APP下载

硝化抑制剂2-氯-6-三氯甲基吡啶在农业中应用研究进展及其影响因素

2022-11-23张忠庆

中国土壤与肥料 2022年4期
关键词:铵态氮硝态硝化

张忠庆,高 强

(吉林省商品粮基地土壤资源可持续利用重点实验室,吉林农业大学资源与环境学院,吉林 长春 130118)

近年来,在化肥减施政策的引导下,我国氮肥利用率由原来的25%左右上升到32%左右,但仍远远低于欧美地区(欧洲为52%,美国和加拿大为68%)和世界平均水平(42%)[1]。未被利用的氮进入水体和大气中[2],造成的环境污染等问题日益突出[3-4],减少氮肥投入和提高氮素的利用率是缓解该问题的有效途径。硝化抑制剂2-氯-6-三氯甲基吡啶(CP)通过抑制土壤硝化功能微生物活性,延缓土壤中铵态氮向硝态氮的转化,提高土壤铵态氮含量,进而减少氮素淋溶损失以及N2O排放,提高氮素利用率[5-7],目前已经被较为广泛地应用到农业生产中。2013年,国家将稳定性肥料纳入生产许可管理,指出在肥料中添加硝化抑制剂的肥料叫作稳定性肥料Ⅱ型,因此硝化抑制剂CP成为稳定性肥料Ⅱ型的重要技术核心之一。为此,本文系统综述了国内外CP的研发历程和作用机理,评述了施用CP的生态环境效应,阐述了CP在土壤中硝化抑制效果的影响因素,并展望了未来的研究方向,以期为充分发挥CP潜力、降低氮肥用量和提高氮肥利用效率提供一定的参考价值。

1 硝化抑制剂CP特性

2-氯-6-三氯甲基吡啶,英文名称为Nitrapyrin,简称CP,是一种白色晶状固体物质,分子量230.9,熔点62~63℃,几乎不溶于水(<0.01 g/100 mL,18 °C),易溶于甲醇、乙醇、丙酮等有机溶剂。CP在土壤中易水解成6-氯吡啶羧酸和氯化氢,造成挥发损失;应用于高有机质土壤时,易被吸附而降低有效性;易于光解,不适合表施。

2 硝化抑制剂CP研发历程

国外对CP的研发进行了大量的研究工作。1962年首次报道了CP具有硝化抑制特性[8]。1974年DOW化学公司使用CP开发出一种硝化抑制产品“N-server”并于1976年商业化。1975年美国环保局正式批准并在农业上大面积推广使用,美国每年有超过1000万hm2的农田应用这个产品,主要使用的作物为玉米[9]。自2009年起,DOW化学公司又推出CP的一种新剂型(Instinct),并在美国取得专利;2013年,“Instinct”引入中国,中文命名为“伴能”,同年DOW化学公司和中化化肥签署战略合作伙伴协议,其下属全资子公司——中化(烟台)作物营养有限公司成功开发出“伴能”缓释玉米专用肥“蓝力士”,2014年中化“蓝力士”上市。国内对CP也开展了广泛的研发,其中具有代表性的为中国科学院沈阳应用生态研究所,在CP与脲酶抑制剂和其他硝化抑制剂复配研究方面做出了突出贡献[10]。同时,浙江奥复托公司针对传统工艺生产的CP纯度较低问题,采用现代先进化学工艺成果生产出纯度高达98%的CP原药,使产品具有更好的硝化抑制效果。同时针对国内不同作物、不同土壤类型和区域氮肥施用特征等,成功制备出CP乳油和CP水乳剂等多种剂型,以适应农业生产实践需求,并形成“NMAX”系列产品,如“NMAX氮定”“NMAX氮伴”“NMAX土地精”等,在国内外进行了大量的推广和应用。针对CP易被高有机质土壤吸附而有效性较低这一问题,吉林农业大学新型肥料研发团队Zhang等[11]根据区域典型黑土性质,采用原位聚合法,以改性蜜胺树脂为壁材制备了CP微囊,尝试通过改变CP剂型来提高其在黑土中的有效性,初步研究发现该方法能实现CP在黑土中的缓慢释放,提高了CP的有效性,延长作用时间,减少用量,并且合成时以水为介质,减少了有机物用量,对环境更友好。

