APP下载

从常规与非常规油气成藏的正相关性角度预测有利区
——以孤岛1号凹隆域低部位为例

2022-07-30郝牧歌张金功马士磊

油气地质与采收率 2022年4期
关键词:油气藏烃源运移

郝牧歌,张金功,马士磊

(西北大学地质学系,陕西西安 710069)

济阳坳陷已发现大量常规油气藏,而以页岩油为主的非常规油气藏勘探是济阳坳陷下步油气勘探的重点[1-2]。前人通过已发现油气藏寻找未发现油气藏主要是采用扩边法[3],在油气藏分布相邻或相近的情况下取得了很好的应用效果,但济阳坳陷已发现常规油气藏分布较广泛、勘探较完善,现有研究并未充分考虑常规油气藏与非常规油气藏的关系,且扩边法难以对与已发现非常规油气藏距离较远的区域进行有利区预测。

笔者依据常规与非常规油气藏的成藏正相关性,提出基于相关性油气藏范围的非常规油气藏有利区预测方法。根据已发现常规油气藏与未发现非常规油气藏的相关性分析结果,以已发现的烃源岩上覆层系常规砂岩型油气藏、烃源岩层系非常规砂岩型油气藏及部分烃源岩层系非常规泥页岩型油气藏为依托,进行相关性基础研究以及相关性油气藏范围、运移情况、储集体特征研究,进而对烃源岩层系非常规油气藏进行有利区预测,以期为济阳坳陷下步的非常规油气勘探提供新的思路。

1 相关性油气藏概念

济阳坳陷常规与非常规油气藏具有统一性与分布相关性。统一性是指常规与非常规油气藏在凹隆组合构造中具有统一的油气来源及运移驱动力。油气自凹隆域最低部位起始,首先在烃源岩层系内部运移,接着沿断层运移至上覆层系,随后继续在上覆层系内部运移,这一连续过程受统一的油气驱动力影响,会在凹隆域内部各层系形成常规砂岩型油气藏、非常规砂岩型油气藏及非常规泥页岩型油气藏3 类具有同一油气来源的油气藏,这就是油气成藏的统一性(图1)。

图1 济阳坳陷3种主要油气藏类型的油气成藏统一性模式Fig.1 Uniformity model of oil and gas accumulation of three main types of oil and gas reservoirs in Jiyang Depression

统一性是常规与非常规油气藏分布相关性的基础。分布相关性有2种,即断层相关和叠置相关。断层相关指依靠同一断层作为输导通道的油气藏彼此具有正相关性。来自烃源岩层系的油气运移至断层,在断层上盘形成非常规油气藏,并进一步沿断层向上运移,最终从断层下盘运出并形成常规油气藏。因此若在上覆层系存在已发现的油气藏,则围绕断层在运移至此所经过层系的优质储层中一定会有未发现的油气藏;若在烃源岩层系中存在已发现的油气藏,且有断层在其油气的有效运移范围内,则在该断层控制范围内依照成藏规律很有可能存在未发现的油气藏。

叠置相关是指烃源岩层系中的泥页岩型油气藏与砂岩型油气藏多呈叠置分布,且具有正相关性。烃源岩层系内发育砂体的沉积相带中存在砂岩与泥页岩的互层带。互层带部位可出现大量裂缝[4],为油气的运聚成藏提供便利(图2)。这些砂岩、泥页岩叠置分布的层段,如罗67 井埋深为3 376~3 388 m、渤深4井埋深为4 035~4 041 m、陈40井埋深为1 446~1 453 m 井段的砂泥互层岩心中明显可见裂缝,且裂缝中见油气充填,同时气测曲线反映的油气层厚度超过对应砂体的厚度。砂岩型油气藏附近存在泥页岩油气显示、泥页岩高产井,如邵25、罗12 和大18 井。这种砂泥互层在砂体沉积相带广泛发育,且多呈大面积连片式分布。

