APP下载

长期施用有机肥对设施番茄土壤有效磷含量及磷素淋失风险的影响*

2023-11-23孙德龙付瑞桐张玉玲邹洪涛

中国生态农业学报(中英文) 2023年11期
关键词:淋失磷素农学

孙德龙,王 莹,周 珺,付瑞桐,张玉玲,虞 娜,邹洪涛

(沈阳农业大学土地与环境学院/农业农村部东北耕地保育重点实验室/土肥资源高效利用国家工程研究中心 沈阳 110866)

近年来,我国蔬菜种植总面积已迅速增加到2420 万hm2,占全球蔬菜生产面积的42%[1]。其中,设施蔬菜栽培面积超过370 万hm2[2]。然而,在设施栽培过程中,农户为了追求蔬菜高产,往往会投入大量养分[3],导致盲目过量施肥现象日益严重,突出表现为磷肥的过量施用,仅单季化学磷肥投入量就可达蔬菜需磷量的13 倍之多[2,4],并且还会在投入过量化学磷肥的基础上施用大量有机肥[5-6]。有机肥已成为代替化学磷肥补充土壤磷素的重要来源[7],但是,有机肥施用量为60 t·hm-2时,就容易造成设施土壤耕层磷素积累[5]。土壤磷素的过量积累将导致磷素利用率降低,无法持续增加作物产量[8-9]。长期过量施用有机肥不仅会增加土壤磷素的移动性,而且会带来土壤磷素淋失风险[10-11],不利于设施蔬菜生产的健康可持续发展。因此,开展长期施用有机肥对设施土壤有效磷含量及磷素淋失风险影响的研究,对于设施生产合理施肥具有重要意义。

土壤磷素是参与植物生长的主要营养元素,在作物生产中起着重要作用[12]。许多研究已表明,有机肥中含有大量有机质,养分含量综合,肥效长,可通过施用有机肥来改善土壤结构和肥力,降低土壤对磷素的吸附[13],增加土壤中磷酸酶活性,并通过提高微生物活性促进磷素生物转化[14],进而提高土壤磷素有效性[15-16]。土壤有效磷是能够被作物直接吸收利用的主要磷素形态[17],单独施用化学磷肥或磷肥与有机肥、氮肥、钾肥配施均会提高设施土壤全磷和有效磷含量,其含量随有机肥施用量的增加而增加[18-19],但是,有机肥带入土壤的有机态和胶体态磷更容易在土壤中发生移动[20],过量施用有机肥容易引起磷素向土壤深层淋失,产生环境风险[21-22]。土壤磷素环境阈值是预测磷素淋失风险的重要指标,露地土壤磷素环境阈值分布范围为20~120 mg·kg-1[23-24],设施土壤磷素环境阈值普遍高于露地土壤[25]。黄绍敏等[26]研究发现露地土壤磷素环境阈值为40 mg·kg-1。牛君仿等[18]研究发现设施土壤中施用化学磷肥和有机肥的磷素环境阈值分别为198.7 mg·kg-1和87.8 mg·kg-1。土壤磷素农学阈值是指当土壤有效磷含量低于某一临界值时,作物产量随有效磷含量的增加而显著增加,当高于该值时,作物产量对土壤有效磷的响应作用降低,甚至引发环境风险,这一临界点对应的有效磷含量就是土壤磷素农学阈值[8,27]。在提出适当的磷肥施用建议时,确定这一临界值对于确定适宜磷肥施用量至关重要。沈浦[28]研究表明小麦(Triticum aestivum)、玉米(Zea mays)和水稻(Oryza sativa)土壤的磷素农学阈值分别为4.3~14.9 mg·kg-1、7.5~23.5 mg·kg-1和5.7~15.2 mg·kg-1。露地土壤的磷素农学阈值范围为12.0~20.0 mg·kg-1,约为磷素环境阈值的1/4~1/2[29]。土壤磷素环境阈值和农学阈值因土壤类型、种植区域、作物种类和管理水平的不同存在较大差异[30-31]。

