APP下载

牡丹花化学成分研究

2015-02-10闫慧娇耿岩玲王岱杰刘建华

天然产物研究与开发 2015年12期
关键词:牡丹花二氯甲烷芍药

闫慧娇,赵 伟,耿岩玲,王岱杰,刘建华,王 晓*

1山东省中药质量控制技术重点实验室(筹)山东省分析测试中心;2 山东师范大学生命科学学院,济南 250014

牡丹(Paeonia suffruticosaAndr.)属毛茛科芍药属灌木,为中国特有名贵观赏花卉和药用植物。其根皮,又称牡丹皮、丹皮,是一味应用广泛的传统中药,《神农本草经》列为中品,具有清热凉血,活血化瘀之功效,现代研究证明其在临床治疗中可起到止痛,止痉挛,抗凝和抗氧化等作用[1-3]。牡丹花作为特色的天然生物资源和新资源食品,在我国有悠久的药用和食用历史,《四川中药志》载:牡丹花性平、苦、淡,具有调经活血的功能,主治月经不调,痛经。前期研究证明,牡丹花花瓣富含黄酮类化合物[4,5],但系统的化学成分研究报道较少。为了进一步利用牡丹花资源,我们对牡丹花的化学成分进行了系统的分离,从中的到7 个单萜糖苷类化合物,分别为吡啶芍药苷(1)、paeodanin B(2)、芍药新苷(3)、乙酰芍药苷(4)、芍药苷(5)、苯甲酰芍药苷(6)和氧化芍药苷(7),及2 个酚酸类化合物,分别为没食子酸(8)和没食子酸甲酯(9)。化合物1~7 均首次从牡丹花中分离得到,这是第一次从牡丹花瓣中分离得到芍药苷单萜糖苷类化合物。

1 仪器与材料

Varian INOVA-400 型核磁共振波谱仪(美国Varian 公司,以TMS 为内标);Agilent5973 型质谱仪(美国Agilent 公司);岛津1200 分析型高效液相(日本岛津公司);岛津LC 6AD 制备型高效液相(日本岛津公司,色谱柱为Shim-park RP-C18column,200 ×20 mm)。柱色谱用C18填料(日本YMC 公司);Sephadex LH-20(Amersham Biosciences 公司);柱色谱用硅胶(200~300 目)以及G254硅胶薄层板(青岛海洋化工);乙醇(分析纯,德州恒业化工有限公司);甲醇、二氯甲烷,分析纯(天津市化学试剂厂);甲醇、乙腈(色谱纯,山东禹王试剂有限公司)。

牡丹花采自山东菏泽,经鉴定为毛茛科芍药属植物牡丹(Paeonia suffruticosaAndr.)的花。

2 提取与分离

取干燥后的牡丹花瓣3.0 kg,粉碎后于70%乙醇中60 ℃温浸三次,每次4 h,合并提取液,减压浓缩至无醇味。浸膏分散于水中(1 L)成悬浊液,用乙酸乙酯萃取三次(3 × 1 L),得乙酸乙酯萃取物20 g。乙酸乙酯部分采用硅胶常压柱,以二氯甲烷-甲醇(50∶1~2∶1)梯度洗脱,分段收集,其中二氯甲烷-甲醇(20∶1~10∶1)段经TLC 检测后分为A-C 三个组分。组分A(二氯甲烷-甲醇20∶1 段)经常压反相C-18 柱甲醇-水梯度洗脱(5%到70%甲醇)得5个组分(Fr.A1-A5)。Fr.A1(10%甲醇洗脱部位)经过制备液相得到化合物9(5.0 mg),Fr.A3(50%甲醇洗脱部位)经过制备液相得到化合物3(7.0 mg)和4(6.0 mg),Fr.A5(70%甲醇洗脱部位)经过制备液相得到化合物6(32.0 mg)。组分B(二氯甲烷:甲醇15∶1 段)经常压反相C-18 柱甲醇-水梯度洗脱(5%到70%甲醇)分为5 个组分(Fr.B1-B5)。Fr.B2(30% 甲醇洗脱部位)经过Sephadex LH-20(甲醇)得化合物5(60.0 mg),Fr.B3(50%甲醇洗脱部位)经过制备液相得化合物2(8.0 mg)。组分C(二氯甲烷∶甲醇10∶1 段)经常压反相C-18 柱甲醇-水梯度洗脱(5% 到70% 甲醇)得到3 个组分(Fr.C1-C3)。Fr.C1(10% 甲醇洗脱部位)经过Sephadex LH-20(甲醇)得化合物8(21.0 mg),Fr.C2 经过Sephadex LH-20(甲醇),后经制备液相得化合物1(4.0 mg)和化合物7(14.0 mg)。