图2 济阳坳陷砂泥互层裂缝发育特征Fig.2 Development characteristics of fractures in sand-mud interbeds in Jiyang Depression

断层为沟通烃源岩层系与常规储层的主要通道,断陷盆地大量常规油气藏的发育与断层有关[5-7]。断层相关或叠置相关的油气藏称为相关性油气藏,其成藏过程中油气运移路径所经过的岩层范围为相关性油气藏范围,烃源岩层系离断层较远的油气藏叠置相关于离断层较近的油气藏,后者又相关于烃源岩上覆层系油气藏。济阳坳陷常规与非常规油气藏具有统一性与分布相关性的研究成果,为基于研究区大量已发现上覆层系油气藏预测烃源岩层系的非常规油气藏提供了依据。

2 相关性油气藏的判断

孤岛凸起及周边烃源岩层系和上覆层系中已发现油气藏主要有沙三段油源、沙四段油源和沙三段-沙四段混源3 种情况[8-10]。其中孤岛1 号凹隆域较低部位烃源岩层系油气藏主要为沙三段油源[11],其大面积连片分布且被孤岛凸起北部断层切断。而孤岛凸起馆陶组砂岩型油气藏为沙四段—沙三段混源[11],油气经孤岛凸起南、北两条断层共同汇聚成藏。孤岛凸起北部断层活动性较好,具有油气运移通道的作用[12-14]。孤岛1 号凹隆域低部位与斜坡部位油气藏被孤岛凸起北部断层分割(图3,图4),综合判断孤岛1 号凹隆域较低部位烃源岩层系油气藏与孤岛凸起馆陶组砂岩型油气藏为断层相关的油气藏。

为更清晰地反映各油气藏与断层的相关性,对自孤岛1号凹隆域两侧低部位分别向孤岛凸起的义132 井1 号剖面和渤古1 井1 号剖面(图3,图4)进行分析,发现其油气藏明显呈阶梯状排列。这是由于渤深4井、义132井周围发育的断层在孤岛1号凹隆域烃源岩层系内分布较为局限,难以起到对油气藏的分割作用,也反映出油气沿断层向孤岛凸起运移。分析自孤岛1 号凹隆域西侧低部位向隆线的line1240 剖面,发现其烃源岩层系油气藏也呈阶梯状排列。综上所述认为孤岛1号凹隆域低部位油气藏与孤岛凸起油气藏为断层相关性油气藏。

图3 孤岛1号凹隆域低部位相关性油气藏平面分布特征及与孤北断层的关系Fig.3 Planar distribution characteristics of correlated oil and gas reservoirs in low part of Gudao No.1 sag-uplift band and their relationships with Gubei fault

图4 孤岛1号凹隆域低部位相关性油气藏剖面发育特征Fig.4 Sectional development characteristics of correlated oil and gas reservoirs in low part of Gudao No.1 sag-uplift band

3 相关性油气藏范围的研究基础

从相关性油气藏的概念可知,相关性油气藏范围的研究有4个基础。相关的油气藏应具有相同的运移驱动力,需研究各油气藏所在层系反映统一驱动力单元的凹隆域,以及烃源岩分布情况。相关性油气藏应围绕同一断裂带分布于不同层系或相邻、叠置于同一砂层组,该砂层组周围发育存在裂缝的砂泥互层,所以需要研究断层与邻近岩层的组合构造、砂体展布和砂泥互层随埋深形变及产生裂缝的情况。相关性油气藏应具有同一油气来源、运移路径部分重合,所以需进行油源对比研究其油气的运移路径。

