APP下载

一种新型缓释非蛋白氮添加水平对奶山羊泌乳性能及血液生化指标的影响

2014-09-20张天颖杨地坤

动物营养学报 2014年3期
关键词:奶山羊乳脂产奶量

王 会 罗 军 张 伟 张天颖 杨地坤

(西北农林科技大学动物科技学院,杨凌 712100)

反刍动物饲粮中蛋白质不仅是机体所需氨基酸的重要来源,同时也是瘤胃微生物蛋白合成的重要原料[1]。蛋白质资源不足一直是养殖业面临的重大问题之一,而反刍动物可以利用非蛋白氮(NPN)缓解畜牧业发展与蛋白质资源不足的问题,因此,NPN的开发一直是国际反刍动物营养研究的重要领域[2]。综合经济性、转化效率等因素,到目前为止尿素仍是反刍动物生产中首选的NPN,但是在瘤胃内尿素水解为氨态氮(NH3-N)的速率较瘤胃细菌利用NH3-N的速率快[3-5],容易引起氨中毒,而不能被细菌利用的氮(N)经尿液排出,造成环境污染,限制了其在生产中的推广和应用[6-9]。过去几十年,关于尿素缓(控)释技术的研究日益增多,如物理缓释法、化学缓释法、抑制脲酶法和近年出现的包被尿素法,以期能使尿素在瘤胃内的降解速率与瘤胃细菌利用NH3-N的速率平衡[3]。

奶山羊单产较低是我国奶山羊产业发展的制约因素之一,加强营养,尤其是增加饲粮蛋白质水平可以提高奶山羊产奶量,因此,探讨廉价高效NPN资源的合理利用十分必要。本试验采用的缓释非蛋白氮(slow-release NPN,srNPN)是以尿素、大豆油、柠檬酸和二丁基羟基甲苯混合制成的包被尿素,据前人研究报道,利用该srNPN替代奶牛饲粮中的尿素可以提高奶牛产奶量并降低血液尿素氮(urea nitrogen,UN)含量[9-14],但其对奶山羊泌乳性能的影响研究却鲜有报道。本试验选用西农萨能奶山羊,研究饲粮中添加不同水平srNPN对奶山羊泌乳性能及血液生化指标的影响,旨在筛选出合适的添加水平,为奶山羊科学养殖提供依据。

1 材料与方法

1.1 试验材料

srNPN购自美国Alltech公司,是以尿素、大豆油、柠檬酸和二丁基羟基甲苯混合制成的包被尿素,粗蛋白质(CP)含量为256%。

1.2 试验设计与饲养管理

试验采用单因子完全随机等重复试验设计,选择48头2~3胎、泌乳天数(DIM)(60±4)d、体重(60.00±8.98)kg的健康西农萨能奶山羊,随机分为4组,每组12只。各组饲粮srNPN添加水平分别为0(对照组)、0.25%、0.50%、0.75%。

试验饲粮设计参考NRC(2007)山羊饲养标准,其组成及营养水平见表1。

试验于2013年3月2日开始,2013年6月29日结束,共17周,其中预试期1周,正试期16周,于西北农林科技大学萨能羊原种场进行。试验羊按组分别饲养,所有试验羊日喂2次(07:00和18:00),以体重60.00 kg为标准,干物质(DM)饲喂量为体重的4%,即2.4 kg/d;剩料在每天07:00喂料之前收集称重。试验羊自由饮水、采食和运动。每天06:30和17:30机器挤奶。观察羊群健康状况及采食情况,做好各项记录。

表1 试验饲粮组成及营养水平(风干基础)Table 1 Composition and nutrient levels of experimental diets(air-dry basis) %

试验期间,每天测定采食量和剩料量,计算日均采食量(ADFI)。试验羊每天机器挤奶2次,记录羊产奶量,计算日均产奶量。

每2周采集1次试验饲粮和剩料样品,每次采集0.5 kg,置于-20℃保存待分析。将试验期间采集的全部饲粮样品混匀,在60℃干燥,称重风干样,冷却后粉碎过40目筛,以备 DM、CP、粗脂肪(EE)含量和净能(NE)的测定。饲粮样品于105℃烘干8 h测得DM含量,CP含量使用全自动凯氏定氮仪(Kjeltec 8400,FOSS公司)测定,EE含量使用索氏脂肪提取器测定。

每4周采集1次乳样,每只羊早晚各采集20 mL制成混合样(共40 mL),用全自动乳样分析仪(MilkoScanTMFT-120,FOSS公司)分析乳常规成分。测定项目:乳脂(milk fat)、乳蛋白(milk protein)、乳非脂固形物(milk SNF)及乳糖(lactose)。

