APP下载

肠道菌群失调与生物钟紊乱的相关性*

2015-09-18黄文雅陆付耳董慧华中科技大学同济医学院附属同济医院中西医结合研究所湖北武汉430030

中国病理生理杂志 2015年5期
关键词:菌群失调生物钟屏障

黄文雅,陆付耳,董慧(华中科技大学同济医学院附属同济医院中西医结合研究所,湖北武汉430030)

·综述·

肠道菌群失调与生物钟紊乱的相关性*

黄文雅,陆付耳,董慧△
(华中科技大学同济医学院附属同济医院中西医结合研究所,湖北武汉430030)

[ABSTRACT]The human gut harbours a certain quantity and variety ofmicrobes called intestinal flora,which is in a state of balance under normal circumstances,and dysbacteriosis occurswhen the balance of the intestinal flora is disturbed by the host and the changes of the external environment.Circadian clock is the biological regulation system to adapt to natural circadian rhythm,including central clock and peripheral clock.Circadian clock disturbance,particularly rotating shift-workerswith irregular light-night schedules,is associated with an increased risk of immune-related diseases.The development of these diseases is closely related to intestinal dysbacteriosis.Therefore,the correlation between intestinal dysbacteriosis and circadian clock disturbance has attractedmuch attention.This review aims to explore the pathophysiological basis of the development in some immune-related diseases based on the latest scientific findings about the relationship between intestinalmicrobial flora and circadian clock.

肠道菌群;菌群失调;生物钟

[KEY WORDS]Intestinal flora;Dysbacteriosis;Circadian clocks

正常人体肠道内寄生着种类繁多、数量庞大的微生物,以细菌为主,统称为肠道菌群。据统计其种类大于1 000种,总数高达1014,是人体细胞总和的10倍[1]。正常情况下,肠道内的微生物与宿主相互依存彼此制约,共同维持动态的生物平衡。一旦外界环境或内在平衡受到破坏,肠道菌群种类、数量及比例等发生改变,造成肠道内菌群失调[2]。研究发现肠道菌群的失调与生物钟紊乱有着不可分割错综复杂的关系,彼此影响,给机体带来一系列病理生理改变。本文就肠道菌群失调与生物钟紊乱相关性的研究进展综述如下:

1生物钟系统与生物钟基因

在生物进化过程中,机体已经适应了外部环境。其中最重要的外部环境因素则是由于地球自转并围绕太阳公转而产生的24 h白天与黑夜的交替节律。为了应对这些变化,植物和动物制定了一个时段近24 h的通用内在计时系统,该系统与太阳光周期变化、能量摄取和代谢过程同步,被称为生物钟系统,亦称昼夜节律[3]。在哺乳动物中,生物钟系统是一个复杂的分层网络结构,包括中枢生物钟网络及外周生物钟网络[4]。外周生物钟网络遍布于机体几乎所有的组织与细胞中,包括胰腺、肝脏、肠道、心、肾、肺、骨骼肌与平滑肌、脂肪组织等。中枢生物钟节律起搏器是位于下丘脑前区的视交叉上核的一些特殊的神经元,这些神经元通过视网膜下丘脑通道接收光线刺激信号,同时接收由其它神经传输的非光线刺激生理信号[5],如饮食节律、温度、药物刺激、社交活动等[6-7]。这些生理信号经过视交叉上核的整合之后通过神经传导及内分泌调节的方式传到下游的大脑区域及各大器官系统,并协调其功能[8]。该过程受一组特殊基因的转录/翻译自动调节反馈环所调控,称生物钟基因[9](各大核心基因的调控如图1所示)。同时机体24 h的生物钟也能反过来调节这些生物钟相关基因的昼夜节律表达[10-11]。生物钟网络系统能使机体适应不断变化的外部和内部状态,优化生理机能,维护多个器官系统之间的协调。无论是外界的刺激(如轮班工作和时差)还是内部压力(如心理精神困扰)都会扰乱生物钟原本的节律,进而对机体的免疫系统产生负面作用,为菌群失调的发生提供了机会。