3 硝化抑制剂CP作用机制

CP能够有效地抑制硝化反应,减缓铵态氮向硝态氮转化,从而减少氮肥的淋溶损失[12-13]。当氨或者铵盐被施入土壤后会发生硝化作用,即铵态氮在微生物作用下被氧化为硝态氮。硝化作用大致可以分为两个步骤:第一步为氨氧化细菌将铵态氮氧化为亚硝态氮,中间产物为NH2OH,N2O由这一步产生;第二步为NO2-被亚硝酸氧化细菌氧化为NO3-;这两步反应只要有一步受到抑制,整个反应就会被抑制[14]。现有研究普遍认为,硝化抑制剂CP是通过抑制硝化反应的第一步来发挥硝化抑制作用的。对现有关于CP硝化抑制作用机理的报道进行总结,主要包含以下3个方面:(1)CP通过螯合氨氧化过程中相关酶的Cu组分抑制硝化过程[15];(2)CP通过抑制氨氧化过程中起着电子传递、调节还原剂浓度作用的细胞色素氧化酶活性抑制硝化过程[16];(3)通过影响氨氧化细菌(AOB)和氨氧化古菌(AOA)的活性来抑制铵态氮向硝态氮的转化过程,从而使整个硝化过程被抑制[17-18]。

4 硝化抑制剂CP生态环境效应

4.1 环境中CP残留及测定方法

目前美国、日本和韩国规定粮食作物及其副产品中CP的最大残留限量范围为0.1~0.6 mg/kg,我国香港地区规定在谷物、高粱及玉米中CP及其代谢物6-氯吡啶甲酸之和的建议最高限量为0.1 mg/kg,小麦的建议限量为0.5 mg/kg。我国GB 2763-2019尚未制定CP最大残留限量,CP在土壤中的残留限量国内外均未制定。采用现代技术对CP及其主要代谢产物6-氯吡啶甲酸进行准确测定,能够为粮食作物及土壤中CP的最大残留限量标准制定及CP的环境归属提供技术支持。国内外学者关于CP的测定方法进行了广泛研究,主要包括气相色谱法[19]、高效液相色谱法[20-21]、气相色谱-质谱法[22-23]等。Emily等[22]采用气相色谱-质谱法对美国中西部的农业土壤、地下排水沟和溪流中CP进行了检测,并指出CP施用土壤后的环境命运主要是吸附到土壤上以及通过淋溶和地表径流进行转移;孙灵慧等[23]选择相对安全的衍生试剂浓硫酸,对样品前处理过程进行了优化,结合气相色谱-三重四极杆质谱法,建立起高粱、小麦和玉米等粮食作物中CP残留量的分析方法。

