APP下载

矿物材料去除水中抗生素的研究进展

2022-04-26李矿军张秀丽

工业水处理 2022年4期
关键词:黏土矿物改性

李矿军,张秀丽

(中国地质大学(北京)数理学院,北京 100083)

近年来,科学工作者发现一些新兴污染物(EC)如治疗药物、化妆品和香料等进入环境后会破坏生态过程,对人类和生态环境造成不良影响〔1〕。常用的抗生素药物如阿莫西林、青霉素和红霉素等多用于治疗细菌和其他微生物引起的炎症。由于抗生素大多数为水溶性,不易被肠道吸收〔2〕,代谢不完全,部分抗生素以母体形式伴随其代谢产物排出体外,从而进入环境中。这些化合物在水中持久性强、难降解,经市政污水处理厂(STP)处理后仍有残留〔3〕,加速致病菌抗药性的形成。抗生素在水环境中的积累引起人们对其潜在毒性和生态影响的关注。快速有效降解环境中的抗生素成为近年来科学研究的重要课题。

去除抗生素常见的方法有吸附法、生物电化学法、膜生物反应器(MBR)、电化学法、人工湿地和高级氧化法(AOPs)等。此外,碳纳米材料〔4〕、g-C3N4〔5〕、藻类〔6〕、微生物〔7〕等也用于抗生素的去除中。与人工合成材料相比,矿物材料具有储藏量大、生产成本低、操作方便等特点,在不同抗生素处理工艺均有广泛应用〔8〕。笔者对抗生素在水中积累的方式,矿物材料去除抗生素的应用情况进行了总结和分析,以期为研究人员了解抗生素的积累,选择合适的去除方法提供一定理论依据。

1 抗生素进入水环境的途径

抗生素根据化学结构可分为氟喹诺酮类、四环素类、β-内酰胺类、大环内酯类、磺酰胺类等,目前其用量处于较高水平且持续增加,导致水中的抗生素不断积累。抗生素进入不同水生环境的途径如图1所示。

图1 抗生素进入不同水生环境的途径Fig.1 Pathways of antibiotics entering different aquatic environments

仅有25%的抗生素会被人体或动物体有效吸收利用〔9〕,其余部分随代谢产物被排出体外,通过下水道进入城市水循环系统,随后流入污水处理厂。污水处理厂通过凝结、沉淀、消毒和澄清处理以去除废水中的部分污染物,但其工艺并非专注于抗生素类污染物,处理后的废水仍包含多种抗生素〔10〕,被排放到地表水中。医院废水、制药厂排放污水、农牧场动物的排便中含有的抗生素不会被环境降解,也会在地表水中不断积累,被认为是抗生素进入地表水的重要来源。调查显示〔11〕,临近农场的河流更易检出抗生素,其次为医院和制药厂。以美国某地区为例〔12〕(图2),多种抗生素在地表水中的浓度都达到μg∕L级,环丙沙星(CIP)、阿莫西林(AMX)、四环素(TET)和诺氟沙星(NOFX)等常用抗生素的积累达到较高水平。除用量外,积累量还与抗生素的环境稳定性有关。四环素和氟喹诺酮类抗生素的疏水性好,且与黏土或有机颗粒具有相互作用,更易被悬浮物吸收,因此这几种抗生素更易在水中积累。水环境中抗生素的积累会扰乱水生生态系统,加速抗药性的产生。

图2 美国某地区水中抗生素统计数据Fig.2 Statistics of antibiotics in water in some area of the United States

海水中的抗生素多数源于水产养殖。鱼类饲料中的抗生素可作为生长促进剂,未被食用的饲料及鱼类代谢后残留的抗生素残留在海水和养殖厂沉积物中〔13〕。抗生素在海水中不断富集,超过生态系统的自净能力〔14〕,导致海产品中也开始含有抗生素。相比于地表水中抗生素的进入方式,抗生素进入海水的方式较少但更直接,且没有相关机构进行处理。控制海水中抗生素的增加应尽量从源头出发,控制甚至杜绝含抗生素类饲料的使用。

STP完成处理工作后会产生生物固体残渣,通常可作为肥料施用到土地中〔10〕。若此地区土壤具有高渗透性,地下水位相对较浅,施用肥料中含有的大量抗生素无法被作物完全吸收,剩余抗生素则会进入地下水〔15〕。城市下水道系统的老化和恶化,使部分污水泄漏或渗入周围的土壤中,随后污水中的抗生素和其他污染物将进入浅层地下水〔16〕。在池塘进行水产养殖时,水中残留和沉积物中含有的抗生素会不断渗透到地下水中〔17〕。此外,养殖场粪堆的长期堆积也是抗生素渗透进入地下水的途径之一〔18〕。

