APP下载

全氟异丁烯染毒对大鼠肺微血管内皮细胞的影响

2016-02-15王延琳黄春倩王和枚丁日高

中国药理学与毒理学杂志 2016年9期
关键词:染毒内皮细胞炎性

王延琳,赵 建,黄春倩,王和枚,丁日高

(军事医学科学院1.野战输血研究所,2.毒物药物研究所,3.抗毒药物与毒理学国家重点实验室,北京 100850)

全氟异丁烯染毒对大鼠肺微血管内皮细胞的影响

王延琳1,2,3,赵 建2,3,黄春倩2,3,王和枚2,3,丁日高2,3

(军事医学科学院1.野战输血研究所,2.毒物药物研究所,3.抗毒药物与毒理学国家重点实验室,北京 100850)

目的 观察体外培养的肺微血管内皮细胞(PMVEC)经全氟异丁烯(PFIB)染毒后其肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)、细胞间黏附分子1(ICAM-1)、基质金属蛋白酶2(MMP-2)和MMP-9的含量变化。方法 采用改进的组织块种植法分离培养大鼠PMVEC,细胞经鉴定后分为正常对照组和5个PFIB染毒组(n=3)。正常对照组为静息状态细胞;染毒组行PFIB暴露(浓度200 mg·m-3,持续5 min)染毒后0.5,1,2,4和8 h分别收集培养上清液和细胞裂解液。ELISA检测TNF-α,IL-1β,ICAM-1,MMP-2和MMP-9含量,明胶酶谱法分析MMP-2和MMP-9酶活性。结果 ①依据细胞生长的形态特征、特异性抗原的表达和植物凝集素结合实验鉴定,采用肺组织块原代培养法获得的细胞均符合PMVEC的特征。②与正常对照组比较,PMVEC经PFIB染毒后2 h细胞裂解液中TNF-α含量显著升高(P<0.05),4和8 h明显回落。细胞培养上清液中TNF-α含量变化趋势与细胞裂解液中TNF-α变化趋势类似,仅发生时间稍滞后。③PFIB染毒后PMVEC激活并合成IL-1β的时间稍滞后于TNF-α,但达峰与持续时间与TNF-α相似。④PFIB染毒后PMVEC培养上清液中ICAM-1含量持续保持于较低水平。⑤PFIB染毒组细胞裂解液中未检测到MMP-2活性,培养上清液中检测到较高水平的MMP-2含量与活性。PFIB染毒组的培养上清液和细胞裂解液中均未检测到MMP-9表达与活性。结论 PFIB染毒刺激存活的PMVEC合成并释放大量TNF-α,IL-1β,MMP-2和结合型ICAM-1。

肺微血管内皮细胞;全氟异丁烯;细胞因子;黏附分子;基质金属蛋白酶

作为重要的化工原料和副产物,全氟异丁烯(perfluoroisobutylene,PFIB)是一种常温下为气态的无色无味低分子量的高氟有机物,能穿透普通防毒面具,且无特效的防治措施,是常见的可引起肺部炎性损伤的有毒化学品。当发生肺部炎性损伤时,肺泡微血管内皮的细胞连接破坏、细胞骨架重排,这些结构的破坏导致液体、蛋白质、炎性介质等进入肺泡[1-4];肺部炎性损伤还影响主要细胞的分泌功能,当血管内皮细胞受到炎症刺激时胞内转录因子NF-κB被激活,促进多种炎性介质mRNA表达,进而诱导合成与释放肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素1β(interleukin-1β,IL-1β)、IL-6和IL-8等细胞因子,诱导细胞间黏附分子1(intercellular adhesion molecule-1,ICAM-1)、血管细胞黏附分子1和E-选择素等黏附分子的表达,促进中性粒细胞的扣押和聚集,同时分泌基质金属蛋白酶(matrix metalloproteinases,MMP)降解基底膜、破坏正常肺泡结构并引发更多的炎性细胞聚集和活化[3-7]。内皮细胞在炎症过程中生成的这些炎性介质间也有相互协同作用,进而形成复杂的网络,结果共同促进炎症过程。