4.2 对N2O排放的影响

化学氮肥施入土壤中短期内会引起土壤N2O释放量的增加,在造成氮肥损失的同时,还会对大气造成严重污染。国内外专家在不同的施肥方式、土壤类型和土壤利用方式等对CP影响N2O的排放方面进行了大量研究,大部分研究表明,CP能减少室内培养和田间土壤中N2O的排放,不同施肥方式、不同土壤类型和土壤不同利用方式等对CP减少N2O的排放影响较大,但是在土壤团聚体尺度探究CP影响N2O排放机制方面还缺乏相应研究。在室内静态培养试验方面,杨柳青等[24]采用室内静态培养方法研究了CP对石灰性潮土N2O减排效果,CP能够降低87.4%~99.6%的N2O排放,氮素转化过程中只有0.03%~0.84%的铵态氮转化为N2O;Cai等[25-26]在实验室培养条件下研究发现砂质壤土添加CP后N2O排放量减少了60%~74%;Chen等[27]通过实验室培养试验研究了CP对澳大利亚南部地区土壤在受控湿度和温度下N2O排放的影响,CP处理下累计N2O排放量减少65%以上。在田间静态箱法试验方面,魏珊珊等[28]研究发现施氮量为270 kg/hm2时配合CP使用能减少土壤N2O排放;赖晶晶等[29]研究发现CP对紫色土N2O产生速率表现出较强的抑制效果。Yu等[30]研究发现在地膜覆盖条件下使用CP减少了棉花田间23%~39% N2O的排放。Zhang等[31]研究表明集约化蔬菜生产过程中CP显著降低了N2O年排放量的16.5%。Liu等[32]研究发现在滴灌施肥循环中,尿素和CP共同使用可显著降低6、7、8月N2O的平均排放通量6.6%~21.8%,施用CP比单纯施用尿素显著减少了14.3%的季节N2O排放量,与单独施用尿素相比,尿素加CP降低了季节性N2O排放因子(EF)32.4%。Martins等[33]在对热带酸性土壤上进行的田间试验中发现,玉米播种期间施用尿素(N 50 kg/hm2)后30 d内,CP使N2O累积排放量减少了49%。Cui等[34]研究了CP对中国北部典型的3种耕地土壤中N2O排放和氨氧化微生物群落的影响,在冲积土、黑土和水稻土中,尿素添加CP分别减少了N2O 2.9、0.4和2.2 pM/(g·h)排放。Tyler等[35]研究发现CP和尿素共同使用能显著降低美国中西部排水不良的粘质土壤中N2O的排放。Bhandari等[36]对CP影响华北平原冬小麦土壤N2O排放进行了研究,指出添加CP能显著降低N2O排放,并且建议在华北平原应用CP时降低20%氮的施用量,以增加冬小麦的经济效益并减轻华北平原的环境污染。但也有研究表明CP对田间N2O的排放影响不大,如Parkin等[37]在评价CP与无水氨共同使用对N2O排放量的影响时却发现,1年内CP可使秋末春初N2O排放量减少0.62 kg/hm2,但2年的N2O累积年排放量并没有明显减少;Niu等[38]研究表明,CP处理的NO排放量显著低于单独施氮处理,但对N2O排放量没有影响。

4.3 对硝态氮淋溶损失的影响

硝态氮含量过高会造成水体富营养化,严重时会对牲畜和人类造成危害[39],这是现阶段全球范围内最主要的环境问题之一[40]。延缓铵态氮在土壤中被微生物氧化为硝态氮,是减少硝态氮被淋洗的有效途径,目前使用最多的方法之一就是利用硝化抑制剂来抑制硝化作用的发生[41]。CP通过抑制土壤中铵态氮向硝态氮转化,增加易被土壤吸附的铵态氮含量来减少硝态氮的淋溶和径流,极大地降低了硝态氮随地表径流水流失的风险,并且提高了一些喜好铵态氮的淹水作物对氮素的利用率。在CP硝化抑制的作用下,土壤中存在大量的铵态氮,有效促进了农作物对其吸收,同时土壤胶体又能高效吸附铵态氮减少其流失,降低硝态氮的径流损失。土壤中盐基离子淋失量的降低,可能正是CP的施用导致植株对盐基离子吸收量增加以及土壤pH升高的重要原因之一[6,42-43]。已经有研究表明,硝化抑制剂CP可以防止美国秋季施氮通过淋洗和反硝化从根区流失氮的更大风险造成的损失,与单独使用无水氨相比,使用CP可以减少10%的硝酸盐淋失[44-45];Rory等[46]在加拿大主要谷物和油料种子种植区建立了21项研究试验,以评估2种市售配制的CP产品(eNtrench和N-Serve)在稳定土壤中铵态氮和防止氮流失方面的功效,添加CP处理秋季土壤中增加了21%~63%的铵态氮和10%~19%的总矿质氮。而Jeffrey等[47]在氮肥和CP混合使用对玉米-大豆轮作地下排水系统中硝酸盐损失的影响研究中指出,CP并没有减少硝态氮的排放。