Figure 1.The gene expression and regulation of core circadian.CLOCK:circadian locomotor output cycles kaput protein;BMAL1: brain and muscle ARNT-like 1;PER:Period;CRY:cryptochrome;REV-ERB:reverse-erythroblastosis;ROR:retinoic acid receptor-related orphan receptor;RORE:ROR response element.BMAL1-CLOCK heterodimers drive the transcriptional expression of PERs and CRYs through the activation of E-box enhancers.PER and CRY proteins in the cytoplasm form heterodimers and then translocate to the nucleus,suppressing their own transcription by interaction with CLOCK-BMAL1 complexes.In another loop,CLOCK-BMAL1 heterodimers drive the expression of REV-ERB and RORs.REV-ERB and ROR proteins in the cytoplasm translocate to the nucleus,which inhibit and activate BMAL1 expression,respectively,thus forming a relatively conservative self-regulatory feedback loop based on the transcription/translation of circadian clock genes.Some clock-controlled genes(CCGs)are also under themodulation of the clock machinery.图1 中枢生物钟基因的表达和调控

2肠道菌群失调与生物钟网络的相关性

生物钟网络以中枢生物钟系统为主,调控着所有外周生物钟网络,同时外周生物钟网络亦可对中枢生物钟造成反馈影响。目前哺乳动物中枢生物钟节律起搏器在下丘脑视交叉上核(suprachiasmatic nucleus,SCN)已确定,但在外围组织的昼夜定时的分子基础还没有阐明。但可以肯定的是,外周生物钟网络均受到中枢生物钟节律起搏器的调控,包括外周组织特异性和外在调控之间的相互作用[12]。本文主要阐述肠道菌群失调与中枢生物钟、与胰腺、肝脏和肠道等外周生物钟紊乱的关系。

2.1肠道菌群失调与中枢神经系统生物钟紊乱肠道有许多重要的生理功能,包括对水平衡和营养吸收的调节,同时对免疫调节有着显著的作用,并能形成一个对肠道内促炎性微生物的选择性黏膜屏障[13]。肠道菌群失调与肠黏膜屏障通透性增强有着直接的联系[14]。最近有研究表明肠黏膜屏障的通透性受中枢生物钟的调节。Summa等[15]首次发现,使用生物钟基因突变方法造成的中枢生物钟基因缺失模型小鼠,或使用改变环境(光线/黑暗)所造成的生物钟紊乱模型小鼠中,均发现肠上皮屏障破坏,通透性增强,并能促进乙醇引起的肠黏膜屏障的破坏,加重内毒素血症及脂肪肝,然而确切的机制却不清楚。最近有研究提出,生物钟网络影响肠道屏障通透性机制可能与紧密连接蛋白有关。Kyoko等[16]研究发现,在正常昼夜节律改变环境下,野生型小鼠闭合蛋白(occludin)和密封蛋白1(claudin-1)的mRNA和蛋白表达水平在结肠呈现与昼夜节律周期一致的变化,且结肠通透性也随着改变;而生物钟阻遏蛋白基因Period 2(Per2)突变型小鼠体内occludin及claudin-1的mRNA和蛋白表达呈持续高水平,无昼夜节律变化,结肠通透性呈持续低水平,且对葡聚糖硫酸钠(dextran sulfate sodium,DSS)造成的肠道炎症损害抵抗能力比野生型更强。说明生物钟能影响紧密连接蛋白的表达,从而改变肠道通透性。肠道菌群失调同时也受机体免疫功能影响。Arjona等[17]研究表明生物钟基因mPer2调节血清中γ干扰素mRNA及蛋白的表达,该基因突变小鼠血清中γ干扰素水平失去昼夜节律变化。另Liu等[18]发现,mPer2基因突变小鼠在细菌内毒素LPS的刺激下,失去了产生IL-10和IFN-γ的能力。同时有研究发现BMAL1基因敲除小鼠淋巴细胞比正常小鼠减少[19],缺乏CRY1和CRY2基因的小鼠血清中细胞因子水平明显高于正常小鼠[20]。更值得一提的是,巨噬细胞在其胞内生物钟基因的表达,吞噬作用和LPS敏感性上都呈现出了内源性的生物钟节律[21]。Logan等[4]亦报道NK细胞的功能,包括分泌细胞因子、细胞毒性因子和细胞溶解能力等,都受生物钟系统调控。随着这一系列的免疫相关因素的改变,肠道内菌群突破机体免疫抑制的束缚,发生数量与种类及比例的改变,发生菌群失调,并通过高通透性的肠道黏膜屏障进入到机体全身,引起一系列病理改变。而这一切均受到中枢生物钟网络系统的精密调控。

