APP下载

植物源提取物对小菜蛾抑制作用研究进展

2022-10-15李珊珊吴维坚

生物灾害科学 2022年3期
关键词:小菜蛾水提物证实

李珊珊,杨 敏,吴维坚

植物源提取物对小菜蛾抑制作用研究进展

李珊珊,杨 敏,吴维坚*

(福建省农业科学院 亚热带农业研究所,福建 漳州 363005)

植物源杀虫剂因其低毒低残留,对环境友好等优点,在农业害虫的防治选择上逐渐成为一种趋势。从不同植物提取物入手,综述近年来国内外关于植物源小分子物质、油溶性成分及水溶性成分在小菜蛾综合防治方面的研究进展,以探索植物源杀虫剂防治小菜蛾的可行性及研究前景。

植物源提取物;小菜蛾;杀虫剂;研究进展

小菜蛾[(L.)(Lepidoptera: Yponometidae)]是全球范围内十字花科Burnett蔬菜的重要害虫[1]。截至2013年,小菜蛾造成全球性经济年损失40~50亿美元[2]。截至2015年,小菜蛾造成我国经济年损失7.7亿美元。人工合成杀虫剂的滥用使小菜蛾种群对多种化合物都具有耐药性[3],目前已证实其对包括有机氯类、氨基甲酸酯类、有机磷类、拟除虫菊酯类、苯甲酰基脲类、苏云金杆菌类、沙蚕毒素类、抗生素类、昆虫生长调节剂类和微生物源杀虫剂在内的多种杀虫剂产生抗性[4-5]。Nurhidayati等[6]曾用印楝()、木瓜()、肿柄菊()和刺果番荔枝(L.)等植物的叶片分别与蚯蚓堆肥混合,对甘蓝(L.)进行施肥处理,以未混入植物组织的蚯蚓堆肥为空白对照,以喷施合成农药做为阳性对照,发现用肿柄菊叶和刺果番荔枝叶处理过的甘蓝与合成农药具有相同效果,且该处理的甘蓝,头部大小、总生物量的鲜质量和干质量有显著增加(<0.05)。随着《食品安全法》、《农产品质量安全法》等法规的颁布实施[7],植物源杀虫剂因其低毒低残留、对环境友好等优点逐渐成为有机种植的新宠。本文从不同类型的植物提取物为切入点,对国内外现阶段小菜蛾植物源杀虫剂的研究现状进行综合阐述,期望为这方面的后续研究提供一些理论参考。

1 挥发油及挥发性成分

1.1 挥发油

1.2 单体成分

Huang等[14]从野艾蒿挥发油中分离出桉叶油醇(eucalyptol)和氧化石竹烯(caryophyllene oxide),分别处理24 h后,发现二者对小菜蛾幼虫均表现出强烈的接触毒性,半数致死剂量(median lethal dose,LD50)分别为76.97 μg/mL和20.71 mg/mL,对小菜蛾成虫均表现出显著的熏蒸活性(LC50分别为3.25 μL/L和1.06 mg/L)。经证实,植物萜烯类化合物(E)-4,8-二甲基-1,3,7-壬三烯[(E)-3,8-dimethyl-1,4,7-nonatriene,DMNT]显著影响小菜蛾的生长和繁殖,且能破坏小菜蛾幼虫肠道,还可通过下调小菜蛾肠道Mucin like基因表达破坏围食膜结构,导致小菜蛾的死亡[15-16]。Yusoff等[17]研究了乙酸金合欢酯(farnesyl acetate),丙酮金合欢酯(farnesyl acetone),溴化金合欢酯(farnesyl bromide),氯化金合欢酯(farnesyl chloride)和植酮(hexahydrofarnesyl acetone)对小菜蛾的96 h毒性及半数致死浓度,发现其中乙酸金合欢酯对小菜蛾具有较高的毒性,可延长小菜蛾发育时间并致其蛹及成虫畸形,以此降低小菜蛾的种群数量。α-金合欢烯(α‐farnesene)经证实在10 μg/mL的浓度下对小菜蛾的取食抑制率为82.98%[18]。莳萝脑(dillapiole)和香芹酚(carvacrol)同样被证实对小菜蛾具有极大的毒性(LC50分别为1.01 μL/mL和6.03 μL/mL)以及进食威慑力[12]。Cai等[19]用8种单萜烯类化合物测试小菜蛾的熏蒸活性,发现对比其他化合物,其中莳萝醛(cuminaldehyde)对小菜蛾的卵、幼虫及成虫均表现出最强的毒性,且对异色瓢虫的幼虫和成虫友好,不造成死亡;香芹酚和丁香酚(eugenol)同样对小菜蛾具有熏蒸毒性,但效果不如莳萝醛显著。

