APP下载

地铁车辆合成闸瓦的研制及制动性能1∶1台架试验*

2015-01-15文国富尹彩流王秀飞

关键词:制动闸闸瓦摩擦系数

文国富,尹彩流,王秀飞,蓝 奇

(广西民族大学 摩擦材料研究所,广西 南宁 530006)

为满足经济发展与交通运输的城际化需求,地铁和轻轨车辆不断增加,运营速度也不断提高,而车辆的制动动能与车速呈平方关系,随着车辆速度的提高,其动能不断增加,制动非常频繁,所以对车辆的制动装置及其制动闸瓦的摩擦磨损性能提出了更苛刻要求[1].

地铁闸瓦的制动性能直接影响地铁车辆运营的安全,目前存在的主要问题有裂纹、金属镶嵌、湿态摩擦系数不稳定等问题[2-4],传统的普通型合成闸瓦制动材料已很难满足制动要求.早在2001年任翠纯工程师[5]研制地铁车辆制动闸瓦取代进口并在广州地铁一号线上试装,取得较好效果.日本的狄野智久[6]通过在合成闸瓦中插入铸铁块增大车轮与钢轨间的黏着系数改善了闸瓦的耐热性能和雨雪天气下摩擦系数下降的问题.宋大伟等[7]采用干法生产工艺研制国产合成闸瓦并在南京地铁1号装车试用并取得良好效果.然后,从目前的参考文献资料来看,我国目前应用于城市轨道车辆的制动闸瓦依靠进口较多,性能指标和实际应用效果和国外发达国家相比还是有很大差距.国内的摩擦材料研究人员和相关生产企业,急需自主生产出性价比高的城市轨道列车制动闸瓦,以满足国内需求.

为满足地铁车辆制动要求,本文研究了一种新的地铁闸瓦材料,并对制备的地铁制动合成闸瓦进行制动性能1∶1台架试验,通过对试验结果进行分析,探索其各种因素对地铁闸瓦制动性能影响,为闸瓦制动性能的最优化提供依据,具有现实意义和经济价值.

1 合成闸瓦的制备

1.1 原材料及配方

黏合剂:采用腰果壳油改性的酚醛树脂作为黏合剂,并加入丁腈橡胶进行软化处理,达到合成闸瓦所需要的硬度值,固化剂为六次甲基四胺.

增强纤维:使用具有高强、耐热性纤维包括碳纤维、钢纤维和海泡石纤维作为增强体,这些纤维之间的耦合作用使摩擦材料具有一定的强度和韧性,在承受热冲击、剪切、拉伸、压缩等作用下不至于出现裂纹,断裂,崩缺等机械损伤.

填料:填料的主要作用是摩擦材料的摩擦磨损性能进行多方面的调节使材料能够更好地满足各种工况条件下的制动要求.不同填料来调节摩擦材料的硬度、密度、结构密实度、制品外观,以及改善制动噪声等性能.本研究中使用的填料有:氧化铁粉,鳞片石墨,铬铁矿粉,沉淀硫酸钡,钾长石粉,有机摩擦粉.地铁合成闸瓦原材料配方如表1所示.

表1 合成闸瓦原材料配方(wt.%)Tab.1 Raw materials recipe of composite brake shoe(wt.%)

1.2 制造工艺

干法生产工艺是应用最广泛的摩擦材料生产工艺形式.在干法工艺中黏合剂和填料均为粉末,将按比例配好的原材料投加到混料机中,进行充分搅拌.达到均匀混合后,将物料放出,得到粉状的混合物料;采用预成形工艺制成冷坯后再进行热压成形,制成所需形状、尺寸和性能的摩擦材料.本研究冷压成形压力为22±2MPa,热压成形压力为22±2MPa,压制温度为160±10℃,保温时间为30±3min,固化热处理温度为180±50℃,保温时间为4±0.5h.地铁合成闸瓦的工艺流程如图1所示.