本研究拟在本课题组前期PFIB染毒对肺气血屏障形态影响的研究基础上,观察体外培养的肺微细血管内皮细胞(pulmonary microvascular endothe⁃lial cells,PMVEC)经PFIB染毒后其分泌功能的变化特点,为阐明PFIB急性吸入性肺损伤发病机制、有效防治PFIB急性吸入性肺损伤提供实验依据。

1 材料与方法

1.1 动物、药品和试剂

健康雄性Wistar大鼠(体质量140~160 g)购自北京维通利华实验动物技术有限公司,SPF级,许可证编号SCXK(京)2002-2003。PFIB购自上海有机氟材料研究所,纯度为98%。兔抗人因子Ⅷ相关抗原〔factorⅧ(FⅧ)-related antigen〕多克隆抗体,北京中杉金桥生物技术有限公司;荧光标记的植物凝集素,美国Sigma公司;TNF-α,IL-1β,ICAM-1,MMP-2和MMP-9 ELISA检测试剂盒,上海依科赛生物制品有限公司。

1.2 大鼠PMVEC的分离培养和鉴定

本课题组采用改进的组织块种植法[8],分离培养PMVEC,当细胞生长呈现80%~90%单层汇合时,用0.125%胰蛋白酶消化后1∶3传代。2~3代后进行鉴定,2~5代细胞用于实验。主要鉴定方法包括形态及生长特性的观察、免疫细胞化学法鉴定FⅧ相关抗原及植物凝集素结合实验[8]。

1.3 PMVEC分组和染毒

将PMVEC分为正常对照组和PFIB染毒0.5,1,2,4和8 h组,每组3孔。依1.2培养的PMVEC接种于24孔培养板中继续培养,待细胞达80%~ 90%单层汇合后,移除培养液并用PBS冲洗孔板,然后将培养板置于自制的细胞暴露动态吸入染毒系统,PFIB染毒浓度为200 mg·m-3,染毒5 min。染毒结束后向培养板中加入含有20%胎牛血清的DMEM培养液1 mL继续培养。分别于PFIB暴露后0.5,1,2,4和8 h每孔加入细胞裂解液200 μL,裂解1 min后用钝性细胞刮板刮离细胞,连同细胞裂解液一起收集,静置10 min后,4℃环境12 000×g离心10 min,收集上清(-20℃冻存)。正常对照组为静息状态的细胞,行过滤空气暴露,其余处理条件与染毒组相同,呈现80%~90%单层汇合时收集上清液和细胞。

1.4 ELISA检测TNF- α,IL-1 β,ICAM-1,MMP-2和MMP-9含量

按照各个试剂盒说明书操作,每个样本设2个复孔。测定450 nm波长处的吸光度值(A450nm)并绘制标准曲线,根据标准曲线和测得的样品A450nm值,计算样品的待测分子的浓度。

1.5 明胶酶谱法测定MMP-2和MMP-9酶活性[9]

向等量样品中加入非变性SDS电泳上样缓冲液(2%SDS,pH 6.8,10%甘油,0.001%溴酚蓝),经8%SDS-聚丙烯酰胺凝胶电泳分离后,凝胶置于洗脱液(Tris-HCl 4 mmol·L-1,CaCl210 mmol·L-1,pH 7.6)中,振荡洗脱3次,每次25 min。用漂洗液漂洗3次,每次15 min。将胶置于孵育液(Tris 40 mmol·L-1,pH 7.6,CaCl210 mmol·L-1)中,于37℃,40 r·min-1振荡孵育24~48 h。考马斯亮蓝染色2 h,脱色液适当脱色后,MMP-2和MMP-9在蓝色背景上呈透亮条带,凝胶经成像系统记录后,使用ImageJ软件进行累积吸光度分析,以反映MMP相对活性。并按下式计算相对酶活性:酶相对活性=PFIB染毒组检测条带的灰度值/静息状态组检测条带的灰度值。