3 结构鉴定

化合物1 白色粉末(甲醇),ESI-MSm/z:482[M+H]+;1H NMR (DMSO,400MHz):δH2.05(1H,d,J=12.0 Hz,H-3a),1.65 (1H,d,J=12.0 Hz,H-3b),2.47 (1H,d,J=6.4 Hz,H-5),2.37(1H,dd,J=10.6,6.8 Hz,H-7a),1.82 (1H,d,J=10.6 Hz,H-7b),4.66 (2H,d,J=15.6 Hz,H-8),5.35 (1H,s,H-9),1.24 (3H,s,H-10),4.37 (1H,d,J=7.7 Hz,H-1'),2.97 (1H,m,H-2'),2.98(1H,m,H-4'),3.07 (2H,m,H-3',5'),3.65 (1H,m,H-6'a),3.35 (1H,m,H-6'b),9.12 (1H,d,J=1.5 Hz,H-2''),8.31 (1H,dt,J=7.9,1.8 Hz,H-4''),7.60 (1H,dd,J=7.9,4.8 Hz,H-5''),8.84(1H,dd,J=4.8,1.5 Hz,H-6'');13C NMR (DMSO,100MHz):δC88.0 (C-1),85.4 (C-2),44.0 (C-3),105.2 (C-4),42.7 (C-5),70.7 (C-6),22.4 (C-7),61.4 (C-8),100.4 (C-9),19.6 (C-10),99.1(C-1'),73.9 (C-2'),77.4 (C-3'),70.3 (C-4'),77.4 (C-5'),61.7 (C-6'),154.2 (C-2''),126.1(C-3''),137.4 (C-4''),124.4 (C-5''),150.6 (C-6''),165.1 (C-7'')。以上数据与文献[6]报道对照基本一致,故鉴定化合物为吡啶芍药苷。

化合物2 白色粉末(甲醇),ESI-MSm/z:495[M+H]+;1H NMR (DMSO,400 MHz):δH2.89(1H,d,J=18.0 Hz,H-3a),2.34 (1H,d,J=18.0 Hz,H-3b),3.04 (1H,m,H-5),3.00 (1H,m,H-7a),2.10 (1H,d,J=10.6 Hz,H-7b),4.68 (2H,m,H-8),5.02 (1H,s,H-9),1.33 (3H,s,H-10),4.45 (1H,d,J=8.0 Hz,H-1'),3.66 (1H,d,J=11.0 Hz,H-6'a),3.08-3.46 (5H,m,H-2'-6'b),7.96(2H,d,J=7.5 Hz,H-2'',6''),7.55 (2H,t,J=7.5 Hz,H-3'',5''),7.68 (1H,t,J=7.0 Hz,H-4''),3.20 (3H,s,9-OMe);13C NMR (DMSO,100 MHz):δC87.2 (C-1),86.3 (C-2),48.9 (C-3),205.7 (C-4),47.0 (C-5),63.2(C-6),26.3 (C-7),63.2 (C-8),106.3 (C-9),20.6 (C-10),98.9 (C-1'),73.9(C-2'),77.5 (C-3'),70.7 (C-4'),77.3 (C-5'),61.7 (C-6'),130.1 (C-1''),129.7 (C-2'',6''),129.3 (C-3'',C-5''),133.9 (C-4''),166.2 (C-7'')。以上波谱数据与文献[7]对照基本一致,故鉴定为paeodanin B。