图1 地铁车辆合成闸瓦的工艺流程图Fig.1Process flow diagram of composite brake shoe for metro

1.3 性能测试

对制造完成的地铁车辆合成闸瓦进行物理和机械性能测试.密度试验方法按GB/T 1033-2008规定进行测试,样品尺寸为10mm×10mm×10mm;洛氏硬度试验方法按洛氏硬度GB/T 3398.2-2008规定进行,样品尺寸为50mm×50mm×25mm;冲击强度试验方法按GB/T1043.1-2008规定进行,样品尺寸为(120±1)mm×(15±0.2)mm×(10±0.2)mm;压缩强度和压缩模量按GB/T 1041-2008规定进行测试,样品尺寸均为(10.4±0.2)mm×(10.4±0.2)mm×(20±0.5)mm.吸水性和吸油性试验按GB/T 1034-1998规定进行,样品尺寸为40mm×40mm×10mm.

制动性能测试采用1∶1制动动力试验台进行,测试中模拟的轴重为14.0T,湿度68%,车轮直径840mm.磨合试验以制动初速度80km/h,闸瓦压力28KN,初始温度小于50℃,连续进行10次磨合试验后,观察磨合面积,使磨合面大于85%.停车制动试验:闸瓦制动压力为35.0kN,进行单次制动停车试验,依次记录制动距离及时间,瞬时摩擦系数,车轮踏面温度,平均摩擦系数.试验时制动初速度顺序如下:80km/h、60km/h、40km/h、20km/h、20km/h、40km/h、60km/h、80km/h.试验前后分别对闸瓦称重,两者的差值即为磨耗量.静摩擦系数试验:闸瓦压力5±0.2KN,闸瓦压紧车轮后,对车轮施加转矩直至车轮转动,记录车轮开始转动瞬间的摩擦系数作为静摩擦系数.

2 试验结果与分析

2.1 物理、力学性能试验

根据1.3中的测试要求对地铁合成闸瓦进行物理、力学性能分析,如表2所示.从表2中可以看出,所制造的地铁合成闸瓦的各项物理和力学性能指标到达了TB/T 2403-2010的要求.

表2 合成闸瓦的理化性能Tab.2 Physics and chemistry properties of composite brake shoe

2.2 台架制动试验结果

为了考察所研制合成闸瓦的制动摩擦磨损性能,结合地铁车辆的实际运营条件,干态和湿态下制动试验在中铁隆昌铁路器材有限公司1∶1制动动力试验台进行测试,得到不同制动初速度下的实际制动距离、实际制动时间、踏面最高温度和停车制动磨耗量等数据.由表3可知,在干态条件下所研制的合成闸瓦在80km·h-1速度下的最大实际制动距离、最长实际制动时间和以及面最高温度分别为161.9m、15.4s和118℃,平均摩擦系数为0.294~0.303,试验结束后测得停车制动磨耗量0.73cm3/MJ,完全满足80km·h-1速度下紧急制动距离小于248m、车轮踏面最高温度小于390℃、重车制动的磨耗量小于1.5cm3/MJ和平均摩擦系数为0.3左右的使用要求[3].在湿态条件下,制动距离为219.3~278.8m,制动时间为19.8~24.8m,平均摩擦系数为0.216~0.280,踏面最高温度为81℃~124℃.

表3 合成闸瓦1∶1制动试验台测试结果Tab.3 Results of composite brake shoe under 1∶1brake bench test

图2为合成闸瓦分别在20km、40km、60km和80km初始制动速度与摩擦系数之间的关系曲线.从图2可以看出,在各种制动速度下,制动过程平稳.