1.6 统计学分析

实验结果数据以x±s表示,使用统计分析软件SAS 9.1,按单因素多水平设计进行一元定量资料的方差分析(方差不齐时采用秩和检验),组间的两两比较采用Dunnettt检验,P<0.05认为差异具有统计学意义。

2 结果

2.1 PMVEC的鉴定

形态学鉴定:倒置相差显微镜下观察原代培养约60 h的肺组织块周围有短梭形或钝圆形细胞游出。第二代细胞形态主要为多角形、短梭形。培养至第三代,排列致密时细胞间隙消失,彼此融合形成紧密单层细胞。如图1A所示,镜下观察传代培养至2~3代的培养细胞呈典型的“铺路石状”单层贴壁生长,具有接触抑制的特征[8、10],细胞的胞核清晰,胞浆丰富。FⅧ相关抗原鉴定:如图1B所示,培养细胞经免疫细胞化学鉴定,倒置显微镜下观察免疫细胞化学染色呈阴性。植物凝集素结合实验结果如图1C所示,细胞经植物凝集素结合实验鉴定,呈明亮的绿色荧光。

Fig.1Qualification of pulmonary microvascular endothelial cells(PMVECs)prepared with modified tissue block pasted culture method[8]under phase contrast microscope.A:appearance of PMVECs(×100);B:expression of FⅧ-related antigen in PMVECs(×200);C:fluorescently-labeled phytohemagglutinin of PMVECs(×400).

2.2 PFIB染毒后不同时间PMVEC中TNF- α含量

如图2所示,PFIB染毒后0.5 h,PMVEC培养上清液中TNF-α含量显著低于正常对照组(P< 0.05),之后逐渐升高,至4 h达到峰值且显著高于对照组(P<0.05),8 h回落至正常对照组水平。PMVEC细胞裂解液中TNF-α含量则逐渐升高,至染毒后2 h达峰且与正常对照组有显著性差异(P< 0.05),之后渐降低,至8 h降至正常对照组水平。

Fig.2 Tumor necrosis factor- α(TNF- α)content in PMVEC supernatant and lysate at different time after perfluoroisobutylene(PFIB)exposure.The PFIB-exposed groups inhaled PFIB 200 mg·m-3for 5 min in a flow-past header. Then supernatant and lysate of PMVECs were harvested at 0.5,1,2,4 and 8 h.The content of TNF-α was measured by ELISA.±s,n=3.*P<0.05,compared with normal control(0)group.

2.3 PFIB染毒后不同时间PMVEC中IL-1 β含量

正常对照组和PFIB染毒组PMVEC培养上清液中IL-1β的含量均低于检测下限。PFIB染毒后0.5和1 h,PMVEC细胞裂解液中IL-1β水平显著低于正常对照组(P<0.05),染毒后2 h升高至正常对照组水平,染毒后4和8 h又显著低于正常对照组水平(P<0.05)(图3)。

Fig.3 Interleukin-1 β(IL-1 β)content in PMVEC lysate at different time after PFIB exposure.See Fig.2 for PMVEC treatment.The content of IL-1β was measured by ELISA.±s,n=3.*P<0.05,compared with normal control group.

2.4 PFIB染毒后不同时间PMVEC中ICAM-1含量

如图4所示,PFIB染毒后0.5~8 h,PMVEC培养上清液中ICAM-1的含量随时间延长逐渐升高,但均保持在较低水平,均显著低于正常对照组(P< 0.05)。而PFIB染毒后0.5 h,PMVEC细胞裂解液中ICAM-1含量显著高于正常对照组(P<0.05);之后随着培养时间的延长ICAM-1含量渐降低,至染毒后4和8 h含量显著低于正常对照组(P<0.05)。

Fig.4 Intercellular adhesion molecule-1(ICAM-1)content in PMVEC supernatant and lysate at different time after PFIB exposure.See Fig.2 for PMVEC treatment.The content of ICAM-1 was measured by ELISA.±s,n=3.*P< 0.05,compared with normal control group.