综上,目前关于设施土壤长期施用有机肥对土壤有效磷含量和淋失风险影响的研究多集中于研究露地以及表层土壤。然而,在设施栽培生产中高温、高湿的特殊环境条件下,长期施用化肥及与不同用量有机肥配施对土壤有效磷含量及磷素环境风险的影响,土壤磷素环境阈值和农学阈值的关系及其剖面变化情况,还缺乏深入系统的研究。本文以连续8 a设施番茄(Solanum lycopersicum)栽培田间定位施肥试验为依托,研究长期施用化肥及与不同用量有机肥配施土壤全磷、有效磷和可溶性磷含量的剖面分布特征,确定土壤磷素环境阈值和农学阈值,进一步分析土壤有效磷含量与施磷量之间的相关关系,综合考虑土壤磷素环境阈值和农学阈值的关系,确定长期设施番茄栽培适宜的磷素投入量,以期为设施蔬菜生产合理施肥与环境保护提供科学依据。

1 材料与方法

1.1 研究区概况

本研究在沈阳农业大学设施生产试验基地(41°49′N,123°34′E)进行,该地区为温带湿润-半湿润季风气候,年平均气温7.0~8.1 ℃,年降雨量为730 mm。试验地土壤类型为棕壤。试验基地设施大棚于2012 年建成使用,于2012 年和2013 年连续两年对土壤进行基础地力培肥,每年施入了等量牛粪(22 500 kg·hm-2,鲜重)和鸡粪(37 500 kg·hm-2,鲜重),2012 年春季整地前土壤基本理化性质如表1 所示。

表1 2012 年试验前土壤理化性质Table 1 Physical and chemical properties of soil before the experiment in 2012

1.2 田间定位施肥试验设计

田间定位施肥试验于2013 年春季开始。本研究选择了不施肥(CK)、单施化肥(NPK)和低量(M1)、中量(M2)、高量(M3)有机肥与化肥配施(M1NPK、M2NPK、M3NPK) 5 个处理,每个处理3 次重复,共计15 个试验小区。各施肥处理每年施用化学氮(N)、磷(P2O5)和钾(K2O)用量相同,分别为375 kg·hm-2、225 kg·hm-2和 450 kg·hm-2;M1NPK、M2NPK 和M3NPK 处理中每年施用的有机肥均为腐熟鸡粪,施用量分别为15 000 kg·hm-2、45 000 kg·hm-2和75 000 kg·hm-2。辽宁省设施蔬菜生产中有机肥(鸡粪)施用量在30 000~120 000 kg·hm-2[32],但是,有机肥施用量达60 t·hm-2时,就容易造成设施土壤耕层磷素积累[5],所以本研究将M1、M2 和M3 处理的有机肥施用量分别作为低、中和高量。每年施用的有机肥为同一厂家生产,有机肥的年均养分含量(以干基计)为: 有机碳217.0 g·kg-1,全氮31.0 g·kg-1,全磷4.4 g·kg-1,无机氮9.0 mg·kg-1,有效磷448.1 mg·kg-1,可溶性磷48.9 mg·kg-1。M1NPK、M2NPK 和M3NPK处理中每年施用的P2O5总量分别为375.1 kg·hm-2、675.3 kg·hm-2和975.6 kg·hm-2。有机肥于每年春季翻地前作为基肥均匀撒施地表,然后翻地,深度15~20 cm。全部化学磷肥作为底肥施入,化学氮肥和钾肥的1/3 作为底肥施入,2/3 分2 次进行滴灌追施,每次追肥量相同。

每个试验小区面积为3.8 m2,各小区间用60 cm深塑料膜隔开,以防止水分和养分在各小区之间发生横向迁移。每年种植作物为番茄,每年4 月中下旬移栽定植,8 月上旬采收结束,其余时间为土壤休闲。各试验小区3 条垄,行距为0.6 m,每条垄移栽8株番茄,株距为0.3 m,每个小区共定植24 株番茄,每株番茄留4 穗花,每穗花留4 个果。在番茄移栽时灌溉缓苗水,缓苗后,采用滴灌系统每隔3~5 d 灌水,各处理灌溉水量相同,单次灌水量约94 m3·hm-2。各处理其他田间管理措施相同,每年收获期进行番茄测产,于8 月初采收结束。