2 有机溶剂提取物

2.1 粗提物

Alam等[20]用西藏长叶松(Sarg.)松针的甲醇浸提液(20%浓度)处理小菜蛾120 h后,死亡率可达92%。Tarun等[21]在标准实验室条件下,评估了藿香蓟(L.)叶不同提取物对小菜蛾的影响,发现其中正己烷提取物和甲醇提取物可显著减少小菜蛾幼虫的取食、成虫产卵量的孵化率。Zhang等[22]考察了油桐()桐籽粕不同提取物对小菜蛾的接触毒性,发现其中乙酸乙酯及石油醚提取物对小菜蛾均表现出强毒性。紫穗槐(L.)的乙酸乙酯及石油醚提取物同样被证实对小菜蛾具有良好的胃毒活性,并能抑制酯酶活力[23]。穿心莲()的乙酸乙酯及乙醇提取物被证实对小菜蛾具有杀灭活性,最大致死率分别为90.00%和65.00%[24]。Phukhahad等[25]发现菖蒲的乙醇提取物对小菜蛾幼虫表现出接触毒性和摄食毒性。Dolma等[26]发现西藏延龄草()的乙醇提取物对小菜蛾的幼虫有良好的杀虫活性(LC50=1 541.2 mg/L)。段雨等[27]分别用留兰香(L.)茎、叶的乙醇提取物处理甘蓝叶片后喂食小菜蛾3龄幼虫,发现留兰香叶提取物对小菜蛾体内解毒酶的抑制作用大于茎提取物。Pumnuan等[28]已证实沙枣(Linn.)叶的乙醇提取物在24 h和48 h对小菜蛾的LC50分别为4.94%~5.47%和3.42%~3.63%,对小菜蛾有良好的杀灭效果,与氟虫腈、丙硫磷、溴氰菊酯和阿维菌素对小菜蛾幼虫的防治效果无显著差异。此外,巴豆属L.植物[29]、少毛牛膝()[30]和银胶菊(L.)[31]的有机溶剂提取物均被证实对小菜蛾具有杀虫活性。

2.2 单体成分

Tian等[32]从芹叶铁线莲(Turcz.)的正丁醇提取物中分离出7种三萜皂苷,发现其中含有游离28-COOH基团的单糖链皂苷对小菜蛾的幼虫表现出明显的生长抑制活性,还可降低其化蛹率。Yang等[33]从人参叶和茎中提取的总皂苷也被证实对小菜蛾的幼虫具有拒食活性。Jababu等[34]分别测试了印楝素(azadirachtin)、除虫菊酯(pyrethrin)和苦木素(quassin)单体及混合处理甘蓝叶对小菜蛾幼虫的取食和拒食效果,发现印楝素+除虫菊酯混合物的拒食效果最好,此外,印楝素+除虫菊酯+苦木素混合物的幼虫总死亡率可达50%,与除虫菊酯处理组相当。银胶素(parthenin)[31]同时被证实对小菜蛾具有杀虫活性。