2.5 PFIB染毒后不同时间PMVEC中MMP-2和MMP-9含量

正常对照组PMVEC细胞裂解液中MMP-2表达量低于检测下限。PFIB染毒后PMVEC培养上清液中MMP-2含量渐升高,但与正常对照组均无显著性差异(图5)。两组PMVEC培养上清液和细胞裂解液中MMP-9蛋白含量均低于检测下限(结果未显示)。

Fig.5 Matrix metalloproteinase-2(MMP-2)content in PMVEC supernatant at different time after PFIB expo⁃sure.See Fig.2 for PMVEC treatment.The content of MMP-2 was measured by ELISA.±s,n=3.

2.6 PFIB染毒后不同时间PMVEC中MMP-2和MMP-9活性

以正常对照组培养上清液中MMP-2的酶活性为1,PFIB染毒后PMVEC培养上清液中MMP-2相对活性呈现一定程度的升高,至染毒后4 h活性显著高于正常对照组(P<0.05)(图6)。两组培养上清液中均未检测到MMP-9活性。

两组PMVEC细胞裂解液中均未检测到MMP-2与MMP-9活性。

Fig.6 MMP-2 activity in PMVEC supernatant at different time after PFIB exposure.See Fig.2 for PMVEC treatment. MMP-2 activity was measured by gelatin zymography and MMP-2 activity of normal control group was taken as 1.0.±s,n=3. *P<0.05,compared with normal control group.

3 讨论

PMVEC作为气血屏障的重要组成部分,单层覆盖在毛细血管的腔面,在生理和病理情况下均发挥重要作用,与肺部炎性渗出和肺水肿关系密切。在致病因素作用下,内皮细胞中转录因子NF-κB被激活,启动多种炎症介质mRNA的转录,进而促进合成与释放多种细胞因子,这些细胞因子的过度表达及其相互作用是发生急性肺损伤的重要原因[3、4、11]。在这些因子中,TNF-α和IL-1β作为早期炎性细胞因子,二者均可刺激趋化因子释放、上调黏附分子表达等[5,12-16]。另外,TNF-α和IL-1β还是重要的NF-κB正反馈因子[14]。ICAM-1是激活的内皮细胞在胞膜上表达的重要黏附分子,使中性粒细胞更易黏附于内皮细胞表面并刺激中性粒细胞的激活[17]。MMP-2在正常肺组织中即广泛表达,当细胞损伤时常伴有局部组织中MMP-2含量升高[18],MMP-2参与基底膜损伤和肺组织结构重塑。MMP-9在正常肺组织中表达较低,炎症反应时炎性细胞激活、炎症因子释放等因素均可促进MMP-9的大量表达[19]。MMP-2和MMP-9具有强烈的溶解胶原活性,在急性呼吸窘迫综合征的发病机制中起重要作用[4]。

经前期多次预实验摸索条件,明确PFIB染毒浓度为200 mg·m-3、染毒时间5 min,染毒后观察PMVEC的超微结构变化规律同整体动物PFIB染毒后变化规律基本一致,据此作为细胞染毒实验条件。本研究发现,PFIB染毒后PMVEC细胞裂解液中TNF-α含量呈持续升高态势,至染毒后2 h达峰,之后渐降低,至8 h降至对照组水平;细胞培养上清液中TNF-α含量变化趋势与细胞裂解液中TNF-α含量变化趋势类似,仅发生时间上稍滞后于后者。以上结果提示,PMVEC经PFIB染毒后可被迅速激活,合成大量TNF-α并快速释放于周围环境中。