2 矿物材料去除抗生素

2.1 黏土及其改性材料

黏土是土壤的重要成分,由岩石风化、侵蚀、沉积而成〔19〕,具有纤维状、片层状和空心管状3种结构(见图3)〔20-23〕,其储量丰富,在工业、陶瓷和环境处理方面都有重要应用。黏土对抗生素药物具有高亲和力,在制药工业中可用作药物载体,增强药物的稳定性,也可用作胃肠道保护剂。黏土通过离子交换、氢键和范德华力将抗生素容纳到层间间隔中,可去除水中残留的抗生素〔24〕,是一种良好的吸附剂材料。但仅用黏土去除抗生素的能力有限,需进一步改性。改性方法有催化剂负载〔25〕、有机改性〔20〕、离子改性〔26〕和磁改性〔27〕等。A.M.AWAD等〔21〕研究了天然和改性黏土材料对有机污染物的吸附情况,指出黏土成本较碳材料的低,且对一些有机物的吸附能力比碳材料高,在去除环境污染物方面有广泛应用。

图3 蛭石(a)、埃洛石(b)的SEM照片及埃洛石(c)、坡缕石(d)的TEM照片Fig.3 SEM of vermiculite(a),halloite(b),and TEM of halloite(c),palygorskite(d)

不同类型黏土的特点、改性方法及去除抗生素的能力如表1所示。

表1 黏土矿物对抗生素的吸附性能Table 1 Adsorption properties of clay minerals for antibiotics

蒙脱石是一种片层状的黏土,具有结晶度高、阳离子交换容量(CEC)高、比表面积较大的特点〔46〕,有大量研究将其用于抗生素的吸附。蒙脱石在低酸性溶液中对环丙沙星的吸附容量高达330 mg∕g〔29〕,若处于碱性环境中吸附量有所下降。蒙脱石的吸附能力也受温度和抗生素浓度的影响,温度和抗生素浓度越高,其吸附能力越弱。为达到更高的吸附效果,可在蒙脱石表面涂覆TiO2或ZnO纳米颗粒〔47〕,或引入Fe3+和Mn4+〔48〕,改性后的材料能完全去除水中的土霉素。将磁性材料负载到蒙脱石能提高其吸附能力,吸附质的分离也更加方便〔49〕。

伊利石结构与蒙脱石类似,但其层间阳离子为钾离子,电荷小且不易被交换,吸附抗生素的能力不如蒙脱石,常用于吸附一些金属离子。M.MEZNI等〔50〕将伊利石制成人工合成沸石,提高了天然伊利石的吸附能力,可从水溶液中有效吸收去除恩诺沙星。改性伊利石对抗生素能达到较高的吸附水平。

蛭石具有大的表面积、良好的吸附能力,可净化水中的污染物。蛭石与有机分子复合后具有疏水性〔51〕,对抗生素的吸附能力大幅提高。蛭石经两性表面活性剂改性后能同时改善对水中抗生素及重金属离子的亲和力〔20〕,可更好地去除污染物。

坡缕石和海泡石的主要结构形态为纤维状,比表面积大、孔隙多、成本低、储量大,可用于修复水中的重金属和有机物等。经硅酸盐杂化后的坡缕石对四环素类抗生素的吸附容量最高可达329.84 mg∕g〔41〕,与蒙脱土一样属于较高水平。坡缕石吸附多种抗生素时,先吸附疏水性较强的抗生素,使其有机碳含量增加,疏水性变强,之后吸附疏水性较弱的抗生素时受初始p H的影响变小〔52〕。海泡石和坡缕石虽然都具有较高的吸附能力,但单独探讨其吸附抗生素的研究较少。大多数研究者考虑其优异的吸附能力和较大的比表面积,且吸附仅发生在矿物外表面,不影响对抗生素的进一步处理〔38〕,将这2种物质用作复合材料的载体,以得到活性更高的催化剂或氧化剂。如将光催化剂g-C3N4负载到海泡石后〔53〕,黏土表面带负电的电子可减少电子和空穴的复合,有效提高了催化剂降解环丙沙星的能力。H.H.NAING等〔54〕将钒酸铋(BiVO4)负载到海泡石,发现光催化降解四环素的能力提高了2倍。