试验期内每4周采集1次血样,清晨空腹颈静脉采血每次6 mL/只,置于加有0.6 mL柠檬酸钠抗凝剂的离心管中,在4℃下,4 300 r/min离心10 min,转移上清液于2 mL离心管中,于-80℃冰箱保存待分析。利用MTN-658A半自动生化分析仪测定血液 UN、总蛋白(TP)、总胆固醇(TC)、甘油三酯(TG)含量,所用试剂盒均购自中生北控生物科技股份有限公司,测定方法按照说明书进行。

1.3 统计分析

利用Excel 2010初步整理数据,然后使用SPSS 17.0软件进行单因素方差分析,利用LSD法与Duncan氏法进行多重比较,结果以“平均值±标准误”表示,差异显著水平为P<0.05。

2 结果

2.1 生产性能

由表2可知,各组泌乳羊在整个试验期间ADFI无显著差异(P>0.05)。试验初始(第0周)各组间日均产奶量无显著差异(P>0.05),试验组(0.25%组、0.50%组、0.75%组)日均产奶量在第4、8、12和16周时均显著高于对照组(P<0.05),且0.50%组显著高于0.25%组和0.75%组(P<0.05),0.25%组和0.75%组在试验期间日均产奶量差异不显著(P>0.05)。

表2 rsNPN添加水平对奶山羊生产性能的影响Table 2 Effects of supplemental level of rsNPN on performance of lactating goats kg/d

2.2 乳成分

由表3可知,初始乳脂、乳蛋白、乳糖和乳非脂固形物含量无显著差异(P>0.05)。在第4、8、12和16周时,试验组乳脂含量均显著高于对照组(P<0.05),其中,0.50%组的乳脂含量最高,但与0.25%组和0.75%组差异不显著(P>0.05)。4组奶山羊在各时间点的乳蛋白、乳糖及乳非脂固形物含量差异不显著(P>0.05)。

2.3 血液生化指标

由表4可知,试验初始血液UN、TG、TC和TP含量差异不显著(P>0.05)。在试验期间,试验组血液UN含量显著低于对照组(P<0.05),各试验组间也差异显著(P<0.05),其中,0.50%组最低,显著低于0.25%组和0.75%组(P<0.05)。各组各时间点血液TG、TC及TP含量差异均不显著(P>0.05)。

表3 rsNPN添加水平对奶山羊乳成分的影响Table 3 Effects of supplemental level of rsNPN on milk composition of lactating goats %

3 讨论

3.1 srNPN对采食量的影响

本试验采用的srNPN是以尿素、大豆油、柠檬酸和二丁基羟基甲苯混合制成的包被尿素,因其主要成分是尿素,而尿素味苦极浓,奶山羊可能不喜食而影响采食量。本试验通过在西农萨能奶山羊饲粮中添加不同水平的srNPN,发现饲粮添加0.75%以下的srNPN对奶山羊采食量无显著影响。srNPN在奶牛和肉牛饲粮中应用的研究也获得了相似的结果。Bourg等[15]研究表明,在奶牛饲粮中添加0.75%和1.50%的该srNPN,对奶牛干物质采食量(DMI)无影响。Pinos-Rodriguez等[3]在肉牛饲粮中添加1.1%的该srNPN,发现其对肉牛的干物质采食量也无影响。Holder等[11]利用该srNPN分别设计了CP水平为12.1%和10.9%的饲粮,结果发现其不会影响肉牛干物质采食量。由此推测,包被成功掩盖了尿素的味道,本srNPN的添加不会影响饲粮适口性和采食量。

3.2 srNPN对泌乳性能的影响

饲粮蛋白水平对瘤胃微生物蛋白合成有显著影响,同时也关系动物的生产水平[16]。本试验结果显示,添加srNPN可显著提高奶山羊日均产奶量,0.25%组、0.50%组、0.75%组日均产奶量在第4、8、12和16周时均显著高于对照组,而且,0.50%组日均产奶量在第4、8、12和16周时显著高于0.25%组和0.75%组。在奶牛上,也发现使用srNPN有提高产奶量的作用。Inostroza等[9]对每头荷斯坦奶牛饲喂114 g/d的该srNPN,结果发现奶牛日均产奶量提高了0.5 kg/d。据Tikofsky等[14]研究报道,在奶牛饲粮中添加该srNPN,有提高产奶量的趋势。尿素在瘤胃内降解为NH3-N的速率快于菌体利用 NH3-N的速率[3-5],而 srNPN可以使NH3-N的释放速率更加接近降解速率,从而长时间稳定地为瘤胃微生物提供氮源[14,17-18],使瘤胃内微生物能够大量合成菌体蛋白,从而提高产奶量[8-9]。