PFIB染毒后PMVEC激活并合成IL-1β的时间与TNF-α相仿,但IL-1β的表达量明显少于TNF-α,其细胞裂解液中的含量仅约为后者的1/10,细胞培养上清液中未检出。虽普遍认为IL-1β和TNF-α具有相似的生物学作用,但在PFIB急性吸入性肺损伤的病理过程中存在不同的表达特点,合成的IL-1β始终未释放到细胞外可能提示PMVEC不是PFIB急性吸入性肺损伤时IL-1β的主要细胞来源。

PFIB染毒后PMVEC细胞裂解液中ICAM-1含量迅速升高,之后缓慢下降,至染毒后4 h细胞裂解液中ICAM-1含量显著低于正常对照组。与之对应的是,PFIB染毒后PMVEC培养上清液中ICAM-1含量持续保持于较低水平,远低于细胞裂解液内含量。提示PFIB染毒后ICAM-1表达量显著增加,其表型以结合型为主。

本研究PFIB染毒组细胞裂解液中未检测到MMP-2活性,而培养上清液中检测到较高水平的MMP-2活性,提示PFIB染毒后PMVEC合成大量MMP-2并快速释放于周围介质中。PFIB染毒组的培养上清液和细胞裂解液中均未检测到MMP-9表达,说明PFIB染毒并未刺激PMVEC生成和释放MMP-9,提示PFIB急性吸入性肺损伤时PMVEC可能不是MMP-9的主要来源。

本课题组有关PFIB引起肺部炎性损伤机制研究时有许多重要的发现[1,20],尤其是PMVEC的形态学变化研究表明,PFIB染毒后1 h,PMVEC细胞核和线粒体结构即出现损伤,并伴有PMVEC凋亡,24 h内呈逐步增多的趋势,至24 h达峰值后逐渐恢复[2]。结合本文研究结果分析,一方面PFIB染毒促进PMVEC凋亡;另一方面刺激存活的PMVEC合成并释放大量TNF-α与IL-1β,高表达结合型ICAM-1;此外PFIB染毒后PMVEC本身也迅速释放大量MMP-2,后者可加速肺泡微血管内皮细胞连接的破坏、细胞骨架的重排,并破坏细胞外基质。在上述因子与其他因素的综合作用下,中性粒细胞激活并黏附于PMVEC,释放活性氧自由基与蛋白酶类,对PMVEC及其基底膜造成进一步损伤,最终破坏肺气血屏障的完整性,失去对大分子的屏障作用,血浆蛋白漏出形成渗透梯度,血浆水分也随之渗出血管外造成肺水肿,炎症介质等进入肺泡内,这些也是急性肺损伤主要的病理基础。PFIB染毒后PMVEC结构和功能的变化是相辅相成、相互促进的,共同加速肺组织炎症反应,促进急性肺损伤/急性呼吸窘迫综合征的发生与发展。

[1]Meng G,Zhao J,Wang HM,Ding RG,Zhang XC,Huang CQ,et al.Cell injuries of the blood-air barrier in acute lung injury caused by perfluoroisobutylene exposure[J].J Occup Health,2010,52(1):48-57.

[2]Meng G,Zhao J,Wang HM,Ding RG,Zhang XC,Huang CQ,et al.Injury of cell tight junctions and changes of actin level in acute lung injury caused by the perfluoroisobutylene exposure and the role of myosin light chain kinase[J].J Occup Health,2011,53(4):250-257.

[3]AschnerY, ZemansRL, YamashitaCM,Downey GP.Matrix metalloproteinases and protein tyrosine kinases:potential novel targets in acute lung injury and ARDS[J].Chest,2014,146(4):1081-1091.

[4]Villalta PC,Rocic P,Townsley MI.Role of MMP2 and MMP9 in TRPV4-induced lung injury[J].Am J Physiol Lung Cell Mol Physiol,2014,307(8):L652-L659.