4.4 CP对土壤硝化功能微生物活性的影响

土壤中铵态氮和硝态氮可以通过硝化反应过程和硝酸盐异化还原成铵(DNRA)过程实现相互转化,其中硝化反应过程包括由氨氧化细菌(AOB)、氨氧化古菌(AOA)和硝化细菌(NOB)引发的传统硝化反应和由完全氨氧化细菌(Comammox Nitrospira)引导的一步硝化反应过程。现有研究表明,CP通过影响AOB和AOA的活性来来抑制铵态氮向硝态氮的转化过程,从而使整个硝化过程被抑制[17-18],添加CP可以影响土壤中氨氧化功能微生物的活性和群落多样性,但是不同土壤类型及环境条件下CP对硝化功能微生物活性产生影响也不尽相同。刘涛等[48]研究表明尿素添加CP分次随水滴施可调控土壤的微生态环境,在一定程度上提高土壤微生物的代谢能力,增加微生物群落功能多样性,缓解因长期施用无机氮肥导致的土壤微生物活性降低;王雪薇等[49]发现CP对石灰性土壤AOA与AOB群落结构能产生明显影响。Lehtovirta-Morley等[50]发现在土壤中添加CP能显著降低amoA基因丰度。Fisk等[51]研究发现,CP能够降低夏季休耕土壤有机质矿化引起的硝化作用,但对高温下amoA基因的丰度影响不大。Faeflen等[52]在酸性黄壤添加CP导致硝态氮浓度显著降低,AOB丰度在孵育过程中略有增加,但CP显著降低AOB-amoA基因拷贝数约80%,而对AOA丰度影响仅在培养的最后2周开始显著。Xi等[53]研究发现,CP降低了菜地土壤中细菌amoA基因的净硝化速率,抑制了细菌amoA基因的突变,但对细菌amoA基因没有影响,土壤pH值是影响AOA和AOB丰度和群落结构的关键因子。Cui等[34]研究了CP对中国北部典型的3种耕地土壤中N2O排放和氨氧化微生物群落的影响,发现尿素和CP对土壤N2O排放的弱刺激和抑制作用与土壤AOB丰度的弱效应相对应,3种土壤N2O排放量的变化与AOA丰度均无显著相关性。Gu等[54]对中国华南地区氮肥利用率较低的黄壤稻田土壤进行了研究,结果表明,CP对AOA有抑制作用,但对AOA和AOB群落结构没有影响,CP改善氮素利用率和抑制潜在硝化速率是由于抑制AOA的生长引发的。呼娟娟等[55]在对有机无机肥配合生化抑制剂影响土壤有机碳的转化研究中发现,在有机肥替代40%化肥的常规氮用量下,添加CP能显著降低与有机碳矿化相关的土壤微生物量和酶活性,特别是纤维素酶活性,进而抑制土壤中有机碳的转化。

硝酸盐异化还原成铵(DNRA)微生物是土壤微生物的重要组成部分[56],在硝酸盐还原过程中具有重要贡献[57-58],近年来成为了氮循环研究的热点[59-63]。DNRA过程是以NO3-、NO2-为电子受体,氧化NADH产生NH4+,存在于细菌和真菌中[58],该过程能够将硝态氮转化为更容易被植物利用的铵态氮。硝化抑制剂CP和DNRA功能微生物均能提高土壤铵态氮含量,其中DNRA是通过相关功能微生物作用使硝态氮向铵态氮转化来提高土壤铵态氮含量。目前关于通过外界因子调控DNRA过程来影响土壤铵态氮含量的研究成为热点。最新研究表明,CP通过刺激DNRA速率降低净硝化速率,对DNRA过程有促进作用[64],但其对土壤铵态氮增加的潜势和微生物驱动机制不详,同时关于硝化抑制剂CP提高土壤铵态氮含量方面的研究均忽略了CP介导DNRA过程对增加土壤铵态氮的贡献。