2.2肠道菌群失调与胰腺生物钟紊乱胰腺生物钟系统主要调控胰液的分泌及胰岛功能。与胰岛功能密切相关首先是糖尿病。近些年来,生物钟紊乱已经被证实与糖尿病的发生发展有关。以往人们以为代谢性疾病只与中枢系统的下丘脑生物钟相关,然而最近有研究表明糖尿病的发生发展也与胰腺生物钟功能受损有关[22]。Pulimeno等[23]应用荧光素标记生物钟基因,荧光显微镜测定荧光时间变化规律,结果发现,BMAL1和CRY1与胰岛素同步,而REV-ERBα、Per3和D元件结合蛋白(D-elementbinding protein,DBP)的表达却呈负相关。Sadacca等[24]研究发现不同鼠系模型的BMAL1基因敲除鼠均表现出一致的胰岛素分泌受损,且胰岛素作用减弱,节律性变化规律消失,补充外源的BMAL1基因可以恢复胰岛素作用[25]。研究亦表明肠道菌群紊乱与糖尿病的发生发展相关。Furet等[26]研究报道,与健康对照组相比,2型糖尿病患者肠道中双歧杆菌整体数量显著减少。Roesch等[27]研究发现,患糖尿病小鼠肠道中乳杆菌属和双歧杆菌属的数量显著低于非糖尿病小鼠。Wirth等[28]研究发现,在使用脲链佐菌素造模的1型糖尿病模型大鼠中,肠道中细菌的数量明显增加,且种类更加多样性,且回肠比结肠更显著。胰岛素治疗后,虽然无法恢复正常的肠道菌群状态,但肠道菌群没有出现组成及多样性的特征重排。该糖尿病模型大鼠肠道菌群失调以变形杆菌类改变为主,因此变形杆菌类已成为诊断和治疗1型糖尿病的潜在焦点,其中克雷伯杆菌已被推荐为1型糖尿病的生物标志物。故而在胰腺生物钟网络及糖尿病的交错影响下,肠道菌群发生不同的失调,失调的菌群进一步影响机体的生理机能,对糖尿病本身和胰腺生物系统造成不良的影响[29-30]。

2.3肠道菌群失调与肝脏生物钟紊乱随着肠道微生态学研究的深入及肠-肝轴概念的提出,肝脏疾病和肠道菌群失调之间的关系引起了人们广泛的重视。许多研究发现,肠道的屏障功能的破坏与乙醇引起机体的病理改变的发生机制相关,尤其是酒精性肝病[31]。生物钟基因BMAL1和CLOCK调控肝酶基因的表达[32],影响乙醇代谢的平衡。乙醇会导致人类肠道细菌过度生长[33]。肠道在代谢乙醇时会产生高浓度的毒性物质乙醛,改变肠上皮细胞渗通透性以及菌群平衡。此外,乙醛还能对肝脏造成直接的伤害。在摄取乙醇达到一定年限的患者中发现,肠道菌群发生了一定的失调,尤其是革兰氏阴性细菌数量上的增多,甚至发生内毒素血症及免疫系统的过度活化[34]。Casafont等[35]研究发现,在酒精性肝硬化患者中,空肠内的厌氧菌及非厌氧菌的数量都显著高于对照组。Liu等[36]利用实时荧光定量PCR分析肝硬化患者的肠道菌群,与健康对照组比较,肠杆菌和肠球菌数量显著增加,肠道抵抗力下降。肝病时发生肠道菌群失调的原因很多,涉及肝脏系统、肠道系统与免疫系统[37]。肝病时肠管蠕动减慢,抗体、溶菌酶分泌减少,肠道pH值改变,细菌大量繁殖。大量繁殖的细菌发生移位,代谢产物及内毒素进入门静脉系统。肝病时免疫功能下降,Kupffer细胞清除细菌及代谢产物能力减弱,随之发生肠源性内毒素血症。与此同时,肠道菌群紊乱也能反过来影响肝脏功能,形成恶性循环[38-39]。肠道菌群失调时,伴随着宿主免疫功能低下与肠黏膜屏障受到破坏,肝病时伴门静脉压力升高致肠道循环系统受阻,肠系膜水肿,黏膜屏障通透性增强,大量生长的细菌从肠黏膜屏障进入肠壁,并移动到肠系膜淋巴结中,并最终进入到肝脏循环系统,直接侵犯肝细胞,肝脏功能受损,进而发生肝脏炎症甚至肝硬化[40-41]。同时细菌及其代谢产物激活机体免疫系统引起异常免疫反应,导致肝细胞坏死或凋亡,加快本身肝脏病变恶化程度,最终影响肝脏生物钟系统,加重生理功能紊乱。