埃洛石是黏土中少有的具有空心管状结构的吸附剂,可用作纳米容器、纳米载体及吸附材料,去除水和空气中的污染物〔55〕。以埃洛石为模板、KOH为活化剂、无毒且可再生的羧甲基纤维素钠(CMC)为碳前体,可制得分级多孔碳〔56〕。该碳材料具有较强的吸附能力,对氯霉素的吸附量可达769.95 mg∕g。Yue MA等〔57〕用埃洛石开发出多孔分子印迹聚合物(PMIP),具有良好的稳定性和再生能力,可选择性吸附抗生素。D.PAPOULIS〔58〕总结了埃洛石复合方法及其去除各污染物的应用,发现复合埃洛石材料光催化降解抗生素的能力变强,在去除四环素方面有极大应用前景。朱鹏飞等〔59〕将光催化剂Ag3PO4负载于埃洛石,两者产生了界面效应和量子化效应,可更好、更稳定地降解水中残留的抗生素。

对于具有片状结构的黏土特别是蒙脱石,其层间可交换的阳离子较多,促进了与无机、有机阳离子的相互作用〔60〕,吸附容量高于其他类型的黏土。吸附能力差的黏土可通过离子改性〔35〕增加可供交换的离子,扩大层间间隙,从而达到较高的吸附水平。在过酸或过碱的环境中,离子交换作用会减弱,仅依靠氢键或范德华力等分子间的相互作用,吸附作用大大减弱〔29〕,因此研究黏土的最适p H是提升吸附能力的必备环节。经有机改性〔47〕和表面活性剂改性〔22〕后,黏土表面与抗生素结合的位点变多,吸附能力也有较大提升。酸改性〔51〕则利用黏土的溶胀性扩大结构的间隙,达到增强吸附能力的目的。负载光催化剂后,除吸附作用外,黏土材料又具有降解性能,去除能力更强。综上,黏土矿物与抗生素有很好的亲和力,是一种良好的吸附剂,通过增加接触位点、扩大结构间间隙或负载其他催化剂(见图4)〔36,47-54〕,可成为有效的抗生素去除材料。

图4 黏土改性方法及其去除抗生素机理Fig.4 Clay modification method and its mechanism for removing antibiotics

2.2 金属矿物及其改性材料

黏土矿物等非金属材料对抗生素的处理大多属于物理吸附过程。金属矿物对抗生素类化合物同样有亲和力,并伴有络合反应发生〔61〕,但对抗生素的吸附能力较低,远低于黏土类〔62〕。金属矿物较多应用于高级氧化工艺(AOP)去除水环境中的抗生素,通过Fenton反应、臭氧氧化和光催化等过程产生具有强氧化性的活性氧(ROS)和羟基自由基(·OH),有效降解水中的有机污染物。

经典Fenton反应用铁离子和H2O2产生·OH来降解污染物,因反应必须处于酸性环境,有大量铁离子残留,限制了其处理污染物的应用。Xiaocheng LIU等〔63〕介绍了Fenton反应的改进方法及反应机理(见图5),指出用Fenton反应去除抗生素时应考虑副产物的生成及降低成本。可用于Fenton反应的天然铁矿石有黄铁矿、黄铜矿和针铁矿等。某些矿物中含有Cu2+或在水中可自发形成H2O2和·OH,与Fenton法可产生协同作用,即类Fenton反应(F-1)。黄铜矿在反应中可产生Fe2+和H+,减少催化剂用量,同时促进pH的调节〔64〕。C.DROGUETT等〔65〕用黄铜矿作为非均相催化剂添加到异质电催化Fenton反应中,进行紫外(UV)照射,开发出新型非均相光电Fenton(HPEF)模式,并证明该模式可有效提高Fenton反应矿化头孢氨苄的能力。同样地,黄铁矿〔66〕也可通过HPEF模式降解水中的抗生素。针铁矿广泛存在于自然界中〔67〕,但仅具有非均相催化降解抗生素的能力,不能进行光催化降解过程。在含羧基生物炭的存在下〔26〕,针铁矿可与其发生协同作用,对抗生素的降解能力变强。金属矿物在抗生素去除工艺中的应用情况如表2所示。

表2 金属矿物对抗生素的去除性能Table 2 Removal performance of minerals for antibiotics

图5 Fenton反应(a)、光化学Fenton(b)、光电化学Fenton(c)、电化学Fenton(d)的反应机理Fig.5 Mechanism of Fenton(a),PF(b),PEF(c)and EF(d)