4.5 CP对氮素利用率的影响

CP施入土壤后能显著抑制硝化细菌的活性,延缓铵态氮向硝态氮的转化,提高土壤铵态氮含量,减少氮素淋溶和温室气体排放,进而提高氮素利用率。魏珊珊等[28]研究发现氮肥喷涂CP可使氮肥利用率提高7.1%~8.9%。Bhandari等[36]研究表明使用CP可使氮农学利用率提高1.74%~10.83%。刘涛等[48]在田间滴灌条件下,研究了尿素添加CP可提高棉田氮肥利用率11.5%~12.5%;Ren等[65]研究表明在淹水地区施用CP可使玉米氮素利用率提高9%~13%;Martins等[33]发现播种期施用CP的热带酸性土壤可提高氮素回收率53%。因此,CP施入土壤能显著提高氮素利用率已是定论,但不同剂型CP对提高氮素利用率的机理不同,特别是近年来CP新剂型的不断研发,其中CP微囊剂型实现了CP的缓慢释放,与传统剂型相比硝化抑制时间更长,实现了较长时间保持土壤中铵态氮含量,势必进一步提高氮素利用率,但仍然有必要开展CP微囊剂型代替传统剂型提高氮利用率机制方面的基础研究。

4.6 CP对作物产量与品质的影响

CP是否可以提高农产品的产量,现有研究结果不一。但大部分研究表明,施加CP可以显著提高叶片、茎秆和根系中氮的累积量和干物质产量。魏珊珊等[28]研究发现施氮量为270 kg/hm2时配合CP使用能提高夏玉米产量;刘涛等[48]研究表明CP能使皮棉产量提高4.1%~4.4%;王雪薇等[49]发现CP处理的小青菜地上部分鲜重提高了17.6%,同时可显著提高叶片维生素C含量和叶片氨基酸含量;Parkin等[37]和Randall等[45]均研究发现CP与无水氨共同使用能提高玉米产量;Nelson[66]研究表明,当在滴灌施肥时使用CP能增加玉米产量;Vetsch等[67]在春季降水量大于正常值的年份使用CP能够增加玉米产量;Ren等[65]研究发现淹水地区使用CP可使玉米产量提高22%~33%,增产机制为使用CP有效缓解了淹水引起的干物质积累下降,增加了穗干物质的分配比例,为淹水夏玉米提供了充足的“源”物质,改善了籽粒灌浆特性,从而导致玉米产量的增加;Martins等[33]在热带酸性土壤上进行的田间试验中发现,播种期使用CP玉米产量提高1.5 t/hm2;而Niu等[38]通过田间试验研究发现硝化抑制剂CP对砂壤土玉米产量没有影响。混合供应铵态氮和硝态氮可以改变作物代谢途径,改善土壤中源库关系,进而促进作物的生长和产量的提升[68-70],土壤铵态氮供应潜势是影响作物生长的重要因素,因此硝化抑制剂CP提高土壤铵态氮含量的能力及持久性是影响不同作物生长及产量的核心机制。

目前造成研究结果不一致的原因可能有以下几点:普通剂型CP在生育期前期抑制铵态氮向硝态氮转化使得土壤中含有一定浓度的铵态氮,进而增加作物生育前期生物质量,后期由于CP不起作用或者起的作用很小,不能使土壤中保持一定浓度的铵态氮,增产效果不理想;也从侧面解释了使用普通剂型CP能够使生育期较短的叶菜类作物增加产量而在生育期较长的收获籽粒类作物上增产效果没有定论的原因[5]。而微囊剂型CP能够实现CP在土壤中的缓慢释放,减少了土壤有机质的吸附作用,提高了CP有效性,能够较长时间提高土壤中铵态氮含量[8]。因此,微囊剂型CP使作物整个生育期的土壤保持一定浓度铵态氮含量是实现增产的关键机理。同时,还应该考虑CP对不同收获类型作物(收获籽粒、块茎和植株叶片等)和不同喜氮类型作物(喜铵态氮和喜硝态氮)产量的影响等,进一步丰富CP影响作物产量的基础理论内涵。

5 CP硝化抑制作用效果的影响因素

CP的作用效果在不同的环境条件下表现出一定的差异。CP硝化抑制效率的高低、有效期长短及使用效果受到添加水平、土壤质地、温度、水分、相关酶活性、酸碱度等诸多因素的共同影响。