1.3 土壤样品采集与测定

本研究于2020 年9 月初在连续8 a 田间定位施肥试验后采集土壤样品。各小区按“S”形随机布设5 点,取样深度为0~10 cm、10~20 cm、20~30 cm、30~40 cm 和40~50 cm,同一土层5 点土样混合为一个样品。土壤样品进行风干、研磨、过60 目和10目筛后,密封保存。

土壤全磷、有效磷和可溶性磷含量分别采用硫酸-高氯酸消煮0.5 mol·L-1NaHCO3溶液浸提和0.01 mol·L-1CaCl2溶液浸提,钼锑抗比色法测定[24,33-34];土壤pH 采用玻璃电极法测定(水土比2.5∶1)[33];有机碳采用重铬酸钾外加热容量法测定[33];土壤活性铁(Feox)和活性铝(Alox)含量采用0.2 mol·L-1草酸铵缓冲液(pH 3.0~3.2)浸提,分别采用邻菲罗啉比色法和铝试剂法测定[33]。2020 年土壤基本性质如表2所示。

表2 不同长期施肥处理土壤有机碳、活性铁和活性铝含量及pHTable 2 Soil organic carbon (SOC) and active Fe and Al contents,and pH under different long-term fertilization treatments

1.4 计算

1.4.1 番茄相对产量

各处理番茄产量为2019-2021 年实际产量。由于连续田间施肥试验条件下番茄产量受年际间的田间管理措施、番茄品种和气候条件等因素影响,所以采用相对产量(Yr,%)进行研究,由公式(1)计算番茄相对产量[35]。

式中:Yr为某一处理在2019-2021 年番茄平均相对产量(%),Yi为某一处理在2019-2021 年番茄平均产量(kg·hm-2),Ym为各处理中在2019-2021 年番茄平均最大产量(kg·hm-2)。

1.4.2 土壤磷素环境和农学阈值

以土壤Olsen-P 为横坐标(x),CaCl2-P 含量或番茄相对产量为纵坐标(y),以不偏离突变点为基础,采用两段式线性回归方程(2)和方程(3)进行拟合。

式中:a1、a2、b1和b2均为线性回归系数;T为两条直线相交时对应的横坐标土壤Olsen-P 含量,当使a1最大、a2最小,并且两方程线性相关最高时,两条直线相交,则此时交点对应的土壤Olsen-P 含量即为所求的土壤磷素环境阈值或农学阈值[23]。

1.5 数据统计分析

采用Excel 2016 进行数据整理计算,SPSS 26.0进行单、双因素方差分析,使用Sigma plot 14.0 和Origin 26.0 软件绘制图表。土壤磷素环境阈值和农学阈值均采用Sigma plot 14.0 的双线性模型进行分析拟合[31]。

2 结果与分析

2.1 不同施肥处理的土壤全磷、有效磷和可溶性磷含量剖面分布特征

在0~50 cm 土层,各处理土壤Total-P、Olsen-P和CaCl2-P 含量均随土层深度增加呈逐渐下降趋势,相同土层,Total-P、Olsen-P 和CaCl2-P 含量均随有机肥施用量的增加逐渐增加;施肥处理、土层深度对Total-P、Olsen-P 和CaCl2-P 含量均有显著影响(P<0.01),但二者之间没有显著的交互作用(图1)。

图1 不同长期施肥处理下不同深度土壤全磷、有效磷和可溶性磷含量Fig.1 Contents of total phosphorus (Total-P),Olsen phosphorus (Olsen-P) and calcium chloride leaching phosphorus (CaCl2-P) in different soil depths under different long-term fertilization treatments