3 水提物

3.1 直接致死

Ruiz等[35]分别采用印楝()和烟草(L.)水提物测试对小菜蛾的杀虫活性,证实此2种水提物对小菜蛾均具有杀幼虫、杀卵和产卵抑制作用。Mpumi等[36]研究发现,西非灰毛豆()、丁香蒲桃()和巴豆属植物(Pax)的水提物可显著控制小菜蛾幼虫的虫口数量。Elaine等[37]测试了梨果仙人掌()肉质茎水提物对小菜蛾存活率及产卵行为的影响,发现该提取物对小菜蛾虫卵半数失活浓度EC50为5.37%(W/V),对幼虫的LC50为7.75%(W/V),以此证明梨果仙人掌可干扰小菜蛾的产卵地点,有成为植物杀虫剂的潜力。Ferreira等[38]测试了丁香蓼属(spp.)植物水提物对小菜蛾生物循环的生物活性,发现其中、和的提取物在抑制小菜蛾种群方面表现出较好的效果,可有效抑制食物消耗量,并干扰幼虫发育进程及成虫产卵。巴西肖乳香(Raddi)[39]和食用双盖蕨()的叶片水提物同样被证实可杀死小菜蛾的幼虫并对成虫具有强烈的产卵驱避作用[40]。

3.2 趋向诱杀

Zhu等[41]用十字花科蔬菜中国甘蓝(var. alboglabra Bailey ‘Zhonghuajianye’)的水提物处理非寄主植物蚕豆(‘Jinnong’),发现小菜蛾雌蛾在喷洒了中国甘蓝水提物的蚕豆上产卵明显多于中国甘蓝本身,而小菜蛾一龄幼虫无法在蚕豆上存活,以此证实使用非十字花科诱捕植物治理小菜蛾的可行性。

4 展 望

昆虫嗅觉在调节交配、觅食、饲喂及产卵等行为上均发挥关键作用[42]。植物在与昆虫长期共存和进化中产生了许多次生代谢产物,以此应对昆虫的不同生长阶段[43]。据报道,包含气味结合蛋白(OBPs)[44]、气味受体(ORs)[45-46]和气味降解酶(ODEs)[44,47]等在内的蛋白组在昆虫嗅觉的动力学、选择性和敏感性方面起着重要作用[48]。小菜蛾体内被发现含有一种气味降解酶PxylAOX3,纯化后的重组蛋白显示出广泛的底物酶谱,推测可能参与许多结构多样的醛类化合物的降解,以此参与嗅觉神经元的保护[49]。这与目前已知对小菜蛾具杀虫活性的挥发性单体多以醇类、烯类和酯类成分为主的结论不谋而合。此外,已有多项研究证实不同植物提取物对小菜蛾具有良好的胃毒活性及酶抑制活性,在防治小菜蛾方面具有良好的市场开发前景。

经笔者调查,目前国内用于小菜蛾防治的植物源杀虫剂较少,以印楝素及苦参碱(matrine)为主,但十字花科蔬菜强烈依赖蜜蜂授粉,而印楝素已被证实对蜜蜂具有轻度至中度毒性[50],苦参碱对小菜蛾的防治效果并不突出[51-52]。若能从我国特有的种质资源入手进行系统性筛选,或可从中挖掘出环保、高效、低成本的小菜蛾植物源杀虫剂,也为国产杀虫剂拓展国际市场提供一定理论支持。

[1] YANG G, ZHANG Y N, GURR G M, et al. Electroantennongram and behavioral responses ofto plant volatiles[J]. Insect science, 2016, 23(2): 245-252.

[2] FURLONG M J, WRIGHT D L, DOSDALL L M. Diamondback moth ecology and management: problems, progress, and prospects[J]. Annual review of entomology, 2013, 58(1): 517-541.

[3] LI Z, FENG X, LIU S, et al. Biology, ecology, and management of the diamondback moth in China[J]. International congress of entomology, 2016, 61: 277-296.

[4] BANAZEERA, AFZALM B S, HASSAN S, et al. Status of insecticide resistance in(Linnaeus) (Lepidoptera: Plutellidae) from 1997 to 2019: cross-resistance, genetics, biological costs, underlying mechanisms, and implications for management[J]. Phytoparasitica, 2021, 50: 465-485.

[5] 李振宇, 肖勇, 吴青君, 等. 小菜蛾种群灾变及抗药性治理研究进展[J]. 应用昆虫学报, 2020, 57(3): 549-567.

[6] NURHIDAYATI N. Effectiveness of vermicompost with additives of various botanical pesticides in controllingand their effects on the yield of cabbage (L.var. Capitata)[J]. Asian journal of agriculture and biology, 2020, 8(3): 223-232.

[7] 张小泉, 李威, 樊朋飞, 等. 两种植物源杀虫剂产品的开发及应用[J]. 中国生物防治学报, 2020, 36(6): 869-871.