3.1 凹隆域及烃源岩的分布

凹隆域为油气藏所在层系具有统一驱动力的区域。利用T6地震反射层对烃源岩层系凹隆域进行划分。其中孤岛1号凹隆域的槽线为孤岛凸起北部一系列凹陷的连线,隆线部分为孤岛凸起边界断层、部分为孤岛凸起与陈家庄凸起之间的地层区域高点,为一个侧凹侧隆型凹隆域,发育一条脊线(分流线)(图3)。凹隆域斜坡低部位烃源岩层系的暗色泥页岩厚度在400 m 以上,斜坡高部位暗色泥页岩厚度约为100 m。凹隆域低部位总有机碳含量为3%,以Ⅰ型干酪根为主,沙四段烃源岩成熟度较高但分布有限,沙三段主力烃源岩以沙三段下亚段为主,虽然成熟度不高,但已达到生烃门限[15-16]。烃源岩展布总体上与凹隆域展布一致,脊线(分流线)基本与烃源岩等厚线垂直。因此凹隆域可以反映导致流体运移的驱动力,即上覆静岩压力和烃源岩生烃增压情况。该凹隆域内宏观上油气由低部位向脊线汇聚,进而向高部位运移。

3.2 断层与邻近岩层的组合构造

断面具有相对较小的运移阻力,往往使得断层成为油气运移的最佳通道[17-18]。孤岛1 号凹隆域低部位的油气藏主要受孤岛凸起北部的孤北断层控制,从烃源岩层系发育的油气藏展布情况来看,孤北断层对油气藏具有分割作用(图3,图4),为一条断切斜坡发育的断层。其主要由沙四段上亚段断至馆陶组或明化镇组,埋深约为1 000~4 000 m(图3),为一条持续性活动的断层,油气经该断层可向高部位继续运移[12]。断层与两侧岩层主要呈半脊半谷的关系,利于油气由上盘运移至断层,由下盘运移出断层。

3.3 烃源岩层系的砂体展布

在孤岛1号凹隆域低部位烃源岩层系中的沙三段上亚段、中亚段、下亚段和沙四段上亚段均有发育砂体的沉积相带分布[19-20]。其中,沙三段上亚段顺坡发育水下扇微相,物源为埕子口凸起附近,该微相的发育与主要运移驱动力方向平行,位于脊线附近,易在其上倾部位形成岩性圈闭;沙三段中亚段发育河口坝微相和水下分流河道微相,河口坝微相易发育透镜体型储层,水下分流河道微相的物源来自于孤岛凸起方向,利于形成油气运移至孤北断层的通道;沙三段下亚段和沙四段上亚段均发育扇三角洲相,但被断层切割(图5)。在沙三段下亚段扇三角洲相边缘的义160 井3 127.5 m 处砂泥互层岩心中发育裂缝且明显含油(图6),表明发育砂体的沉积相带中的砂泥互层发育大量的裂缝,可以作为优质的输导层及储层[19-20]。该凹隆域内其他相邻位置的岩心及荧光薄片观察结果也显示具有相似的特征(图7)。

图5 孤岛1号凹隆域烃源岩层系沉积砂体展布Fig.5 Sedimentary sand body distribution in source rock strata in Gudao No.1 sag-uplift band

图6 孤岛1号凹隆域义160井综合柱状图Fig.6 Comprehensive bar chart of Well Yi160 in Gudao No.1 sag-uplift band

3.4 油气来源及运移路径

判断油气运移路径首先需判断该处岩层能否作为流体运移通道。一般认为烃源岩层系中的砂岩致密、孔渗较低,不利于油气运移[21-22]。但如前文所述如果该处岩层中发育裂缝,则油气可以通过裂缝进行运移。由于裂缝主要发育于砂泥互层,而取样岩心直径较小,难以分析砂泥互层破裂后的渗透率变化,因此针对渤南地区烃源岩层系分别采取能反映该凹隆域一般岩性的砂岩与泥页岩岩心,先测其渗透率,再对其加压至相应地层压力,并测量其出现裂缝状态的渗透率。其中砂岩岩心取自义3-7-7 井3 119.94 m 处,为不等粒长石岩屑砂岩;泥页岩岩心取自罗67 井3 309.80 m 处,为白云质泥页岩。研究结果表明,出现裂缝后无论是砂岩还是泥页岩的渗透率都会大幅增加,足以使油气在其中运移(表1)。此外,对孤岛1号凹隆域烃源岩层系的部分含油岩心进行铸体薄片观察,发现其裂缝中具有较好的荧光显示,且荧光主要呈横向分布,也反映该处油气存在侧向运移(图7)。