通过单因素方差分析可知,与CK 处理相比,NPK 处理土壤Total-P、Olsen-P 和CaCl2-P 含量在各土层的增加均不显著,而M1NPK 处理在0~10 cm 土层增加显著(P<0.05),M2NPK 和M3NPK 处理在0~20 cm 土层增加显著(P<0.05)。与NPK 处理相比,M1NPK 处理土壤CaCl2-P 含量在0~10 cm 土层增加显著(P<0.05),M2NPK 处理土壤Total-P 含量在0~20 cm 土层增加显著(P<0.05)、Olsen-P 含量在10~20 cm 土层增加显著(P<0.05)、CaCl2-P 含量在0~10 cm土层增加显著(P<0.05),M3NPK 处理土壤Total-P、Olsen-P 和CaCl2-P 含量在0~20 cm 土层增加显著(P<0.05)。总体上,各处理0~10 cm 土层土壤Total-P、Olsen-P 和CaCl2-P 含量均显著高于30~50 cm 土层(P<0.05),0~20 cm 土层土壤Total-P、Olsen-P 和CaCl2-P 含量受施肥影响较大,有机肥用量越大其含量越高。从各处理土壤Olsen-P/Total-P 和CaCl2-P/Total-P 的比率来看(图2),在0~50 cm 土层,各处理Olsen-P/Total-P 的比率明显大于CaCl2-P/Total-P的比率。CK、NPK 和M1NPK 处理Olsen-P/Total-P的比率在0~30 cm土层显著高于40~50 cm 土层,所有处理CaCl2-P/Total-P 的比率在0~10 cm 土层显著高于30~50 cm 土层,表层土壤Olsen-P 和CaCl2-P 积累严重。CK、NPK、M1NPK、M2NPK 和M3NPK处理Olsen-P/Total-P 的比率分别为3.8%~9.4%、5.4%~12.1%、5.6%~13.8%、8.6%~13.3%和 7.0%~15.5%,CaCl2-P/Total-P 的比率分别为0.1%~0.9%、0.3%~1.1%、0.6%~2.3%、0.58%~2.2%、0.5%~2.1%。除M2NPK 和M3NPK 处理Olsen-P/Total-P 的比率随土层深度增加呈先增加后下降趋势外,其他处理Olsen-P/Total-P 和CaCl2-P/Total-P 的比率均随土层深度的增加呈下降趋势。总体上,单施化肥、有机肥与化肥配施均明显提升了土壤Olsen-P/Total-P 和CaCl2-P/Total-P 的比率,且以M3NPK 处理提升最为明显。

图2 不同长期施肥处理下不同深度土壤有效磷、可溶性磷与全磷的比率Fig.2 Ratios of Olsen phosphorus (Olsen-P) and calcium chloride leaching phosphorus (CaCl2-P) contents to total phosphorus(Total-P) content in different soil depths under different long-term fertilization treatments

2.2 土壤磷素环境阈值的剖面变化

从土壤CaCl2-P 与Olsen-P 含量的关系发现(图3),在0~50 cm 土层,土壤Olsen-P 含量低于某一临界值时,土壤CaCl2-P 含量增加缓慢,土壤磷素淋失风险较低;Olsen-P 含量超过该临界值时,CaCl2-P 快速增加,土壤磷素淋失风险增加。因此利用两段式线性方程拟合土壤CaCl2-P 与Olsen-P 之间的关系,求得0~10 cm、10~20 cm、20~30 cm、30~40 cm 和40~50 cm 土层土壤磷素环境阈值依次为139.6 mg·kg-1、152.4 mg·kg-1、133.5 mg·kg-1、86.1 mg·kg-1和42.3 mg·kg-1。土壤磷素环境阈值随土层深度增加呈先增加后逐渐降低的趋势,且在10~20 cm 土层最大。总体来看,M2NPK 和M3NPK 处理土壤磷素向深层迁移较大,磷素淋失风险较大。

图3 不同长期施肥处理下不同深度土壤可溶性磷与有效磷含量关系的拟合曲线Fig.3 Fitted curves of relationship between contents of calcium chloride leaching phosphorus (CaCl2-P) and Olsen phosphorus(Olsen-P) in different soil depths under different long-term fertilization treatments