5.1 添加水平

CP的用量是影响其作用效果的重要因素,不同用量抑制效果不同,具有明显的剂量效应。王雪薇等[49]采用室内培养试验,在对CP抑制石灰性土壤硝化作用比较及用量研究中指出,在0.1%~0.2%浓度范围内有明显的剂量效应,0.25%~0.5% CP的硝化抑制率为98.9%~99.9%;周旋等[71]研究发现,CP对黄泥田土壤尿素态氮转化的影响过程中表现出较强的剂量效应,不同剂量CP效果表现为0.6%>0.3%>0.15%;Lehtovirta-Morley等[50]研究指出CP在添加浓度分别为1.0、10.0和50.0μmol/L时硝化抑制率分别为15%、92%和100%;而吴晓荣等[72]在研究硝化抑制剂对典型茶园土壤尿素硝化过程的影响时发现,尿素+0.27% CP和尿素+0.54% CP 2个剂量在培养期间对4种茶园土壤的硝化抑制率接近甚至超过100%。

5.2 土壤质地

土壤质地被认为是影响CP作用效果的最重要因素。一般情况下,土壤质地越轻,其抑制效果越强烈,但是作用时间越短;原因主要在于土壤对CP的有效吸附,进而控制土壤微域点位的硝化进程,高粘粒和粉粒含量的土壤使CP被强烈吸附,CP在土壤中不易均匀分布,硝化作用受到的抑制较弱。顾艳等[73]采用室内培养的方法研究了CP在砂土和粘土上的硝化抑制效果,在砂土上的硝化抑制率为40.0%~91.4%,在粘土上为18.5%~53.3%,硝化抑制效果表现为砂土>粘土;刘涛等[74]于室内培养研究CP在石灰性土壤中的硝化抑制效果,使用CP的土壤铵态氮含量较单施硫酸铵的土壤表观硝化率随培养进程增加减慢,在砂土中的硝化抑制率高于粘土;Zhao等[64]采用15N示踪室内培养法,研究了CP对亚热带湿润地带性酸性土(pH=5.26)和非地带性碱性土(pH=7.62)初期(前24 h)氮素动态的影响,结果发现CP通过影响不同的氮素转化过程,降低了2种土壤的净硝化速率。Zhang等[75]对CP在黑土、黑钙土和白浆土3种不同类型土壤中的吸附动力学和等温吸附作用进行了研究,3种类型土壤对CP的吸附动力学过程可以用准二级动力学方程拟合(R2>0.8907),等温吸附线可以用Langmuir方程拟合(R2>0.9400),3种类型土壤对CP的最大吸附量呈现黑土>白浆土>黑钙土的趋势。

5.3 土壤温度

土壤温度是影响CP抑制效果以及有效抑制作用时间长短的重要因素之一。随着温度升高,铵态氮的硝化作用加强。原因在于温度升高可加速CP在土壤中的移动,同时铵态氮在土壤中的移动也随着温度升高而加快。另外,CP的抑制效果随着温度升高而降低,还可能是因为高温增加了微生物的活性,加速了CP在土壤中的降解[76-77]。随着温度升高,硝化抑制剂CP有效性降低,但研究主要集中在25到35℃的温度下[27,78]。Fisk等[51]研究发现,CP在高温下(40℃)仍然能够抑制半干旱土壤中的硝化作用,而不会影响其他氮转化率,该发现扩展了CP在夏季休耕期间对种植季节外矿化土壤的硝化作用的控制。

5.4 土壤湿度

土壤湿度不同,CP作用效果也不同。土壤水分含量对CP抑制效果的影响较为复杂。在一定的范围内,土壤湿度越大,CP作用效果越明显。这可能是由于高湿度增加了土壤的基质势,减少了土壤对CP的吸附,使CP易在土壤局部形成高浓度区域,保护铵态氮不被氧化。土壤含水量超过一定范围将促进CP在土壤中发生移动,由于铵态氮的扩散比CP的移动要快,当两者之间的距离超过CP硝化抑制的作用范围时,其抑制效果就明显减弱。Gu等[79]系统研究了土壤含水量对CP抑制效果的影响,在整个培养过程中,施用CP能显著抑制各处理的硝化作用,硝化抑制率在不同土壤含水量上的表现为:40%田间持水量(WHC)> 60% WHC>80% WHC。