[8] NASR M, SENDI J J, MOHARRAMIPOUR S, et al. Evaluation ofL. essential oil as a source of toxicant and an inhibitor of physiological parameters in diamondback moth,L. (Lepidoptera: Pyralidae)[J]. Journal of the saudi society of agricultural sciences, 2017, 16(2): 184-190.

[9] SONG C, ZHAO J, ZHENG R, et al. Chemical composition and bioactivities of thirteen non-host plant essential oils againstL. (Lepidoptera: Plutellidae)[J]. Journal of Asia-Pacific entomology, 2022, 25(2): 101881.

[10] MAYANGLAMBAM S, RAGHAVENDRA A, RAJASHEKAR Y. Use of(Spreng.) essential oil as insecticidal and antifeedant agents against diamondback moth,(L.)[J]. Journal of plant diseases and protection, 2022, 129(2): 439-448.

[11] KOUNDAL R, DOLMA S K, CHAND G, et al. Chemical composition and insecticidal properties of essential oils against diamondback moth (L.)[J]. Toxin reviews, 2018, 39(4): 371-381.

[12] ARAÚJO M J C D, CAMARA C A G D, MORAES M M D, et al. Insecticidal properties and chemical composition ofL.,Cham. andRaddi essential oils againstL. [J]. Anais da academia brasileira de ciencias, 2020, 92(suppl 1): e20180895.

[13] HUANG X, GE S, LIU J, et al. Chemical composition and bioactivity of the essential oil from(Asteraceae) on(Lepidoptera: Plutellidae)[J]. Florida entomologist, 2018, 101(1): 44-48.

[14] HUANG X, HUANG Y, YANG C, et al. Isolation and insecticidal activity of essential oil fromDC. Against[J]. Toxins, 2021, 13(12): 842.

[15] 陈晨. 植物挥发性化合物DMNT毒杀小菜蛾的机制解析[D]. 合肥: 安徽农业大学, 2021.

[16] CHEN C, CHEN H, HUANG S, et al. Volatile DMNT directly protects plants againstby disrupting the peritrophic matrix barrier in insect midgut[J]. ELife, 2021, 10: e63938.

[17] YUSOFF N, ABD G I, OTHMAN N W, et al. Toxicity and sublethal effect of farnesyl acetate on diamondback moth,(L.) (Lepidoptera: Plutellidae)[J]. Insects, 2021, 12(2): 109.

[18] HYUN K K, SUN‐RAN C, GIL‐HAH K. Insecticidal and antifeeding activity ofmaterial against the diamondback moth,L.[J]. Entomological research, 2019, 49(1): 55-62.

[19] CAI Y, HU X, WANG P, et al. Biological activity and safety profile of monoterpenes againstL. (Lepidoptera: Plutellidae).[J]. Environmental science and pollution research international, 2020, 27(20): 24889-24901.

[20] ALAM T, JILANI G, CHAUDHRY A N, et al. Terpenes and phenolics in alcoholic extracts of pine needles exhibit biocontrol of weeds (and) and insect-pest ()[J]. Journal of king saud university science, 2022, 34(4): 101913.

[21] TARUN K V, VAGISHA R, SANJIV M, et al. Bioactivity of ageratum conyzoides (L.) (Asteraceae) on feeding and oviposition behaviour of diamondback moth(L.) (Lepidoptera: Plutellidae)[J]. International journal of tropical insect science, 2019, 39(4): 311-318.

[22] ZHANG H, CHEN G, LYU S, et al. Insecticidal activities against odontotermes formosanus andand corresponding constituents of tung meal from[J]. Insects, 2021, 12(5): 425.

[23] 车午男, 李修伟, 梁亚萍, 等. 紫穗槐种子萃取物对小菜蛾活性及毒理学初探[J]. 河北农业大学学报, 2018, 41(4): 18-21.

[24] SANGAVI R, EDWARD Y S J T, NELSON S J, et al. Anti-insect activities of solvent extracts ofon the diamondback moth,(L.)[J]. Pest management in horticultural ecosystems, 2019, 25(1): 63-68.