2.4肠道菌群失调与肠道生物钟紊乱肠道生物钟主要受进食规律和昼夜节律影响。肠道的蠕动机械运动、分泌功能及肠道内的细菌寄生等生理机能均具有本身的生物钟节律[42]。当发生肠道疾病时,机体内外界环境改变,肠道生物钟先受到影响,表现最明显的就是发生肠道菌群失调。许多研究发现炎症性肠病(克罗恩病与溃疡性结肠炎)、肠应激综合征及肠道癌症均发生一定程度的肠道菌群失调[43-44]。Minamoto等[45]研究发现,特发性炎性肠病(inflammatory bowel disease,IBD)犬伴有一定的肠道菌群失调,其粪便中γ-变形菌比例增高,梭状芽胞杆菌、丹毒丝菌、拟杆菌等比例降低。Parkes等[46]研究发现,肠易激综合征患者多伴有不同程度的肠道菌群失调,主要表现为双歧杆菌、乳杆菌数量减少,大肠埃希菌、类杆菌、肠杆菌等数量增多,肠道定植抗力明显降低。肠道相关疾病引起肠道菌群失调原因主要与肠道免疫功能、黏膜屏障及肠道物理化学环境改变相关。肠道正常免疫功能的主要来源是黏膜固有层的浆细胞,浆细胞能产生大量免疫球蛋白,对肠道细菌具有抑制作用。分泌型免疫球蛋白A是肠黏膜主要的免疫球蛋白,对黏膜抵抗固有及入侵的病原体有重要作用,亦是阻止肠道细菌移位的重要环节[47]。肠道相关疾病如炎症性肠病等发生时,免疫功能出现障碍,浆细胞分泌型免疫球蛋白A缺乏,肠道细菌因失去抑制而过度繁殖,造成肠道菌群失调。然而,肠道菌群失调也被证实是肠道疾病发生的重要调控机制。许多研究均发现肠道菌群失调能加重炎性肠病及肠应激综合征的严重程度[48],同时益生菌的治疗能改善肠道疾病的发生发展[49-50]。原因归结于肠道菌群失调导致有益菌减少,致病菌增多,肠道黏膜屏障受损,细菌及代谢物移位从而诱发机体异常的免疫反应,产生一系列炎症因子和大量活性物质,并引起免疫功能的进一步失调,引起或加重炎症性肠病[51],同时肠道机械运动减慢,吸收功能减弱,引起腹痛、腹胀、腹泻等临床表现,最终导致肠应激综合征。

3结语

尽管生物钟基因参与肠道菌群紊乱的证据越来越多,但目前研究仅限于发现肠道菌群失调与生物钟网络相关的间接联系,而且对具体的机制尚不清楚。如中枢生物钟网络系统与外周生物钟网络系统是如何相互作用的,各种生物钟信号如何在各大外周器官集中、传导并影响下游一系列的生理反应,并最终导致肠道菌群失调等等环节都有待进一步探讨。笔者认为后续研究可以着力于探索生物钟与肠道菌群失调的关联以及所带来的免疫、内分泌、代谢的改变,为以后防治肠道菌群失调和生物钟紊乱提供可靠的科学依据。

[1]黄秀艳,曾耀英.肠道微生物群的病理生理学进展[J].中国病理生理杂志,2014,30(6):1127-1135.

[2]Bringiotti R,Ierardi E,Lovero R,et al.Intestinalmicrobiota:the explosive mixture at the origin of inflammatory bowel disease?[J].World JGastrointest Pathophysiol,2014,5(4):550-559.

[3]Chan MC,Spieth PM,Quinn K,et al.Circadian rhythms:from basic of the intensive care unit[J].Crit Care Med,2012,40(1):246-253.

[4]Logan RW,Sarkar DK.Circadian nature of immune function[J].Mol Cell Endocrinol,2012,349(1):82-90.

[5]Rosenwasser AM.Functional neuroanatomy of sleep and circadian rhythms[J].Brain Res Rev,2009,61(2): 281-306.

[6]Lucas RJ,Freedman MS,Lupi D,et al.Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degeneratemice[J].Behav Brain Res,2001,125(1-2):97-102.

[7]Golombek DA,Rosenstein RE.Physiology of circadian entrainment[J].Physiol Rev,2010,90(3):1063-1102.

[8]Albrecht U,Oster H.The circadian clock and behavior[J].Behav Brain Res,2001,125(1-2):89-91.

