APP下载

原子力显微镜在纳米技术相关教学中的应用

2014-10-21刘兰娇

关键词:纳米技术

刘兰娇

[摘要]论文根据原子力显微镜(AFM)的原理,针对纳米技术相关教学课程的基本内容结构和教学目的,探讨了AFM在相关教学中的应用。结合作者的教学实践,列举了AFM在纳米技术相关教学中的运用案例。AFM在纳米技术中的应用教学显示,它不但能促进学生对课程的学习兴趣,同时又能帮助学生加强对抽象概念的理解。实践证明,AFM在纳米技术相关教学课程中起到了非常重要的作用。

[关键词]纳米技术 原子力显微镜(AFM)

[中图分类号]TN [文献识别码]A

纳米技术被誉为21世纪的科学,现已成为世界各国研究的热点领域。它的迅猛发展将在世界范围内引发一场包括生命科学、信息技术、生态环境技术、能源技术在内的几乎覆盖所有工业领域的大革命。

从纳米技术的发展来看,激光干涉纳米光刻技术、纳米加工、纳米测量技术,以及纳米制造等,都有着不可忽视的地位和作用。原子力显微镜(atomic force microscope,简称AFM)是纳米技术研究中最常用也是最基础的一个仪器。它是利用微悬臂感受和放大悬臂上探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率[1]。

随着人们对纳米技术的深入研究以及对AFM的不断开发,使原子力显微镜不仅仅具有检测的功能,还可以实现对样品的“推”、“拉”、“刻划”、“切割”、“搬运”等功能,增大了AFM的使用范围。其优势在于操作过程不受环境影响,既可以在大气环境下工作,也可以在液相下工作。这对人们在生物医学等方面的研究工作,带来了便利。

对于纳米技术的基础教学而言, AFM是学生们感知纳米量级,实现简单操作的最直接的方式之一。因此,本论文针对AFM的特点及纳米技术相关教学的知识点,将AFM工作原理及实际扫描、操作后得到的图片引入到课堂中进行辅助教学,取得了一定的效果,提升了学生们的学习兴趣。

一、AFM原理

AFM是将一个对微弱力极敏感的微悬臂的一端固定住,另一端装有一微小的纳米级针尖。当针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息[2]。也就是说,微悬臂的形变是对样品-针尖相互作用的直接反映。

AFM研究对象可以是有机固体、聚合物以及生物大分子等,其可以在空气或者液体下对样品直接进行成像或操作,分辨率很高。因此,AFM被广泛应用于纳米测量及纳米加工等技术中。

二、AFM教学实例

针对纳米测量所涉及的两个重要领域:纳米长度测量和纳米级的表面轮廓测量。列举了AFM扫描的利用多光束激光干涉光刻制备单晶硅形貌图。

观测者不但可以直接看到被测样品的表面形貌,还可以通过AFM二维图像形成相应的三维像,从而获得样品表面结构的深度,大小以及长度等重要信息参数,如图2所示。

针对纳米操作技术所涉及到的对样品的“推”、“拉”及“刻划”等操作,列举了相关原理图及AFM的扫描图像。

通过AFM对原子的操作及样品形貌的扫描,可以让学生更为直观地了解AFM以及纳米技术的相关概念及原理。同时,清晰的扫描图像可以进一步促进学生对纳米技术相关教学课程内容的理解和认识。

三、结论

通过将AFM原理的介绍以及实验课程的引入,可以将抽象、难以理解的实验问题具体化、形象化。学生可以在使用或者观看AFM的使用过程中加强对纳米技术相关课程的理解,有利于培养学生的学习兴趣、建模能力和实际应用能力。

[参考文献]

[1]http://baike.so.com/doc/5602492.html

[2] 朱杰,孫润广,原子力显微镜的基本原理及其方法学研究[J]. 生命科学仪器,2005

(作者单位:长春理工大学 吉林长春)

猜你喜欢

纳米技术
纳米技术的研究进展
《纳米技术就在我们身边》教学设计
纳米技术在食品科学工程中的应用
纳米技术催生产业革命
纳米材料的特性及其应用
纳米靶向给药系统的研究进展
区域纳米技术应用产业引领探索与研究
纳米技术在水产药物中的应用现状及展望
初探“纳米气孔皮肤”与建筑表皮的一体化设计
纳米技术在食品科学中的应用研究