表1 孤岛1号凹隆域砂岩、泥页岩岩心破裂前后渗透率对比Table1 Permeability comparison of sandstone and shale cores in Gudao No.1 sag-uplift band before and after rupture

图7 孤岛1号凹隆域岩心荧光薄片观察特征Fig.7 Observation characteristics of cores and fluorescent thin sections in Gudao No.1 sag-uplift band

孤岛1号凹隆域烃源岩层系低部位油气藏主要为沙三段油源,而孤岛凸起油气藏主要为沙四段—沙三段混源[23]。由于孤岛1号凹隆域的油气运移驱动力与凹隆域相关性较高,且孤北断层可以作为油气运移通道,综合判断在烃源岩层系油气自凹隆域低部位顺层向脊线汇聚,在孤北断层处进入断面并向上运移,在各上覆层系运出断层形成油气藏,这与油气来源研究成果相符。

4 相关性油气藏范围分析及有利区预测

4.1 相关性油气藏范围分析

具有相关性的油气藏中油气运移覆盖到的总范围为相关性油气藏范围。相关性油气藏范围内油气来源相同(图8,图9),在其烃源岩发育范围内,先前重视不够的有利砂岩、砂泥互层、裂缝性泥页岩储层中有未发现的油气藏。而该相关性油气藏范围中,烃源岩层系发育大量裂缝,大幅增加了砂岩、泥页岩及砂泥互层的输导能力及储集能力。

图8 孤岛1号凹隆域烃源岩层系相关性油气藏范围平面分布特征Fig.8 Planar distribution characteristics of correlated oil and gas reservoirs in source rock strata in Gudao No.1 sag-uplift band

图9 孤岛1号凹隆域烃源岩层系相关性油气藏范围剖面分布特征Fig.9 Profile distribution characteristics of correlated oil and gas reservoirs in source rock strata in Gudao No.1 sag-uplift band

4.2 有利区预测

在油气运移过程中,对于烃源岩层系,由于盖层、保存条件整体较好,油气会在遇到有利储层时聚集。在相关性油气藏范围内对烃源岩层系进行有利区预测。首先,排除过于靠近低部位的区域,这是由于该区域虽然裂缝发育情况较好,但易被未成熟干酪根充填,且济阳坳陷的烃源岩相比中国其他地区的烃源岩成熟度较低,同时孤岛1 号凹隆域过于靠近低部位的区域并不存在油气长距离运移通道,导致没有足够的油气经过该处[15]。其次,排除因地层埋深不够,未能产生供油气运移的裂缝,对于烃源岩层系岩石破裂段一般为埋深2 000 m 以下[24];对于断层两侧的泥页岩、砂岩、砂泥互层,由于受断层影响裂缝发育较多,因此会发育较好的储层,可预测为有利区;而远离断层的区域,砂泥互层产生的裂缝多于泥页岩层及砂岩层,因此发育砂体的沉积相边界等砂泥互层大量发育位置也可以预测为有利区;在此基础上还要考虑与凹隆域斜坡走向相同的砂体,若油气来源同时与凹隆域走向相近,则会在上倾高部位遇岩性圈闭形成油气藏。最后,预测时需考虑暗色泥页岩厚度,本次预测有利区要求某一亚段中暗色泥页岩厚度超过50 m。

依据已发现油气藏分布情况对有利区预测进行分级,由于同一相关性油气藏范围内的油气成藏具有正相关性,因此有利区内存在已发现油气藏对有利区的判断就越易于把握。有利区存在叠置或相邻的烃源岩层系油气藏、有利区紧邻断层且上覆层系发育油气来自断层的油气藏这2 种情况下,为优先勘探的有利区,其他与已发现油气藏运移路径重合的有利区可在优先勘探有利区信息收集后进一步勘探(图10)。