化合物3 白色粉末(甲醇),ESI-MSm/z:463[M+H]+;1H NMR (DMSO,400MHz):δH2.77(1H,m,H-3a),2.45 (1H,d,J=18.0 Hz,H-3b),2.78 (1H,m,H-5),2.38 (1H,t,J=13.0 Hz,H-7a),2.08 (1H,d,J=13.0,4.0 Hz,H-7b),4.71(2H,s,H-8),4.84 (1H,s,H-9),1.40 (3H,s,H-10),4.49 (1H,d,J=7.6 Hz,H-1'),3.14 (3H,s,H-3',4',5'),3.63 (1H,d,J=10.2 Hz,H-6'a),3.43 (1H,d,J=10.2 Hz,H-6'b),7.99 (2H,d,J=8.0 Hz,H-2'',6''),7.56 (2H,t,J=7.2 Hz,H-3'',5''),7.68 (1H,t,J=7.2 Hz,H-4'');13C NMR(DMSO,100 MHz):δC85.2 (C-1),102.8 (C-2),44.6 (C-3),217.1 (C-4),37.4 (C-5),55.4 (C-6),30.6 (C-7),62.7 (C-8),80.0 (C-9),16.5 (C-10),95.2 (C-1'),75.4 (C-2'),79.5 (C-3'),70.6(C-4'),73.2 (C-5'),61.2 (C-6'),129.7 (C-1''),129.7 (C-2'',6''),129.4 (C-3'',C-5''),134.1 (C-4''),166.0 (C-7'')。以上数据与文献[8]报道对照基本一致,故鉴定化合物为芍药新苷。

化合物4 白色粉末(甲醇),ESI-MSm/z:523[M+H]+;1H NMR (DMSO,400MHz):δH1.95(1H,d,J=12.5 Hz,H-3a),1.67 (1H,d,J=12.5 Hz,H-3b),2.44 (1H,d,J=6.0 Hz,H-5),2.41(1H,m,H-7a),1.70 (1H,d,J=10.6 Hz,H-7b),4.63 (2H,d,J=12.0 Hz,H-8),5.34 (1H,s,H-9),1.20 (3H,s,H-10),4.42 (1H,d,J=7.4 Hz,H-1'),4.28 (1H,d,J=10.5 Hz,H-6'a),4.02 (1H,dd,J=10.5,7.5 Hz,H-6'b),2.95-3.18 (5H,m,H-2'-5'),7.99 (2H,d,J=7.5 Hz,H-2'',6''),7.56(2H,t,J=7.0 Hz,H-3'',5''),7.68 (1H,t,J=7.5 Hz,H-4''),2.01 (3H,s,H-COCH3);13C NMR (DMSO,100MHz):δC88.1 (C-1),85.2 (C-2),44.1 (C-3),105.1 (C-4),42.7 (C-5),70.7 (C-6),22.3(C-7),60.8 (C-8),100.5 (C-9),19.4 (C-10),99.0 (C-1'),74.0 (C-2'),77.0 (C-3'),70.3 (C-4'),73.8 (C-5'),64.0 (C-6'),130.1 (C-1''),129.7 (C-2'',6''),129.2 (C-3'',C-5''),133.9 (C-4''),166.2 (C-7''),170.6 (COCH3),21.1(COCH3)。以上数据与文献[9]报道对照基本一致,故鉴定化合物为乙酰芍药苷。

化合物5 白色粉末(甲醇),ESI-MSm/z:481[M+H]+;1H NMR (DMSO,400MHz):δH2.05(1H,d,J=12.0 Hz,H-3a),1.66 (1H,d,J=12.0 Hz,H-3b),2.45 (1H,d,J=6.0 Hz,H-5),2.38(1H,dd,J=10.6,6.5 Hz,H-7a),1.82 (1H,d,J=10.6 Hz,H-7b),4.65 (2H,d,J=12.4 Hz,H-8),5.33 (1H,s,H-9),1.25 (3H,s,H-10),4.39 (1H,d,J=6.4 Hz,H-1'),3.66 (1H,m,H-6'a),3.18-3.45 (5H,m,H-2'-6'b),7.99 (2H,d,J=8.0 Hz,H-2'',6''),7.55 (2H,t,J=7.2 Hz,H-3'',5''),7.67 (1H,t,J=6.8 Hz,H-4'');13C NMR (DMSO,100 MHz):δC87.5 (C-1),85.0 (C-2),43.6 (C-3),104.8 (C-4),42.3 (C-5),70.3 (C-6),22.0 (C-7),60.5 (C-8),100.1 (C-9),19.1 (C-10),98.6(C-1'),74.5 (C-2'),76.9 (C-3'),70.0 (C-4'),76.9 (C-5'),61.2 (C-6'),129.7 (C-1''),129.3(C-2'',6''),128.8 (C-3'',C-5''),133.5 (C-4''),165.8 (C-7'')。以上数据与文献[10]报道对照基本一致,故鉴定化合物为芍药苷。

