部放电、液压系统等多方面进行了监测[1];McllroyC等人利用录波设备和接口组件实现了对分合闸线圈电压、电流和触点位移的监测[2];美国德州农工(Texas A&M)大学采用专家系统对断路器进行状态分析,监测对象包括分合闸线圈电流、相电流、触头接触信号等等[3];Dupraz JP等人开发了对六氟化硫气体,操动机构和断路器机械特性的在线监测系统[4];Knezev M等人开发的系统主要对断路器控制线圈电流及主回路电流进行监测,并对信号处理和专家系统方面进行了研究[5]。

国内对断路器在线监测技术的研究工作开始于上世纪90年代,清华大学最早对该领域进行了研究实践:单片机作为核心芯片被用来控制整个开关柜智能化状态检测装置,并初步探索了断路器振动信号在监测和故障诊断方面的应用[6-7];华中科技大学的张永伟等人开发了基于CPLD+CPU结构的在线监测数据采集结构[8];重庆大学的熊小伏等人利用网络服务器开发了分布式机械特性监测系统[9];此外,包括西安交通大学、北京航空航天大学、大连理工大学在内的多家研究单位在断路器在线监测与故障诊断方面都有持续的研究[10-12]。

目前市场上已有的高压断路器状态监测产品一般是利用微处理器对断路器设备参数进行连续监测,核心控制芯片包括ARM、FPGA、DSP等多种方式,并且逐渐向更高级的芯片和多核系统发展。

在线监测对象的选择是进行有效故障诊断的前提和基础,随着数据采集技术的发展和完善,监测对象也从最初的简单机械参数向复杂参数发展。目前常见的监测对象包括:①分、合闸线圈电流;②储能电机电流;③振动信号;④位移信号;⑤断路器触头温度;⑥环境温湿度;⑦主回路电压、电流;⑧局部放电;⑨真空断路器的真空度;⑩微水(气体绝缘全封闭组合电器GIS);?輥?輯?訛气体密度;?輥?輰?訛断路器运行状态、接地状态、储能状态等等,这些监测对象能够从不同角度反应断路器的工作状态,实现手段也各不相同,以下为几种典型信号的具体监测方法。

①分合闸电流信号。

作为高压真空断路器中的重要元件,电磁铁利用线圈中所通电流产生的磁通对断路器的操动机构进行控制来实现分闸和合闸动作。断路器的分、合闸电流波形包含了断路器在此过程中的工作状态信息,通过监测分合闸电流能够判断出多种断路器控制回路的故障类型如线圈铁芯卡涩、电源电压过低、铁芯空行程过长等操动机构故障。同时,线圈电流易于采集的特点使其十分适于对断路器进行故障诊断。实际应用中分合闸线圈电流信息可以通过霍尔电流传感器采集,典型的断路器合闸电流波形如图1所示。

从图1可以看出,铁心的运动主要分为五个阶段,分别对应图1电流曲线的5个区间:①t0-t1,接通电源,电流持续增大,铁心准备运动;②t1-t2,铁心开始运动,电流逐渐减小;③t2-t3,电流明显增大,铁心停止运动;④t3-t4, 延续阶段3,电流趋于稳定;⑤t4-t5,辅助开关断开,触头产生电弧,电弧被拉长且电压升高,电流迅速下降至0。由此划分出的电流特征量I1,I2,I3和时间特征量t1,t2,t3,t4,t5可作为故障分析诊断的特征量。

②储能电机电流信号。

储能弹簧是断路器弹簧操动机构中最核心的部分,一般采用电流传感器测量储能电机的电流信号来间接监测储能弹簧的工作状态。典型的断路器储能电机电流波形如图2所示,从图中可以看出,储能电机电流的变化共分为4个阶段:①t0-t1,接通电源,电流迅速增大,储能电机到t1时刻开始平稳工作;②t1-t2,储能电机稳定工作,电流大小基本不变;③t2-t4,储能弹簧随着电流的增大进行储能;④t4-t5,辅助开关断开,电流减小至0。各个阶段的电流典型值Ia,Im,Ip和时间典型值t1,t2,t3,t4,t5能够反映断路器的运行特性,如Ia能够反映电机转子的状态,Im能够反映弹簧的状态等等。因此,通过对这些特征电流及时间的监测,可以判定储能弹簧是否存在松动、电机转子有无卡涩等故障现象。

③位移信号。

断路器的触头位移信号是表征断路器机械特性最为重要的监测信号之一,它反映了断路器动触头在分合闸过程中的动作信息。对位移信号的分析和处理可以用于计算断路器的分合闸速度、时间和行程等参数。典型的断路器触头位移-时间曲线如图3所示。