对孤岛1 号凹隆域低部位沙三段上亚段、中亚段、下亚段和沙四段上亚段依据上述原则进行有利区预测,结果(图10)表明,对于沙三段上亚段,绝大多数有利区预测范围内已经发现油气藏,可依据有利区范围扩边。对于沙三段中亚段,未发现油气藏的有利区主要位于孤岛凸起北部义133井附近发育砂体的沉积相带,该有利区在各油气来源方向均有已发现油气藏分布,且经过该有利区的油气运至已发现的孤岛凸起馆陶组油气藏中,其内部砂泥互层分布较多且靠近断层,裂缝性储层发育较好,为该亚段最主要的有利区。对于沙三段下亚段,仅义133 北部断层周边发现油气藏;义77 井见油气显示表明有油气运移至此,但义77 井处于与脊线(分流线)相对的谷线处,不利于油气汇聚,且未钻遇有利的裂缝性砂泥互层;而义128 井北部发育砂体的沉积相带砂泥互层分布较好且断层较为发育,产生大量次生裂缝,储集性较好,且油气来源方向有义77井钻遇油气显示,为该亚段主要的有利区。对于沙四段上亚段,暗色泥页岩主要发育于凹隆域西北方向,范围较局限,该层未发现油气藏,应通过沙三段下亚段有利区进一步认证;若沙三段下亚段义77井所在裂缝性砂泥互层有利区勘探获得突破,可再勘探该亚段有利区。

图10 基于相关性油气藏范围分析的孤岛1号凹隆域烃源岩层系有利区预测Fig.10 Favorable area prediction for source rock strata in Gudao No.1 sag-uplift band based on correlation range of oil and gas reservoirs

5 结论

从常规与非常规油气藏的分布相关性研究入手,以济阳坳陷孤岛1号凹隆域为研究区,提出通过研究相关性油气藏范围来进行有利区预测的研究方法。济阳坳陷烃源岩上覆层系的油气藏由于下生上储的特征,与烃源岩层系油气藏围绕断层具有成藏的正相关性。而对于烃源岩层系的油气藏,其中的砂泥互层由于裂缝的连通作用,形成砂岩与泥页岩油气藏的叠置相关,可通过油气来源、断层输导能力、油气藏纵向分布等方面综合判断某一范围内油气藏的相关性。如果油气藏具有相关性,则其自低部位至各油气藏之间所有的油气运移路径的总和可称为相关性油气藏范围。而在烃源岩层系内,对应相关性油气藏范围中的优势储层很有可能会存在未发现油气藏,可据此对烃源岩层系非常规油气藏进行有利区预测。依据相关性油气藏范围研究结果,对孤岛1号凹隆域低部位沙三段上亚段、中亚段、下亚段和沙四段上亚段4 个烃源岩层系进行有利区预测,主要为与已发现油气藏相关的区域中满足单一亚段暗色泥页岩厚度大于50 m、存在活动性断层及发育砂体的沉积相带,且已发现油气藏基本处于预测的有利区范围内。

猜你喜欢

油气藏烃源运移
页岩油多孔介质孔隙尺度运移残留规律分析
一种全浸式油气藏工程课程设计方式研究
黄河口凹陷烃源岩有机地球化学特征分析
苏德尔特地区南一段断裂向砂体侧向分流运移油气形式及其与油气富集关系
磁化微咸水及石膏改良对土壤水盐运移的影响
二连盆地伊和乌苏凹陷烃源岩地球化学特征与生烃潜力
川东北地区陆相烃源岩评价
曲流河复合点坝砂体构型表征及流体运移机理
连续型油藏形成的条件与分布特征
关于岩性地层油气藏地质理论分析与勘探技术探讨