化合物6 白色粉末(甲醇),ESI-MSm/z:585[M+H]+;1H NMR (DMSO,400 MHz):δH1.70(1H,d,J=12.5 Hz,H-3a),1.56 (1H,m,H-3b),2.39 (1H,m,H-5),2.39 (1H,m,H-7a),1.56 (1H,m,H-7b),4.62 (2H,d,J=9.0 Hz,H-8),5.31(1H,s,H-9),1.14 (3H,s,H-10),4.47 (1H,d,J=7.5 Hz,H-1'),3.50 (1H,t,J=8.0 Hz,H-6'a),3.00-3.25 (6H,m,H-2'-6'b),7.98 (4H,d,J=7.2 Hz,H-2'',6'',2''',6'''),7.56 (2H,d,J=8.0 Hz,H-3'',5''),7.51 (2H,d,J=8.0 Hz,H-3''',5'''),7.66 (2H,m,H-4'',4''');13C NMR (DMSO,100 MHz):δC88.1 (C-1),85.2 (C-2),43.9 (C-3),105.0 (C-4),42.6 (C-5),70.2 (C-6),22.0 (C-7),60.8 (C-8),100.4 (C-9),19.4 (C-10),99.0(C-1'),74.0 (C-2'),77.0 (C-3'),70.2 (C-4'),73.8 (C-5'),64.7 (C-6'),130.2 (C-1''),129.7(C-2'',6''),129.2 (C-3'',C-5''),133.9 (C-4''),166.2 (C-7''),130.1 (C-1'''),129.5 (C-2''',6'''),129.2 (C-3''',C-5'''),133.9 (C-4'''),165.9(C-7''')。以上数据与文献[11]报道对照基本一致,故鉴定化合物为苯甲酰芍药苷。

化合物7 白色粉末(甲醇),ESI-MSm/z:497[M+H]+;1H NMR (DMSO,400 MHz):δH2.04(1H,d,J=12.0 Hz,H-3a),1.64 (1H,d,J=12.5 Hz,H-3b),2.42 (1H,d,J=4.0 Hz,H-5),2.35(1H,m,H-7a),1.80 (1H,d,J=10.4 Hz,H-7b),4.58 (2H,s,H-8),5.29 (1H,s,H-9),1.24 (3H,s,H-10),4.39 (1H,d,J=8.0 Hz,H-1'),3.66 (1H,d,J=11.5 Hz,H-6'a),2.95-3.17 (6H,m,H-2'-6'b),7.84 (2H,d,J=8.0 Hz,H-2'',6''),6.87 (2H,d,J=8.0 Hz,H-3'',5'');13C NMR (DMSO,100 MHz):δC87.9 (C-1),85.4 (C-2),44.1 (C-3),105.2 (C-4),42.8 (C-5),70.7 (C-6),22.5 (C-7),60.2 (C-8),100.6 (C-9),19.6 (C-10),99.1(C-1'),74.0 (C-2'),77.4 (C-3'),70.5 (C-4'),77.4 (C-5'),61.7 (C-6'),120.6 (C-1''),132.0(C-2'',6''),115.8 (C-3'',C-5''),162.7(C-4''),166.1(C-7'')。以上数据与文献[12]报道对照基本一致,故鉴定化合物为氧化芍药苷。

化合物8 白色粉末(甲醇),ESI-MSm/z:171[M+H]+;1H NMR (DMSO,400 MHz):δH6.92(2H,s,H-2,6),9.31 (3H,brs,OH);13C NMR (DMSO,100 MHz):δC121.2 (C-1),109.2 (C-2),145.9(C-3),138.4 (C-4),145.9 (C-5),109.2 (C-6),168.1 (C-7)。以上数据与文献[13]报道对照基本一致,故鉴定化合物为没食子酸。

化合物9 白色粉末(甲醇),ESI-MSm/z:185[M+H]+.1H NMR (DMSO,400 MHz):δH6.96(2H,s,H-2,6),3.76 (3H,s,Me),9.18 (3H,brs,OH);13C NMR (DMSO,100 MHz):δC119.8 (C-1),109.0 (C-2),146.1 (C-3),138.9 (C-4),146.1 (C-5),109.0 (C-6),166.8 (C-7)。以上数据与文献[14]报道对照基本一致,故鉴定化合物为没食子酸甲酯。