5.5 土壤酸碱度

在一定pH值范围内,随土壤pH值升高,CP硝化抑制效果下降。pH值较高的土壤中硝化活性较高,因而有利于CP作用效果的发挥,但弱碱性的环境使土壤中微生物的活性也较高,氨氧化细菌活性增强,又会使CP的作用效果受到影响,导致土壤中铵态氮含量降低。土壤pH值的变化首先影响土壤CP的保持,而间接影响土壤中硝化作用过程。Gu等[79]系统研究了土壤pH值对CP抑制效果的影响,不同pH值处理下氮肥配施CP均显著地降低了矿质氮库铵态氮的转化量,均不同程度地抑制了硝化作用;在培养的第9 d,CP在酸碱度为中性时对硝化作用的抑制效果最好,硝化抑制率达到91.53%,但硝化抑制率的降低速率在高pH值处理更快;在培养的第45 d,当土壤为酸性时,硝化抑制率为36.43%。

5.6 其他硝化抑制剂的协同效应

硝化抑制剂CP和其他硝化抑制剂配合使用能提高有效性。周旋等[71]指出,CP与正丁基硫代磷酰三胺(NBPT)配合使用表现出对氮素转化明显的协同抑制效果,NBPT 0.5%+CP 0.3%组合抑制效果最佳。周旋等[80]还指出,在不同施肥模式下,硝化抑制剂CP会提高田面水铵态氮浓度,而脲酶抑制剂NBPT、正丙基硫代磷酰三胺(NPPT)或配施CP可有效抑制脲酶活性,降低田面水铵态氮峰值,CP或配施NBPT、NPPT有效抑制硝化作用,降低渗漏液硝态氮峰值。油伦成等[81]探讨了CP与其他硝化抑制剂和氮肥增效剂组合对黑土和褐土中铵态氮转化特征的影响,指出在湿润地区pH值较低的酸性土壤上,N+CP或N+CP+N-guard、N+CP+DCD组合的硝化抑制效果显著且持续时间长;而在干旱半干旱的碱性土壤上,N+CP+DCD组合的硝化抑制效果和持续时间优于其他组合。崔磊等[10]研究了添加不同种类硝化抑制剂的高效稳定性氯化铵氮肥在黑土中的施用效果,研究发现CP+DMPP组合玉米的氮肥吸收利用率显著高于CP+DCD组合。

5.7 CP剂型

剂型是影响CP有效性的一个重要因素,但是相关研究较少[82]。顾艳等[73]选用CP乳油剂和水乳剂2种剂型,分别研究了它们在砂土和粘土上的硝化抑制效果和剂量效应,结果表明,乳油剂和水乳剂在砂土和粘土上的最佳施用浓度均为纯氮量的0.3%,最佳浓度下在砂土上的施用效果为乳油剂>水乳剂,在粘土上的施用效果为水乳剂>乳油剂。这可能与不同剂型的CP在不同质地土壤中的迁移能力不同有关,其确切原因有待深入研究。因此,通过改变CP的剂型探讨提高CP在不同类型土壤中的有效性,为CP增效方面的研究提供了一个新的思路。