[9]Vieira E,Burris TP,Quesada I.Clock genes,pancreatic function,and diabetes[J].Trends Mol Med,2014,20 (12):685-693.

[10]Panda S,Antoch MP,Miller BH,et al.Coordinated transcription of key pathways in the mouse by the circadian clock[J].Cell,2002,109(3):307-320.

[11]Lowrey PL,Takahashi JS.Genetics of circadian rhythms in mammalian model organisms[J].Adv Genet,2011,74:175-230.

[12]Akhtar RA,Reddy AB,Maywood ES,et al.Circadian cycling of the mouse liver transcriptome,as revealed by cDNA microarray,is driven by the suprachiasmatic nucleus[J].Curr Biol,2002,12(7):540-550.

[13]Farhadi A,Banan A,Fields J,et al.Intestinal barrier: an interface between health and disease[J].JGastroenterol Hepatol,2003,18(5):479-497.

[14]Suzuki T.Regulation of intestinal epithelial permeability by tight junctions[J].Cell Mol Life Sci,2013,70(4):631-659.

[15]Summa KC,Voigt RM,Forsyth CB,et al.Disruption of the circadian clock inmice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation[J].PLoSOne,2013,8(6):e67102.

[16]Kyoko OO,Kono H,Ishimaru K,et al.Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in themouse large intestine:implications in intestinal permeability and susceptibility to colitis[J].PLoSOne,2014,9(5):e98016.

[17]Arjona A,Sarkar DK.The circadian gene mPer2 regulates the daily rhythm of IFN-gamma[J].J Interferon Cytokine Res,2006,26(9):645-649.

[18]Liu J,Malkani G,Shi X,et al.The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock[J].Infect Immun,2006,74(8):4750-4756.

[19]Kondratov RV,Kondratova AA,Gorbacheva VY,et al.Early aging and age-related pathologies inmice deficient in BMAL1,the core component of the circadian clock[J].Genes Dev,2006,20(14):1868-1873.

[20]Hashiramoto A,Yamane T,Tsumiyama K,et al.Mammalian clock gene cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha[J].J Immunol,2010,184(3):1560-1565.

[21]KellerM,Mazuch J,Abraham U,etal.A circadian clock in macrophages controls inflammatory immune responses[J].Proc Natl Acad Sci U SA,2009,106(50):21407-21412.

[22]Marcheva B,Ramsey KM,Buhr ED,et al.Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J].Nature,2010,466 (7306):627-631.

[23]Pulimeno P,Mannic T,Sage D,et al.Autonomous and self-sustained circadian oscillators displayed in human islet cells[J].Diabetologia,2013,56(3):497-507.

[24]Sadacca LA,Lamia KA,Delemos AS,et al.An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis inmice[J].Diabetologia,2011,54(1):120-124.

[25]Shi SQ,Ansari TS,Mcguinness OP,et al.Circadian disruption leads to insulin resistance and obesity[J].Curr Biol,2013,23(5):372-381.

[26]Furet JP,Kong LC,Tap J,et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss:links with metabolic and low-grade inflammationmarkers[J].Diabetes,2010,59(12):3049-3057.

[27]Roesch LF,Lorca GL,Casella G,et al.Culture-independent identification of gut bacteria correlated with the onsetof diabetes in a ratmodel[J].Isme J,2009,3(5): 536-548.

[28]Wirth R,Bodi N,MarotiG,et al.Regionally distinct alterations in the composition of the gut microbiota in rats with streptozotocin-induced diabetes[J].PLoS One,2014,9(12):e110440.

[29]Han J,Lin H.Intestinalmicrobiota and type 2 diabetes: from mechanism insights to therapeutic perspective[J].World JGastroenterol,2014,20(47):17737-17745.

[30]Allin KH,Nielsen T,Pedersen O.Mechanisms in endocrinology:gutmicrobiota in patients with type 2 diabetes mellitus[J].Eur J Endocrinol,2015,172(4):R167-R177.

[31]Purohit V,Bode JC,Bode C,et al.Alcohol,intestinal bacterial growth,intestinal permeability to endotoxin,and medical consequences:summary of a symposium[J].Alcohol,2008,42(5):349-361.

[32]Marcheva B,Ramsey KM,Affinati A,et al.Clock genes and metabolic disease[J].JAppl Physiol(1985),2009,107(5):1638-1646.

[33]Bode C,Bode JC.Effectof alcohol consumption on the gut[J].Best Pract Res Clin Gastroenterol,2003,17(4): 575-592.