[25] PHUKHAHAD S, AUAMCHAROEN W. Biological activity of ethanol extracts and essential oils from(Zingiberaceae),(Gramineae), and(Acoraceae) against(Lepidoptera: Plutellidae)[J]. Journal of entomological science, 2021, 56(2): 172-184.

[26] DOLMA S K, SURESH P S, SINGH P P, et al.Insecticidal activity of the extract, fractions, and pure steroidal saponins ofWall. ex D. Don for the control of diamondback moth (L.) and aphid (Koch)[J]. Pest management science, 2020, 77(2): 956-962.

[27] 段雨, 吴兰军, 宋程飞, 等. 绿薄荷茎叶乙醇提取物对小菜蛾幼虫解毒酶系的影响[J]. 山西农业科学, 2020, 48(9): 1503-1509.

[28] PUMNUAN J, SANNONGMUEANG T, INYOD T, et al. Insecticidal properties of bastard oleaster () extracts against diamondback moth ()[J]. Acta horticulturae, 2019(1259): 135-142.

[29] CLÉIA G V S, JOSÉ C S O, CLAUDIO A G C. Insecticidal activity of the ethanolic extract fromspecies againstL. (Lepidoptera: Plutellidae)[J]. Revista facultad nacional de agronomía medellín, 2018, 71(2): 8543-8551.

[30] KYUNG H B, JEONG K S, JONGCHEOL A, et al. The effect ofextract on larval survival and development and oviposition behavior ofL. (Lepidoptera: Plutellidae)[J]. Journal of Asia-Pacific entomology, 2018, 21(1): 29-36.

[31] REDDY S G E, DOLMA S K, VERMA P K, et al. Insecticidal activities ofL. extract and parthenin against diamondback moth,(L.) and aphid,Koch[J]. Toxin reviews, 2018, 37(2): 161-165.

[32] TIAN X, LI Y, HAO N, et al. The antifeedant, insecticidal and insect growth inhibitory activities of triterpenoid saponins fromTurcz against(L.)[J]. Pest management science, 2021, 77(1): 455-463.

[33] YANG H, PIAO X, ZHANG L, et al. Ginsenosides from the stems and leaves ofshow antifeedant activity against(Linnaeus)[J]. Industrial crops & products, 2018, 124: 412-417.

[34] JABABU N, KOPTA T, POKLUDA R. Anti-feedant activity of selected botanical extracts and their combinations onlarvae[J]. Acta horticulturae, 2019(1242): 941-948.

[35] RUIZ C G L, COSTA M S, SEABRA J S, et al. Production of natural insecticide on management of(Linnaeus, 1758) (Lepidoptera: Plutellidae) in family farming[J]. Journal of agricultural science, 2021, 13(7): 47-54.

[36] MPUMI N, MACHUNDA R L, MTEI K M, et al. Insecticidal efficacy of,andextracts againstandoncrop in Northern Tanzania[J]. Aims agriculture and food, 2021, 6(1): 185-202.

[37] ELAINE C B F, ISABELLA C V N, WELTON A A, et al. Opuntia ficus-indica cladode extract is an embryotoxic, larvicidal, and oviposition-deterrent agent for the diamondback moth,[J]. Crop protection, 2021, 139: 105351.

[38] FERREIRA E A, SOUZA S A, DOMINGUES A, et al. Phytochemical screening and bioactivity ofspp. in the control of(Lepidoptera: Plutellidae)[J]. Insects, 2020, 11(9): 596.

[39] SILVA P R C, CAMAROTI J R S L, ALMEIDA W A, et al.leaf extract is a larvicidal, pupicidal, and oviposition deterring agent against[J]. South African journal of botany, 2019, 127: 124-128.

[40] GUPTA M K, MARANGMEI L, SARMA A K. Efficacy of extracts of some ferns against[J]. Indian journal of entomology, 2018, 80(4): 1667-1671.

[41] ZHU J Y, XIANG Z W, ZHANG S Z, et al. A new pest management strategy: transforming a non-host plant into a dead-end trap crop for the diamondback mothL.[J]. Pest management science, 2020, 77(2): 1094-1101.

[42] KRIEGER J, BREER H. Olfactory reception in invertebrates[J]. Science, 1999, 286(5440): 720-723.