[5]Wang X,Zhang L,Duan W,Liu B,Gong P,Ding Y,Wu X.Anti-inflammatory effects of trip⁃tolide by inhibiting the NF-κB signalling pathway in LPS-induced acute lung injury in a murine model[J].Mol Med Rep,2014,10(1):447-452.

[6]Matsuda A,Kishi T,Jacob A,Aziz M,Wang P. Association between insertion/deletion polymor⁃phism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syn⁃drome:a meta-analysis[J].BMC Med Genet,2012,13:76.

[7] Tse HN,Tseng CZ.Update on the pathological processes,molecular biology,and clinical utility of N-acetylcysteine in chronic obstructive pulmo⁃nary disease[J].Int J Chron Obstruct Pulmon Dis,2014,9:825-836.

[8]Meng G,Zhao J,Lv XH,Ding RG.Improvement of rat pulmonary microvascular endothelial cell pri⁃mary culture methods[J].Bull Acad Mil Med Sci(军事医学科学院院刊),2009,33(6):567-569.

[9]Katayama A,Bandoh N,Kishibe K,Takahara M,Ogino T,Noaka S,et al.Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis[J].Clin Cancer Res,2004,10(2):634-640.

[10]Naik P,Cucullo L.In vitroblood-brain barrier models:current and perspective technologies[J].J Pharm Sci,2012,101(4):1337-1354.

[11]Gill SE,Rohan M,Mehta S.Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injuryin vivo[J].Respir Res,2015,16:109-122.

[12]Zhang Y,Liang D,Dong L,Ge X,Xu F,Chen W,et al.Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury[J].Respir Res,2015,16(1):43.

[13]Jin S,Merchant ML,Ritzenthaler JD,Mcleish KR,Lederer ED,Torres-Gonzalez E,et al.Baclofen,a GABABR agonist,ameliorates immune-complex mediated acute lung injury by modulating proinflammatory mediators[J].PLoS One,2015,10(4):e0121637.

[14]Lim ST, Miller NL, Chen XL, TancioniI,Walsh CT,Lawson C,et al.Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression[J].J Cell Biol,2012,197(7):907-919.

[15]Cotton JA,Bhargava A,Ferraz JG,Yates RM,Beck PL,Buret AG.Giardia duodenaliscathepsin B proteases degrade intestinal epithelial interleu⁃kin-8 and attenuate interleukin-8-induced neutro⁃phil chemotaxis[J].Infect Immun,2014,82(7):2772-2787.

[16]Qian JX,Lu SQ,Zhao YM,Lu JH.Expression patterns of plasma von Willebrand factor and serum interleukin-8 in patients with early-stage severe pulmonary contusion[J].World J Emerg Med,2011,2(2):122-126.

[17]Bakowitz M,Bruns B,Mccunn M.Acute lung injury and the acute respiratory distress syndrome in the injured patient[J].Scand J Trauma Resusc Emerg Med,2012,20:54.

[18]Zhang XF,Gao MZ,Hussein DF.Expression of matrix metalloproteinases 2 and 9 in mice withhyperoxia-induced acute lung injury[J].Chin J Emerg Med(中华急诊医学杂志),2005,14(1):12-15.

[19] Caley MP,Martins VL,O′Toole EA.Metallopro⁃teinasesandwoundhealing[J].AdvWound Care,2015,4(4):225-234.

[20]Wang HM,DingRG,RuanJX,YuanBL,Sun XH,Zhang XC,et al.Perfluoroisobutyleneinduced acute lung injury and mortality are heralded by neutrophil sequestration and accumu⁃lation[J].J Occup Health,2001,43(6):331-338.