图2 不同制动速度下的摩擦系数—速度曲线Fig.2 Friction coefficient-speed curve of different brake speeds

图3坡道连续制动试验的摩擦系数——时间曲线,试验条件为轴重为14.0t、制动压力为8.0KN和制动平均速度为40km·h-1时,持续时间10min.从图中可以看出,在制动过程中,摩擦系数从0.39减少到0.28,满足规定时间内坡道匀速连续制动摩擦系数≥0.21的要求;制动盘踏面最高温度为250℃,摩擦系数缓慢下降,且从1~10min过程中动摩擦系数较为平稳.

图3 坡道连续制动试验的摩擦系数—时间曲线Fig.3 friction coefficient-time curve of continually gradient brake test

所研制地铁合成闸瓦的静摩擦系数随实验次数变化如图4所示.由图4可知,经过5次试验,静摩擦系数平均值为0.336,满足≥0.25的技术要求,稳定可靠.

图4 合成闸瓦的静摩擦系数Fig.4Static friction coefficient of composite brake shoe

以上数据均能满足地铁车辆用合成闸瓦的技术参数要求.同时,制动过程中无噪音、无振动、火花和难闻气味.试验完成后,经检验车轮表面无金属镶嵌、热斑、热裂纹、异常磨耗等损伤,闸瓦无偏磨、无剥离、无龟裂、掉渣和掉块等现象.合成闸瓦制动试验前后照片如图5(a)和(b)所示.

图5 合成闸瓦制动前后摩擦表面照片 (a)实验前;(b)试验后Fig.5 Surface images of composite brake shoe before(a)and after(b)experiment

3 结论

以腰果壳油改性酚醛树脂和丁腈橡胶作为黏合剂,碳纤维、钢纤维和海泡石纤维为增强纤维,氧化铁粉、鳞片石墨、铬铁矿、硫酸钡、钾长石、摩擦粉等为填料,经高速混合后,通过冷压和热压成形及固化热处理工艺制备地铁车辆用合成闸瓦完全可行;研制的地铁车辆合成闸瓦具有冲击强度高、韧性好、压缩强度和压缩模量适中、吸水率低、吸油率低等性能特征;经1∶1台架试验证明:在车辆制动过程中,具有摩擦性能稳定,且磨损率低等优点,完全能够满足地铁车辆制动的使用要求.

[1]吴磊,温泽峰,金学松.轮轨摩擦温升有限元分析[J].铁道学报,2008,30(3):19-25.

[2]李广刚.国产闸瓦在南京地铁的扩大应用[J].现代城市轨道交通,2012,4:18-20.

[3]巫红波,王明娟,吕劲松.广州地铁二号线车辆闸瓦与车轮磨耗异常分析及改进[J].电力机车与城轨车辆,2006,29(5):51-52.

[4]ZHU Zhen-cai,PENG Yu-xing,SHI Zhi-yuan,et al.Three-dimensional Transient Temperature Field of Brake Shoe During Hoist’s Emergency Braking[J].Applied Thermal Engineering,2009,29(5-6):932-937.

[5]任翠纯.地铁车辆制动闸瓦国产化的研制与试验[J].铁道车辆,2001,39(10):5-9.

[6]狄野智久,彭惠民.日本东京地铁车辆用闸瓦的研发[J].国外机车车辆工艺,2011(2):7-10.

[7]宋大伟,韩莎莎,李亚东,等.南京地铁1号线国产闸瓦试验研究[J].城市轨道交通研究,2010(3):38-40.

猜你喜欢

制动闸闸瓦摩擦系数
隧道内水泥混凝土路面微铣刨后摩擦系数衰减规律研究
闸瓦插销虚穿的原因分析及改进方案
动车组PHM系统中制动闸片测量方法的探讨
高速机车盘形制动装置故障分析与处理
说说摩擦系数
《列车牵引计算规程》粉末冶金闸瓦相关参数的研究
大兆瓦风电制动器闸片静动态多目标结构拓扑优化设计
浅析如何降低化工企业内燃机车闸瓦磨耗率
JWB型无极绳绞车溜车问题的防治
考虑变摩擦系数的轮轨系统滑动接触热弹塑性应力分析