[43] 张洁, 李雪娇. 五加皮丙酮提取物杀虫活性的初步研究[J]. 西北农业学报, 2019, 28(11): 1906-1912.

[44] VOGT R G, RIDDIFORD L M. Pheromone binding and inactivation by moth antennae[J]. Nature, 1981, 293(5828): 161-163.

[45] CLYNE P J, WARR C G, FREEMAN M R, et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in[J]. Neuron, 1999, 22(2): 327-338.

[46] VOSSHALL L B, AMREIN H, MOROZOV P S, et al. A spatial map of olfactory receptor expression in theantennae[J]. Cell, 1999, 96(5): 725-736.

[47] VOGT R G, RIDDIFORD L M, PRESTWICH G D. Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of[J]. Proceedings of the national academy of sciences of the United States of America, 1985, 82(24): 8827-8831.

[48] CAI L, CHENG X, QIN J, et al. Expression, purification and characterization of three odorant binding proteins from the diamondback moth,[J]. Insect molecular biology, 2020, 29(6): 12664.

[49] WANG M M, HE M, WANG H, et al. A candidate aldehyde oxidase in the antennae of the diamondback moth,(L.), is potentially involved in the degradation of pheromones, plant-derived volatiles and the detoxification of xenobiotics[J]. Pesticide biochemistry and physiology, 2020, 171: 104726.

[50] CHALLA G K, FIRAKE D M, BEHERE G T. Bio-pesticide applications may impair the pollination services and survival of foragers of honey bee,Fabricius in oilseed brassica[J]. Environmental pollution, 2019, 249: 598-609.

[51] 金晶, 罗宁, 李金鸿, 等. 13种农药对甘肃定西和武威地区小菜蛾的毒力及药效[J]. 西北农业学报, 2021, 30(10): 1573-1580.

[52] 谷莉莉, 仇学平, 陈永明, 等. 几种生物农药对设施小白菜小菜蛾的防控效果[J]. 中国植保导刊, 2019, 39(12): 76-78.

Research Progress in Inhibition of Plant Extracts in

LI Shanshan, YANG Min, WU Weijian*

(Institute of Subtropical Agriculture, Fujian Academy of Agronomy Sciences, Zhangzhou, Fujian 363005, China)

With the promulgation and implementation of the “Food Safety Law”, “Agricultural Product Quality and Safety Law” and other regulations, it has become a trend to choose botanical insecticides in the control of agricultural pests. Starting with different plant extracts, this paper summarized the research progress in plant-derived small molecular substances, oil-soluble components and water-soluble components in the integrated control ofaround the world in recent years, so as to explore the feasibility and research prospects of plant-derived pesticides against.

plant extract;;insecticide; research progress

S436.341.2+4

A

2095-3704(2022)03-0305-06

李珊珊, 杨敏, 吴维坚. 植物源提取物对小菜蛾抑制作用研究进展[J]. 生物灾害科学, 2022, 45(3): 305-310.

10.3969/j.issn.2095-3704.2022.03.50

2022-06-30

2022-08-26

福建省农业科学院对外合作项目(DWHZ-2022-15)、福建省农业科学院创新团队项目(CXTD2021001-2)和漳州市自然科学基金项目(ZZ2021J37)

李珊珊(1982—),女,助理研究员,主要从事香药植物挥发性成分应用研究,332025367@qq.com;*通信作者:吴维坚,高级农艺师,307798268@qq.com。

猜你喜欢

小菜蛾水提物证实
十字花科蔬菜小菜蛾与半闭弯尾姬蜂种群动态研究
武汉地区春甘蓝小菜蛾发生动态与气象因子关系研究
鬼针草水提物对大鼠肾结石改善作用
小菜蛾半闭弯尾姬蜂简化扩繁技术
天麻水提物HPLC指纹图谱的建立及其真伪鉴别
枇杷叶水提物的急性毒性和遗传毒性
去哪儿、携程互咬一路厮打至商务部沈丹阳证实收到举报材料
室内饲养小菜蛾与田间种群生物学特性比较研究
丹参水提物对缺血—再灌注心律失常大鼠的保护作用及机制
薄轨枕的效力得到证实