Impact of perfluoroisobutylene exposure on pulmonary microvascular endothelial cells of rats

WANG Yan-lin1,2,3,ZHAO Jian2,3,HUANG Chun-qian2,3,WANG He-mei2,3,DING Ri-gao2,3
(1.Institute of Transfusion Medicine,2.Institute of Pharmacology and Toxicology,3.State Key Laboratory of Toxicology and Medical Countermeasures,Academy of Military Medical Sciences,Beijing 100850,China)

OBJECTIVE To investigate the change of tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),intercellular adhesion molecules(ICAM-1),matrix metalloproteinases 2(MMP-2)and MMP-9 contents in cultured pulmonary microvascular endothelial cells(PMVECs)in rats after perfluoroisobutylene(PFIB)exposure.METHODS PMVECs were separated and purified using a modified method of implantation of pulmonary tissues.After identification,PMVECs were divided into the normal control group and the PFIB-exposed groups(n=3).The PFIB-exposed groups inhaled PFIB at the concentration of 200 mg·m-3for 5 min in a flow-past header,while the normal control group were PMVECs in quiescent condition.The supernatants and lysates of PMVECs were harvested at 0.5,1,2,4 and 8 h,respec⁃tively,after execution.The contents of TNF-α,IL-1β,ICAM-1,MMP-2 and MMP-9 were measured by ELISA,and the activity of MMP-2 and MMP-9 was measured by gelatin zymography.RESULTS①According to the morphologic characteristics of cell growth and the expression of specificity antigens and the bind experiment of phytohemagglutinin,the cells separated and purified by modified method shared the characteristics of PMVECs.②TNF-α was rapidly expressed by PMVECs at 0.5 h post PFIB stimulation and the maximum value was achieved at 2 h post PFIB stimulation(P<0.05).The newly synthesized TNF-α was slowly released out of the cells.The maximum TNF-α in the supernatant was achieved at 4 h post stimulation.③Within 2 h of stimulation,PMVECs synthesized a large amount of IL-1β and peaks at 2 h.However,IL-1β was never released to the extracellular milieu.④The amount of ICAM-1 was rapidly synthesized by PMVECs after PFIB stimulation,but at a low level.⑤After stimulation with PFIB,MMP-2 in the supernatant of PMVECs culture was gradually increased,peaked at 2 h and then decreased subsequently.The biological activity of MMP-2 in the supernatant was also enhanced after PFIB stimulation.PFIB did not stimulate synthesis or secretion of MMP-9,indicating that PMVECs were not the main source of MMP-9 during PFIB inhalation-induced acute lung injury. CONCLUSION PFIB stimulates the surviving PMVECs to synthesize a large amount of TNF-α,IL-1β,MMP-2 and conjunctive ICAM-1.

pulmonary microvascular endothelial cells;perfluoroisobutylene;cytokines;adhesion molecule;matrix metalloproteinase

s:DING Ri-gao,E-mail:dingrigao@nic.bmi.ac.cn;WANG He-mei,E-mail:whemei@aliyun.com

R994.3,R996

A

1000-3002-(2016)09-0955-06

10.3867/j.issn.1000-3002.2016.09.008

Foundation item:The project supported by National Natural Science and Technology Major Project of China(2010ZXJ0900X-005)

2016-01-06接受日期:2016-09-05)

(本文编辑:齐春会)

国家科技重大专项(2010ZXJ0900X-005)

王延琳,女,医学博士,助理研究员,主要从事化学性肺损伤机制及防治药物研究。

丁日高,E-mail:dingrigao@nic.bmi.ac.cn;王和枚,E-mail:whemei@aliyun.com

猜你喜欢

染毒内皮细胞炎性
炎性及心肌纤维化相关标志物在心力衰竭中的研究进展
HMGB1基因对高糖诱导的血管内皮细胞损伤的影响
中西医结合治疗术后早期炎性肠梗阻的体会
大生产
浅议角膜内皮细胞检查
硒对邻苯二甲酸酯亚慢性暴露雄性大鼠肝脏的保护作用
原花青素B2通过Akt/FoxO4通路拮抗内皮细胞衰老的实验研究
染毒的脐带
炎性因子在阿尔茨海默病发病机制中的作用
细胞微泡miRNA对内皮细胞的调控