2.3 土壤磷素的农学阈值的剖面变化

与CK 处理相比,NPK、M1NPK、M2NPK 和M3NKP 处理番茄平均产量(2019-2021 年)增幅分别为17.7%、39.9%、33.0%和14.7%,其中M1NPK处理番茄产量增加显著(P<0.05) (图4)。从番茄相对产量与土壤Olsen-P 含量的关系发现(图5),在0~40 cm 土层,当土壤Olsen-P 含量低于某一临界值时,番茄相对产量随土壤Olsen-P 含量的增加逐渐增加,当Olsen-P 含量超过这一临界值时,番茄相对产量随土壤Olsen-P 含量的增加逐渐降低,而在40~50 cm 土层则没有临界农学阈值。因此利用两段式线性方程拟合番茄相对产量与土壤Olsen-P 含量的关系,求得0~10 cm、10~20 cm、20~30 cm 和30~40 cm 土层土壤磷素农学阈值依次为185.1 mg·kg-1、120.5 mg·kg-1、92.8 mg·kg-1和56.0 mg·kg-1,其农学阈值随土层深度增加呈逐渐降低趋势。另外,0~10 cm 土壤磷素农学阈值大于环境阈值,10~40 cm 土壤磷素农学阈值均小于环境阈值。

图5 不同长期施肥处理下不同深度土壤有效磷含量与番茄相对产量的关系拟合曲线Fig.5 Fitted curve of relationship between soil Olsen phosphorus (Olsen-P) content and tomato relative yield in different soil depths under different long-term fertilization treatments

2.4 设施番茄栽培适宜磷素投入量

为获得既满足供应番茄高产的需求,又降低磷素淋失风险的适宜磷素投入量,对土壤磷素农学阈值所对应的有效磷含量与磷素投入量进行相关分析,获得磷素投入量(P2O5)为344.9~530.3 kg·hm-2(图6)。当施磷量为530.3 kg·hm-2时,0~50 cm 土壤有效磷含量由上至下分别为206.2 mg·kg-1、164.2 mg·kg-1、93.6 mg·kg-1、56.0 mg·kg-1和36.5 mg·kg-1,其中0~20 cm 土壤有效磷含量高于土壤磷素环境阈值(图3),20~50 cm 土壤有效磷含量则低于土壤磷素环境阈值,这表明0~20 cm 土壤有效磷含量维持较高水平有利于番茄高产稳产,20~50 cm 土壤有效磷含量维持较低水平则可降低磷素淋失风险。因此,本研究中在施用225 kg·hm-2化学磷(P2O5)量的基础上,施用有机肥供应的磷(P2O5)量为119.9~305.3 kg·hm-2,折合本研究中有机肥用量为11 886.4~30 295.5 kg·hm-2。

图6 不同长期施肥处理下不同深度土壤有效磷含量与施磷量的相关关系Fig.6 Relationship between soil Olsen phosphorus (Olsen-P) content and P2O5 application amount in different soil depths under different long-term fertilization treatments

3 讨论

3.1 长期施用有机肥对设施土壤有效磷和可溶性磷含量的影响

土壤Total-P、Olsen-P 和CaCl2-P 含量分别可以表征土壤的供磷能力、磷素有效性和磷素的淋失潜力[36-38]。本研究中连续8 a 施用化肥及与不同用量有机肥配施明显增加了土壤Total-P 含量,增加了土壤磷库容量以及供磷能力,且以中、高量有机肥与化肥配施处理增加显著(图1),这与李媛等[7]的研究结果基本一致。施用化肥及与不同用量有机肥配施也显著增加了土壤Olsen-P 含量,且随有机肥施入量的增加而增加;土壤磷素主要积累在0~20 cm 土层,土壤Total-P、Olsen-P 和CaCl2-P 含量均随土层深度的增加呈下降趋势(图1),这一研究结果与张田等[39]的研究结果大致相同。这一方面是由于有机肥以基肥撒施并随人为翻地混入地表土层(0~20 cm);另一方面是由于施入的有机肥本身的含磷量很高,并且含有较高浓度的Olsen-P,施用量越高对土壤Total-P 和Olsen-P 含量的增加幅度就越大,同时有机肥的施用可以增加土壤磷酸酶活性和微生物活性,加速有机磷的转化,进而提高土壤磷素有效性,提高土壤供磷强度[40-41]。另外,本研究还发现,有机肥施入土壤后会大幅度增加土壤有机质(碳)含量,土壤有机质(碳)与Olsen-P 含量具有显著正相关关系(R=0.95,P<0.01),与土壤CaCl2-P 含量也具有显著正相关关系(R=0.93,P<0.01),高有机质(碳)含量是设施土壤施用有机肥后Olsen-P 含量快速增加的原因之一[18]。有机质在转化过程中会产生有机酸等物质,可减少Ca2+对有效磷酸盐的固定,从而促进无机磷的溶解[10,42],提高土壤有效磷含量,同时也增加了磷素淋失的风险。另外,本研究中不同用量有机肥与化肥配施对土壤CaCl2-P 和Olsen-P 含量及其占Total-P比率的影响大致相同,高量有机肥与化肥配施(M3NPK)处理显著提高了土壤CaCl2-P 和Olsen-P 含量(图1,图2),这说明有机肥用量越大,土壤磷素的供应强度越大,但有机肥投入量过多,土壤磷素的淋失也将随之变大。因此,在施入一定比例化学磷肥的基础上控制有机肥投入量对于增加设施土壤磷素有效性,减小磷素淋失风险具有重要意义。