断路器的触头位移-时间曲线包含了很多重要的机械参数如合闸时间、合闸不同期、分闸时间、分闸不同期、超程、开距等等,这些参数可以通过对时间特征量t1,t2,t3,t4,t5,t6和位移特征量S1、S2的监测计算得到。

④振动信号。

振动信号由断路器中的运动部件产生,部件的启动、制动和撞击行为都能够产生一定的振动信号,因此它能够反映断路器运动过程中许多重要的状态信息。很多机械故障如触头磨损、螺丝松动等都能够通过监测振动信号来及时发现。基于其特征明显的性质,振动信号在机械故障诊断中被广泛应用。但是由于受到噪声和随机振动的影响,断路器的振动信号的分析处理比较困难。实际应用中振动信号一般由压电式加速度传感器进行采集。

⑤触头温度信号。

断路器的触头温度反映了电路故障中是否有过载、短路等异常的电流,当设备的接触连接部位或隔离触头等位置由于种种原因电阻明显增大时,热损耗将会造成绝缘击穿或件损坏等严重的事故,因此,及时监测和发现触头温度的异常变化是保证断路器安全稳定工作的一个重要方面。常用的温度监测方法有红外温度传感器、红外测温仪、热电偶间接测温等等,将测量温度与断路器触头等部分的允许温升极限相比较分析便可实现对温度信号的诊断。

1.2 故障诊断

断路器的故障诊断就是对断路器运行参数的监测、分析处理和诊断,它能够分析故障的成因并预测其劣化趋势,并提供针对性的检修计划,是断路器状态监测的最终目标。故障诊断对于提高断路器运行的可靠性具有重要的意义,也是提高断路器工作效率以及运维效率的重要手段,是近年来研究的热点。常见的故障诊断方法总结见表2。

20世纪80年代开始,故障诊断技术引起了越来越多国家的重视,随着传感器技术、信息技术等的持续发展,多种智能诊断系统被相继开发应用,故障诊断技术日渐成熟。将计算机引入故障诊断方法之后,人工智能技术和专家系统、粗糙集理论、模糊数学、人工神经网络等等继续在实际工程中开始被采用并取得了很好的发展。基于之前大量的研究基础,很多发达国家已经开始广泛应用智能故障诊断技术。

国内在断路器故障诊断方面技术的发展虽然也取得了一些进步,但完善的在线监测和故障诊断系统大多数还处于实验室研究阶段,其市场化应用仍需要进一步开发。

断路器的故障诊断通常包括以下几个步骤:

①信号采集:信号采集即采集断路器运行的特征信号,由于信号的变化是断路器工作状态的直接显示,因此,信号采集是断路器评估及故障诊断的基础。

②信号处理:信号处理是从采集到的信号中提取特征量的过程,其目的是消除信号噪声以提取到精确的信号。

③状态识别:状态识别是根据特征量和其他诊断信息来识别检测断路器的工作状态的过程,其原理是将提取到的特征信号与标称信号进行比对。

④故障诊断:当断路器处于故障状态时,故障诊断能够给出诊断对象故障的具体位置、原因及维修措施。

设备故障诊断技术经历了从传统的物理化学诊断、征兆诊断、阈值诊断等等方式到人工智能诊断技术的发展,传统的故障诊断方法有着诊断快速、操作简单的优势,然而其只对部分故障类型行之有效,且可信度往往与操作人员的经验相关,复杂的故障问题以及大量的监测数据处理则更需要应用智能诊断技术,其对提高诊断准确率及诊断效率都具有明显优势。

断路器实现智能诊断的算法包括三大类型[12]:基于解析模型的算法、基于信号处理的方法以及基于知识的方法。基于解析模型的算法是通过对诊断对象进行较为准确的数学模型仿真,将采集信号与标称值进行比较从而得出系统故障是否存在及严重程度。其又可以分为状态估计诊断法、一致性检验诊断法和参数估计诊断法,一致性检验诊断法通过建立断路器正常情况下的数学模型并将其与故障模型进行对比来确定故障类型,在实际中应用较多。Demjanenko V等人利用振动信号的一致性对比对断路器进行故障诊断[13];Michael S. 等人利用计算机辅助诊断的概念,将模拟故障信息存入数据库,并与采集的状态数据进行比较以检测故障[14];基于信号处理的方法通过对数据进行特征值提取来进行故障诊断,实际应用中,多元统计方法、时域频域分析方法等都得了较多应用,文献[15]利用主元分析的方法对原始数据进行降维处理,既提高了诊断效率也确保了诊断精度;基于知识的方法作为断路器故障诊断的主要研究方向,主要涵盖了逻辑推理、机器学习、神经网络、模糊理论等多种人工智能算法,已经得到了越来越多的研究机构的关注。这种方法通过模拟大脑的思维方式来进行故障诊断,能够对大量监测信息进行快速且精确地分析和诊断,是未来智能诊断的主要发展方向。