[34]Malaguarnera G,Giordano M,NunnariG,et al.Gutmicrobiota in alcoholic liver disease:Pathogenetic role and therapeutic perspectives[J].World JGastroenterol,2014,20(44):16639-16648.

[35]Casafont MF,de Las HC G,Martin RL,et al.Small bowel bacterial overgrowth in patients with alcoholic cirrhosis[J].Dig Dis Sci,1996,41(3):552-556.

[36]Liu J,Wu D,Ahmed A,etal.Comparison of the gutmicrobe profiles and numbers between patientswith liver cirrhosis and healthy individuals[J].Curr Microbiol,2012,65(1):7-13.

[37]Ma HD,Wang YH,Chang C,etal.The intestinalmicrobiota andmicroenvironment in liver[J].Autoimmun Rev,2015,14(3):183-191.

[38]Chen P,Starkel P,Turner JR,et al.Dysbiosis-induced intestinal inflammation activates TNFRIand mediates alcoholic liver disease in mice[J].Hepatology,2015,61 (3):883-894.

[39]Schnabl B,Brenner DA.Interactions between the intestinalmicrobiome and liver diseases[J].Gastroenterology,2014,146(6):1513-1524.

[40]Gomez-Hurtado I,Such J,Sanz Y,et al.Gutmicrobiotarelated complications in cirrhosis[J].World JGastroenterol,2014,20(42):15624-15631.

[41]Chen P,Schnabl B.Host-microbiome interactions in alcoholic liver disease[J].Gut Liver,2014,8(3):237-241.

[42]Liang X,Bushman FD,Fitzgerald GA.Time in motion:the molecular clock meets the microbiome[J].Cell,2014,159(3):469-470.

[43]Satokari R.Contentious host-microbiota relationship in inflammatory bowel disease:can foes become friends again?[J].Scand JGastroenterol,2015,50(1):34-42.

[44]Keku TO,Dulal S,Deveaux A,etal.The gastrointestinal microbiota and colorectal cancer[J].Am J Physiol Gastrointest Liver Physiol,2015,308(5):G351-G363.

[45]Minamoto Y,OtoniCC,Steelman SM,etal.Alteration of the fecalmicrobiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease[J].Gut Microbes,2015,6(1):33-47.

[46]Parkes GC,Sanderson JD,Whelan K.Treating irritable bowel syndrome with probiotics:the evidence[J].Proc Nutr Soc,2010,69(2):187-194.

[47]Barman M,Unold D,Shifley K,et al.Enteric salmonellosis disrupts themicrobial ecology of themurine gastrointestinal tract[J].Infect Immun,2008,76(3):907-915.

[48]Privalov MA,Sizenko AK.Fecal microbiota transplantation in treatment of inflammatory bowel diseases[J].Lik Sprava,2014,(11):15-21.

[49]Ghouri YA,Richards DM,Rahimi EF,et al.Systematic review of randomized controlled trials of probiotics,prebiotics,and synbiotics in inflammatory bowel disease[J].Clin Exp Gastroenterol,2014,7:473-487.

[50]An D,Oh SF,Olszak T,etal.Sphingolids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells[J].Cell,2014,156(1-2):123-133.

[51]Matsuoka K,Kanai T.The gutmicrobiota and inflammatory bowel disease[J].Semin Immunopathol,2015,37 (1):47-55.

Relationship between intestinal dysbacteriosis and circadian clock disturbance

HUANGWen-ya,LU Fu-er,DONG Hui
(Institute of Integrated Traditional Chinese&Western Medicine,Tongji Hospital,TongjiMedical College,Huazhong University of Science&Technology,Wuhan 430030,China.E-mail:tjhdonghui@163.com)

R574.4;R363[文献标志码]A

10.3969/j.issn.1000-4718.2015.05.033

1000-4718(2015)05-0950-06

2015-01-31[修回日期]2015-03-31

国家自然科学基金资助项目(No.81373871;No.81473637)

Tel:027-83663660;E-mail:tjhdonghui@163.com

猜你喜欢

菌群失调生物钟屏障
周末“补觉”是一个谎言
咬紧百日攻坚 筑牢安全屏障
屏障修护TOP10
肠道菌群失调通过促进炎性反应影响颈动脉粥样硬化的形成
一道屏障
维护网络安全 筑牢网络强省屏障
打乱生物钟会让人变丑
智能生物钟
宫颈高危HPV持续感染与阴道微生态相关性研究进展
神通广大的生物钟