表3 rsNPN添加水平对奶山羊血液生化指标的影响Table 3 Effects of supplemental level of rsNPN on blood biochemical indices of lactating goats mmol/L

Russell等[19]和 Cherdthong 等[20]研究表明,瘤胃纤维素分解菌的比例变化将会导致挥发性脂肪酸(VFA)的合成发生变化,从而影响乳脂的合成。当瘤胃液pH保持在正常范围内时,乙酸的形成较丙酸容易些,由于乙酸含量的增多,奶牛的产奶量和乳脂率都将得到提高。Grummer等[21]瘤胃灌注氯化铵使瘤胃内NH3-N浓度由4.8 mg/dL升高到17.3 mg/dL时,结果总挥发性脂肪酸(TVFA)浓度增加,乙酸比例下降。Song等[22]发现,瘤胃灌注氯化铵时,TVFA浓度并不受NH3-N的影响,乙酸比例反而下降。本试验通过在奶山羊饲粮中添加不同水平 srNPN,结果表明,0.25%组、0.50%组和0.75%组乳脂含量相对于对照组显著增加,可能是srNPN作为一种缓释蛋白可以降低瘤胃内NH3-N浓度并使NH3-N长时间地保持在一个较高的水平,使瘤胃内乙酸比例增加,从而增加乳中乳脂含量。本试验结果表明,srNPN对乳中乳蛋白含量无显著影响,Inostroza等[9]对每头荷斯坦奶牛饲喂srNPN 114 g/d得到了类似的结果,发现srNPN对牛奶中乳蛋白含量无显著影响。总的来说,在饲粮中添加srNPN提高产奶量的同时也提高了乳汁中乳脂率,为提高我国羊奶品质提供了方向。

3.3 srNPN对血液UN含量的影响

血液UN是氮代谢在动物机体的终产物。血液UN含量主要受瘤胃NH3-N转运的影响,可以反映饲粮CP水平和摄入量[23],饲粮中如有过多的CP未得到充分的利用,则会导致血液UN含量升高。Armentano 等[24]和 Castillo 等[25]研究表明,饲粮中可降解氮含量可影响瘤胃内NH3-N浓度,并影响血液UN含量。本试验发现,饲粮中添加srNPN较对照组血液UN含量低。这可能是由于srNPN作为一种可降解氮源,通过降低瘤胃中NH3-N浓度而降低血液UN含量。

4 结论

饲粮中添加srNPN能够提高奶山羊乳中乳脂含量,降低血液UN含量,添加水平为0.50%时奶山羊日均产奶量最高。

[1]NOCEK J E,RUSSELL J B.Protein and energy as an integrated system.Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production[J].Journal of Dairy Science,1988,71(8):2070-2107.

[2]万伶俐,王晓阳,魏炳栋.尿素缓释技术在反刍动物饲料中应用研究进展[J].农业与技术,2007,27(2):71-73.

[3]PINOS-RODRIGUEZ J M,PENA L Y,GONZALEZMUNOZ S S,et al.Effects of a slow-release coated urea product on growth performance and ruminal fermentation in beef steers[J].Italian Journal of Animal Science,2010,9(1):16-19.

[4]CHERDTHONG A,WANAPAT M,WACHIRAPAKORN C.Influence of urea-calcium mixtures as rumen slow-release feed on in vitro fermentation using a gas production technique[J].Archives of Animal Nutrition,2011,65(3):242-254.

[5]HUNTINGTON G B,HARMON D L,KRISTENSEN N B,et al.Effects of a slow-release urea source on absorption of ammonia and endogenous production of urea by cattle[J].Animal Feed Science and Technology,2006,130(3/4):225-241.

[6]HIGHSTREET A,ROBINSON P H,ROBISON J,et al.Response of Holstein cows to replacing urea with a slowly rumen released urea in a diet high in soluble crude protein[J].Livestock Science,2010,129(1/2/3):179-185.

[7]GOLOMBESKI G L,KALSCHEUR K F,HIPPEN A R,et al.Slow-release urea and highly fermentable sugars in diets fed to lactating dairy cows[J].Journal of Dairy Science,2006,89(11):4395-4403.

[8]BRODERICK G A,STEVENSON M J,PATTON R A.Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating dairy cows[J].Journal of Dairy Science,2009,92(6):2719-2728.

[9]INOSTROZA J F,SHAVER R D,CABRERA V E,et al.Effect of diets containing a controlled-release urea product on milk yield,milk composition,and milk component yields in commercial Wisconsin dairy herds and economic implications[J].The Professional Animal Scientist,2010,26(2):175-180.