3.2 长期施用有机肥对设施土壤磷素淋失风险的影响

土壤可溶性磷随有效磷含量增加而增加,当有效磷含量超过某一临界点时,土壤可溶性磷含量明显变大,该点的土壤有效磷含量称为土壤磷素的环境阈值[23-24,43]。不同地区、不同类型土壤磷素环境阈值差异很大,磷肥种类及投入量、种植模式等因素通过影响土壤磷素的数量、形态以及吸附与解吸,也会影响土壤CaCl2-P 和Olsen-P 含量之间的关系。Heckrath 等[44]在英国洛桑试验站长期观测发现,土壤磷素环境阈值为60 mg·kg-1。Hesketh 等[24]对英国不同地区8 个性质差异较大的土壤进行研究,发现磷素环境阈值为10~119 mg·kg-1。常会庆等[45]通过盆栽试验初步确定,石灰性土壤的环境阈值为28.57 mg·kg-1。汪玉等[46]研究表明,土壤Olsen-P 含量超过30 mg·kg-1时,太湖流域水稻土磷素淋失风险大大增加。刘畅等[47]研究表明,连续设施番茄栽培3 种灌溉方式下土壤磷素在0~40 cm 土层中存在环境阈值,滴灌的环境阈值(68.6~70.6 mg·kg-1)大于渗灌(65.4~66.8 mg·kg-1)和沟灌(59.4~60.6 mg·kg-1)。本研究发现,连续8 a 番茄栽培条件下不同用量有机肥与化肥配施,土壤磷素在0~50 cm 土层中存在环境阈值,由上至下依次为139.6 mg·kg-1、152.4 mg·kg-1、133.5 mg·kg-1、86.1 mg·kg-1和42.3 mg·kg-1,以10~20 cm 土层为最大(图3),其环境阈值高于上述前人的研究结果。这可能是因为本研究中连续8 a 番茄栽培采用滴灌系统进行灌溉,设施内高温、高湿、无雨水淋洗的条件会导致土壤盐渍化和板结[48],进而会抑制CaCl2-P 向下迁移;并且当土壤处于酸性状态时,固定磷的能力比较高,这导致土壤中的磷素向下迁移比较困难。另外,本研究中土壤活性铁与Olsen-P含量呈显著正相关关系(R=0.62,P<0.01),与CaCl2-P含量也呈显著正相关关系(R=0.93,P<0.01),土壤活性铝与Olsen-P 和CaCl2-P 含量无显著相关关系,土壤中活性铁含量的增加会增加土壤吸附磷的能力[49];但有机肥的长期施用对磷素的活化作用要强于活性铁对磷的吸附作用。本研究中,中、高量有机肥与化肥配施处理土壤Olsen-P 含量在0~20 cm 土层要高于环境阈值。这主要是因为长期施用有机肥会增加土壤活性有机磷含量,进而增加这部分磷在土壤中的移动性带来磷素的淋失风险;同时,有机肥分解产生的有机酸可以与磷酸根离子竞争吸附点位,取代结合力弱的磷酸根离子,减弱土壤胶体对磷素的吸附作用,间接增加了磷素的淋失风险[7];另外,中、高量有机肥的施用减缓了土壤酸化(表2),可释放一部分土壤固定的磷素,进而也会增加磷素的淋失风险[50]。