5.8 土壤有机质

土壤有机质对硝化抑制剂的吸附可以减少抑制剂的挥发损失量,有利于抑制剂在土壤中的存留,但同时使硝化抑制剂受到了非生物学保护,从而在一定程度上降低其生物活性。此外,土壤有机质对硝化抑制剂的吸附与有机质的组成成分及抑制剂本身的极性有关[83-85]。土壤有机质能够吸附硝化抑制剂,是影响硝化抑制剂有效性的重要因素[86-88]。已有研究表明,CP在农业上使用时易被土壤有机质吸附[89],特别是应用于高有机质的土壤时,其有效性明显降低[90]。Fisk等[51]研究CP降低土壤有机质氮素的硝化作用和土壤amoA基因的丰度时发现,长期作物残留增加的土壤有机质,降低了CP的有效性,具体表现为标记铵态氮的保留率降低。Zhang等[91-92]探讨了黑土去除有机质前后对硝化抑制剂CP吸附作用的机理,揭示了黑土有机质主要组分胡敏酸(HA)和富里酸(FA)对硝化抑制剂CP的吸附作用及其微观机理,指出黑土对CP的吸附动力学过程表现为初始的快速吸附阶段和随后的慢速吸附阶段,符合准二级动力学方程(R2≥0.8907,P<0.05),吸附等温线符 合Langmuir方 程(R2>0.9400,P<0.05);去 除有机质前后黑土对CP的最大吸附量(qm)和吸附常数Kf值与有机质含量呈现显著二次函数相关性(R2≥0.6484,P<0.05)。有机质组成成分HA和FA是有机质吸附CP的主要因素。Jacinthe等[93]通过对CP与HA和FA的相互作用,比较了HA和FA对CP的吸附性能,研究结果表明,HA吸附的CP比FA的多,而HA是一种较好的吸附剂,对CP具有较好的吸附作用。红外光谱提供的证据表明,吸附主要是通过一种离子结合机制产生的,这一机制涉及的是CP吡啶环的氮以及腐殖质材料带负电荷的官能团。有机质能够降低硝化抑制剂的使用效果,主要原因归纳起来有以下几个方面:一是有机质能够导致硝化抑制剂的降解,或是其吸附作用降低了硝化抑制剂的活性;二是有机质对硝化抑制剂的吸附虽然能够减少其挥发损失量,但同时也使硝化抑制剂受到了非生物学保护,从而在一定程度上降低了其生物活性,影响硝化抑制效果;三是有机质含量较高的土壤能够给微生物提供更好的能量来源,所以微生物的活性较强,增加了对硝化抑制剂的降解作用,也因此降低了硝化抑制剂的效果;四是有机质对硝化抑制剂的吸附与有机质的组成成分及抑制剂本身的极性有关,黄腐酸极性较强,因此其对水溶性较高、极性亦较强的硝化抑制剂的吸附能力比水溶性较低、极性较弱的硝化抑制剂强。

6 展望

减少氮肥使用和提高氮肥利用率是增加作物产量和同时提高经济效益的重要手段,也是减少氮肥造成农业面源污染等环境问题的重要手段。CP作为一种高效的硝化抑制剂,能够有效降低氮肥损失,提高肥料利用率,减少环境污染,提高农产品品质等,具有较好的应用前景,需要进一步深入研究。如何发挥其最优的抑制效果还有待进一步研究。主要包括以下几个方面:

(1)针对CP易挥发、光解和易被土壤有机质吸附而降低有效性等问题,需探索通过研制CP新剂型来实现CP缓慢释放,进而深入探索提高CP在土壤中有效性的系统研究。

(2)针对CP影响DNRA功能微生物活性方面研究缺失,需开展硝化抑制剂CP通过激发DNRA微生物活性促进硝态氮向铵态氮转化方面的机理研究。

(3)针对CP是否能够提高农产品产量尚无确切论断,需开展CP对不同种类作物产量影响的对比分析研究,找出CP影响作物产量的关键机制。

(4)针对CP减少氮素损失的效应方面研究单一,需要开展其减少氮素损失的综合环境效应的全方位研究。

猜你喜欢

铵态氮硝态硝化
离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素*
河北太行山山前平原葡萄园土壤硝态氮累积特征及影响因素
污水处理厂反硝化深床滤池工艺应用分析
不同种植年限设施菜田土壤硝态氮的累积与空间分布特性
基于文献分析的氮肥用量对小麦玉米轮作体系硝态氮淋溶的影响*
提高同时硝化反硝化曝气生物滤池(NDN)硝化及单级生物脱氮效率的研究
温度与氮素形态和用量对叶用莴苣生长和硝酸盐含量的影响
灌溉定额对春播裸燕麦土壤氮素的影响
冬牧70黑麦秸秆还田对烟田土壤氮素矿化的影响
活性碳源显著降低蔬菜地土壤硝态氮