4 结果与讨论

芍药属植物含有丰富的芍药苷类单萜化合物。在传统的牡丹产业中,大量的牡丹花被丢弃在田间地头,造成巨大的资源浪费。牡丹根皮是一味应用广泛的珍贵药材,作为丹皮中的主要成分之一,芍药苷类化合物在丹皮的药理活性中发挥很大的作用。一直以来,牡丹花的研究都集中在黄酮类化合物的提取和分离上,我们的研究证明,牡丹花中除了含有黄酮类之外,同样含有丰富的芍药苷单萜糖苷类化合物,或为解释牡丹花生物活性物质基础及牡丹花资源开发和高值化利用提供参考。

1 Tatsumi S,Mabuchi T,Abe T,et al.Analgesic effect of extracts of Chinese medicinal herbs moutan cortex and coicis semen on neuropathic pain in mice.Neurosci Lett,2004,370:130-134.

2 Lin HC,Ding HY,Ko FN,et al.Aggregation inhibitory activity of minor acetophenones from Paeoniaspecies.Planta Med,1999,65:595-599.

3 Yoshikawa M,Ohta T,Kawaguchi A,et al.Bioactive constituents of Chinese natural medicines.V.Radicalscavenging effect of moutan cortex.(1):absolute stereostructures of two monoterpenes,paeonisuffone and paeonisuffal.Chem Pharm Bull,2000,48:1327-1331.

4 Wang X,Cheng C,Sun Q,et al.Isolation and identification of four flavonoid constituents from the flowers ofPaeonia Suffruticosaby high-speed counter-current chromatography.J Chromatogr A,2005,1075:127-131.

5 Fan JL,Zhu WX,Kang HB,et al.Flavonoid constituents and antioxidant capacity in flowers of different Zhongyuan tree pennycultivars.J Funct Foods,2012:147-157.

6 He HN,Zhang YC,Peng Y,et al.Monoterpene glycosides from the seeds ofPaeonia suffruticosaprotect HEK 293 cells from irradiation-induced DNA damage.Phytochemistry Lett,2012,5:128-133.

7 Ding LQ,Zhao F,Chen LX,et al.New monoterpeneglycosides fromPaeonia suffruticosaAndrews and theirinhibition on NO production in LPS-induced RAW 264.7cells.Bioorg Med Chem Lett,2012,22:7243-7247.

8 Lang HY,Li SZ,Wang HB,et al.The structure of lactiflorin,an artefact during isolation.Tetrahedron,1990,46:3123-3128.

9 Zhang XY (张晓燕).A study on the chemical constituents ofPaeonia LactifloraPall.Shenyang:Shenyang Pharmaceutical University (沈阳药科大学),MSc.2001.

10 Wang Q (王巧),Guo HZ (郭洪祝),Huo CH (霍长虹),et al.Chemical constituents in root ofPaeonia lactiflora.Chin Tradit Herb Drugs(中草药),2007,38:972-976.

11 Wu SH (吴少华),Chen YW (陈有为),Yang LY (杨丽源),et al.Chemical constituents ofPaeonia veitchii.Chin Tradit Herb Drugs(中草药),2008,39:13-15.

12 Wang WX (王文祥),Jiang XG (蒋小岗),Gu M (顾明),et al.Study on the chemical constituents fromPaeonia Lactiflora.Nat Prod Res Dev(天然产物研究与开发),2000,12:37-38.

13 Sadtler R Lab.Sadtler Standard NMR Spectra.Philadelphia:SadtlerRLabInc,1971,10229.

14 Qi SH (漆淑华),Guo JW (郭建伟),Wu DG (吴大刚),et al.Study on the chemical constituents ofOstodes paniculata.Nat Prod Res Dev(天然产物研究与开发),2004,16:210-212.

猜你喜欢

牡丹花二氯甲烷芍药
芍药鲜切花 美景变“钱”景
超重力过程强化在废弃二氯甲烷回收精制中的应用*
陆抑非《芍药》
牡丹花有多少株
核磁共振波谱法测定废水中二氯甲烷的含量
美丽芍药化学成分的研究
牡丹花的启示
“诗约春天”之“牡丹花开”朗诵音乐会
气相色谱—质谱联用法测定塑料以及塑料制品中多环芳香烃的研究
二氯甲烷/石蜡油回收装置技术方案优化