本研究番茄产量在低量有机肥与化肥配施的处理最高,随有机肥施用量的增加逐渐降低。许俊香等[51]研究发现,高量有机肥的施用对番茄产量的增加不明显,在浪费资源的同时,也增加了土壤磷素淋失风险,这与本研究结果基本一致。土壤磷素农学阈值既可反映作物产量对土壤有效磷响应的大小,也可以反映土壤磷素的环境风险[8,27],对于农业生产中确定适宜磷素投入量非常关键。有机与无机肥合理配施,既可提高番茄产量,也能使土壤养分含量更适宜作物生长,维持土壤生产力[52]。本研究中连续8 a番茄栽培土壤磷素在0~40 cm 土层中存在农学阈值(56.0~185.1 mg·kg-1),且随土层深度的增加逐渐降低(图5),这一结果明显高于前人通过对露地土壤(12.0~20.0 mg·kg-1)[29]和菜地土壤(40.0~76.2 mg·kg-1)[25,53]的研究结果。说明设施番茄栽培生产中番茄对磷素的需求比较高。本研究中0~10 cm 土壤磷素的农学阈值大于环境阈值,这意味着表层土壤较高的磷素和Olsen-P 含量积累有利于磷素的长期供应以及保证番茄生长发育对磷素的较高需求。在10~40 cm 土壤磷素农学阈值低于环境阈值,说明当蔬菜达到高产时土壤中Olsen-P 向深层淋失的环境风险相对较低。因此,综合考虑土壤磷素的充足供应和较低的淋失环境风险,根据0~40 cm 土壤磷素的农学阈值,推出设施番茄连续栽培条件下适宜的磷素投入量(P2O5)为344.9~530.3 kg·hm-2。在本试验条件下,在施用化学磷肥用量(P2O5) 225 kg·hm-2的基础上,有机肥的磷素投入量(P2O5)为119.9~305.3 kg·hm-2,折合本研究中有机肥用量为11 886.4~30 295.5 kg·hm-2。因此本研究中在长期连续番茄栽培中化肥(NPK)与低用量有机肥(M1)配施措施对于维持番茄生产能力和降低土壤磷素的淋失风险具有良好效果。

4 结论

1)连续8 a 设施番茄栽培生产中,长期施用不同用量有机肥可增加0~50 cm 土壤全磷、有效磷和可溶性磷含量,其含量随着有机肥施用量的增加呈逐渐增加趋势,在表层土壤以M2NPK 和M3NPK 处理增加显著(P<0.05)。

2)连续8 a 设施番茄栽培土壤在0~10 cm、10~20 cm、20~30 cm、30~40 cm、40~50 cm 土层存在磷素环境阈值,依次为139.6 mg·kg-1、152.4 mg·kg-1、133.5 mg·kg-1、86.1 mg·kg-1和42.3 mg·kg-1,其阈值随土层深度增加呈先增加后逐渐降低的趋势;0~40 cm 土层存在磷素农学阈值,依次为185.1 mg·kg-1、120.5 mg·kg-1、92.8 mg·kg-1和56.0 mg·kg-1,其阈值随土层深度的增加呈逐渐降低趋势。

3)综合考虑土壤磷素的环境阈值和农学阈值,推荐长期设施番茄栽培土壤适宜磷素投入量(P2O5)为344.9~530.3 kg·hm-2,其中施用有机肥投入量(P2O5)为119.9~305.3 kg·hm-2。本试验在连续8 a 设施番茄栽培条件下,在施用化学氮(N 375 kg·hm-2)、磷(P2O5225 kg·hm-2)和钾(K2O 450 kg·hm-2)肥的基础上配施低量有机肥(15 000 kg·hm-2),可较好地维持番茄可持续生产能力和有效控制土壤磷素的淋失风险。

猜你喜欢

淋失磷素农学
中国古代农学风土论的形成、演变与价值
磷素添加对土壤水分一维垂直入渗特性的影响
蒲松龄《农桑经》的农学思想及其当代启示
《广西农学报》投稿指南
农学
福建菜田氮、磷积累状况及其淋失潜力研究
作物高效利用土壤磷素的研究进展
磷素营养对大豆磷素吸收及产量的影响
不同水氮用量对日光温室黄瓜季硝态氮淋失的影响
模拟酸雨对赤红壤磷素及Ca2+、Al3+、Fe2+淋失特征的影响