[10]GARCIA-GONZALEZ R,TRICARICO J M,HARRISON G A,et al.Optigen(R)is a sustained release source of non-protein nitrogen in the rumen[J]Journal of Dairy Science,2007,90:98-98.

[11]HOLDER V B,EL-KADI S W,TRICARICO J M,et al.The effects of crude protein concentration and slow release urea on nitrogen metabolism in Holstein steers[J].Archives of Animal Nutrition,2013,67(2):93-103.

[12]ALVAREZ A E,HUNTINGTON G B,BURNS J C.Effects of supplemental urea sources and feeding frequency on ruminal fermentation,fiber digestion,and nitrogen balance in beef steers[J].Animal Feed Science and Technology,2012,171(2):136-145.

[13]STEWART JR R,TRICARICO J,HARMON D,et al.Influence of Optigen on nitrogen behavior in lactating dairy cows[J].Journal of Dairy Science,2008,86(Suppl.2):491.

[14]TIKOFSKY J,HARRISON G A,LYONS T P,et al.Optigen Ⅱ:improving the efficiency of nitrogen utilization in the dairy cow[C]//Nutritional biotechnology in the feed and food industries:proceedings of Alltech’s 22nd annual symposium,Lexington:Alltech UK,2006:373-380.

[15]BOURG B M,TEDESCHI L O,WICKERSHAM T A,et al.Effects of a slow-release urea product on performance,carcass characteristics,and nitrogen balance of steers fed steam-flaked corn[J].Journal of Animal Science,2012,90(11):3914-3923.

[16]徐俊,侯玉洁,赵国琦,等.不同蛋白和中性洗涤纤维水平对瘤胃发酵、消化和微生物蛋白合成的影响[J].中国畜牧杂志,2013,49(7):43-48.

[17]CHALUPA W.Precision feeding of nitrogen to lactating dairy cows a role for Optigen Ⅱ[J/OL].Disponible en.[2007-06-26].http://www.engormix.com/rate_list.asp.

[18]HARRISON G A,MEYER M D,DAWSON K A.Effect of Optigen and dietary neutral detergent fiber level on fermentation,digestion,and N flow in rumensimulating fermenters[J].Journal of Dairy Science,2008,91(Suppl.1):489.

[19]RUSSELL J B,MUCK R E,WEIMER P J.Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen[J].FEMS Microbiology Ecology,2009,67(2):183-197.

[20]CHERDTHONG A,WANAPAT M.Development of urea products as rumen slow-release feed for ruminant production:a review[J].Australian Journal of Basic and Applied Sciences,2010,4:2232-2241.

[21]GRUMMER R R,CLARK J H,DAVIS C L,et al.Effect of ruminal ammonia-nitrogen concentration on protein degradation in situ[J].Journal of Dairy Sci-ence,1984,67(10):2294-2301.

[22]SONG M K,KENNELLY J J.Effect of ammoniated barley silage on ruminal fermentation,nitrogen supply to the small intestine,ruminal and whole tract digestion,and milk production of Holstein cows[J].Journal of Dairy Science,1989,72(11):2981-2990.

[23]江兰,孟庆翔,任丽萍,等.饲粮尿素添加水平对生长育肥牛生长性能和血液生化指标的影响[J].中国农业科学,2012,45(4):761-767.

[24]ARMENTANO L E,BERTICS S J,RIESTERER J.Lack of response to addition of degradable protein to a low protein diet fed to midlactation dairy cows[J].Journal of Dairy Science,1993,76(12):3755-3762.

[25]CASTILLO A R,KEBREAB E,BEEVER D E,et al.The effect of protein supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets[J].Journal of Animal Science,2001,79(1):247-253.

猜你喜欢

奶山羊乳脂产奶量
提高母猪产奶量的方法
荷斯坦牛产后前7 天日产奶量影响因素分析:南京地区牧场案例分析
河北省唐山地区生鲜乳乳脂率和乳蛋白率变化规律研究
荷斯坦牛各胎次产奶量规律研究及相关性分析
同步荧光法监控人乳脂质替代品氧化过程
不同月龄荷斯坦牛产奶量的研究
日粮中不同比例小麦替代玉米对奶牛乳脂合成和乳脂脂肪酸组成的影响
EM发酵饲料中添加碳酸氢钠饲喂奶山羊的效果试验
褪黑素膜受体MT1与MT2在妊娠期奶山羊卵巢中表达特点
浅谈奶山羊疫(疾)病防控技术要点