2 总结与展望

对断路器设备采用状态检测的方式是必然的发展趋势,这种方式不仅解决了传统定期检修和事后故障维修针对性差、效率低的弊端,而且满足现代电力系统对于智能化的要求。目前断路器的在线监测技术在分合闸电流、储能电机电流信号、触头位移-时间信号等等参数方面都有了成熟的应用,故障诊断技术也从传统的诊断方式逐渐向智能诊断方式过渡,随着人工智能算法的发展,故障诊断技术将适用于更多复杂参数的监测并进一步提高故障诊断的可靠性。

断路器的在线监测和故障诊断技术在具体应用中仍存在一些问题:

①在线监测系统的监测参数仍需进一步完善。为了提高故障诊断过程的精确性,监测设备需要增加监测的参数而非采用单一的监测参数。

②部分监测对象还未实现精确有效测量,采集监测数据的传感器仍需进一步提高精确度,这对于故障诊断的精确性提高至关重要。

③虽然人工智能算法用于故障诊断已经有了大量的研究,但是较为可靠地可市场化的智能诊断算法仍在探索中。

虽然断路器检测从定期检修到状态检修的完全过渡仍未完全实现,但是相信随着传感器、人工智能等技术的进一步发展,断路器的在线监测和故障诊断技术也必将更加成熟和稳定,为智能电网的可靠运行提供更优质的保障。

参考文献:

[1]Goto K, Sakakibara T, Kamata I, et al. On-line Monitoring and Diagnostics of Gas Circuit Breakers[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 375-381.

[2]McIlroy C, Richey KR, Wagon R, et a1. Circuit breaker condition based monitonngdevelopments[C]. 4th International Conference on Trends in Distribution Switchgear, London: 1994: 168-172.

[3]Zhifang R, Wavelet Based Analysis of Circuit Breaker Operation. Texas A&M University, 2003.

[4]Dupraz JP, Jung T, Ficheux A, et al. Remote Supervision for Intelligent Circuit Breakers and GasInsulated Substations[C]. 2008 IEEE Power and Energy Society General Meeting-Conversion andDelivery of Electrical Energy in the 21st Century, Pittsburgh: 2008: 4718-4725.

[5]Knezev M, Djekic Z, Kezunovic M. Automated Circuit Breaker Monitoring[C]. 2007 IEEE PowerEngineering Society General Meeting, Tampa: 2007: 2580-2585.

[6]黄瑜珑,关永刚,徐国政,等. 高压开关柜智能化状态监测装置的研制[J].电工技术杂志,2000(7):7-9.

[7]沈力,黄瑜珑,钱家骊.断路器振动信号的相频特性及在监测中的应用[J].电工技术学报,1997,12(3):42-45.

[8]张永伟,尹项根,李彦武,等.CPLD在断路器在线监测数据采集系统中的应用研究[J].电力自动化设备,2003,23(4):34-37.

[9]熊小伏,孙鑫,蔡伟贤,等.基于DSP及ARM的分布式高压断路器机械特性监测系统[J].电力系统保护与控制,2009,37(6):64-68.

[10]杨飞,王小华,荣命哲,等.一种新的中压真空断路器三相同期在线监测方法[J].中国电机工程学报,2008,28(12):139-144.

[11]Huang J, Jiang XF, Hu XG, et al. Automated Monitoring and Analysis for High Voltage CircuitBreaker[C]. 5th IEEE Conference on Industrial Electronics and Applications, Taichung: 2010: 599-603.

[12]Zhang X, Liu XD, Fan XM, et al.A High Accurate Sensor Research and its Application for VCBsInternal Pressure On-line Condition Monitor[C]. 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk: 2012: 477-480.

[13]Demjanenko V, Valtin RA, Soumekh M, et a1. A noninvasive diagnostic instrument for power circuitbreakers[J]. IEEE Transactions on Power Delivery, 1992, 7(2): 656-663.

[14]Michael Stanek, Klaus Frohlich. Model-Aided Diagnosis - A New Method for Online Condition Assessment of High Voltage Circuit Breakers. IEEE Transactions on Power Delivery, 2000, 4(15): 585-591.

[15]李建鹏.基于振-声联合分析的高压断路器机械故障诊断研究[D].北京:华北电力大学,2012.

猜你喜欢

在线监测断路器故障诊断
六氟化硫断路器运行与异常处理
断路器控制回路异常分析及处理
一例断路器内部发热的诊断分析
SF6断路器拒动的原因分析及处理
GIS设备的SF6气体在线监测
因果图定性分析法及其在故障诊断中的应用
基于LCD和排列熵的滚动轴承故障诊断
基于WPD-HHT的滚动轴承故障诊断
高速泵的故障诊断