光催化反应是常见的高级氧化工艺之一。半导体被光源照射后产生活性电子-空穴对,与环境中的氧和水结合后生成超氧自由基(O2·-)和·OH,可加速氧化、还原反应和自由基反应。A.FUJISHIMA等〔78〕发现TiO2可用于光催化反应后,研究者不断寻求改性方法或新的光催化剂材料,对金属氧化物及改性方法的研究成为热点。金红石、锐钛矿和钛铁矿等〔75〕主要成分为金属氧化物,仅需简单操作即可用于光催化反应,成本低且具有较好的光催化性能。部分研究中的光催化剂仅响应紫外光,实际应用时可考虑用于紫外光照射消毒环节,增强对紫外光的利用率。构建非均相催化机制也可用于抗生素的降解,针铁矿经等离子体处理后表面的羟基密度升高〔74〕,可有效降解磺胺吡啶。不使用其他处理工艺,仅靠水中存在的Cu2+、Fe2+和Zn2+等金属离子也可促进抗生素的氧化或水解〔79〕。斑铜矿是一种Fe-Cu双金属硫化物矿物〔77〕,在弱酸环境中会释放Fe2+和Cu2+,在短时间内可活化过硫酸盐(PS),能够去除水中81.6%的四环素。

2.3 其他材料

油页岩主要由无定形硅石、石英及各种辅助矿物组成,对有机物和无机物都有很强的亲和性,可用于吸附水中的污染物。在高温条件下,油页岩吸附抗生素的性能比其他材料好得多〔80〕。浮石具有较大的表面积,常被用作水处理中的吸附剂和载体材料,弱酸条件和Cu2+能提高浮石的吸附能力,可高效去除四环素〔81〕。电气石是一种环状硅酸盐矿物,包含多种金属离子〔82〕,可用于修复被污染的土壤。Wenzhen DUAN等〔37〕用电气石吸附环丙沙星,但其吸附效果不如埃洛石和黑云母,需进一步优化。硅藻土是一种硅质岩石,成本低、储量大,可开发作为废水处理的吸附剂。将硅藻土浸泡在氯化镧溶液中即可完成改性〔83〕,操作简单,改性后的材料可高效吸附四环素。

生物炭和黏土矿物都是较廉价易获得的材料,且都可用于吸附水中的抗生素,若将这两种材料复合〔84〕,材料的表面活性和表面积均得到提升,吸附抗生素的能力变强。腐殖酸可用于改良土壤结构,对金属离子或有机污染物有吸附作用,也可通过复合方法进行改良〔85〕。Yuan LI等〔86〕开发了腐殖酸∕膨润土复合材料,可固定水中的Zn2+,从而抑制抗生素抗性基因的传播,对去除环境中的抗生素药物也起到一定作用。不足之处在于加入可溶性腐殖酸后,矿物材料达到吸附平衡的时间变长〔87〕,且对反应条件有较高要求。

3 总结与展望

抗生素的滥用及难降解性质导致水环境中的抗生素不断积累,生态环境平衡遭到破坏,耐药菌数量增多。减少环境中存在的抗生素已成为亟待解决的科学问题。通过控制抗生素滥用及加强废水处理能力可减少环境中的抗生素。黏土对抗生素有很好的吸附作用,且可达到食用级别,制作抗生素类药物或饲料时可添加部分黏土作载体,未被利用的抗生素会固定在黏土上,从而减少抗生素进入水环境中。

目前对水中抗生素的处理研究较多采用Fenton反应、光催化和吸附技术。其中矿物材料吸附去除抗生素时受环境影响较大,在不同p H下去除能力差别很大,研制出的新材料首先应探讨最适p H,处理时使用对应的缓冲溶液以保持高效的去除能力。黏土仅需简单吸附即可去除大量抗生素,达到饱和状态后通过调节pH将吸附物排出,方便再回收利用,且成本低、工艺简单,适于农场、医院和制药厂等含抗生素较多且复杂的环境使用。Fenton反应和光催化反应工艺复杂,可用于污水处理厂的最后处理环节,去除含量较低的污染物,确保进入自然环境中的水不再含有抗生素。

目前大多数研究集中在实验室阶段,污水处理的大规模应用较少涉及,且缺少动力学数据。考虑到自然环境中存在不同种类的抗生素或其他有机污染物,单一处理技术或材料往往无法完全去除废水中所有污染物,因此将不同处理工艺集成到现有废水处理系统中意义重大。

猜你喜欢

黏土矿物改性
改性废旧岩棉处理污水的应用研究
改性复合聚乙烯醇食品包装膜研究进展
硫化氢下铈锰改性TiO2的煤气脱汞和再生研究
不一般的黏土插画
能量矿物的选择及强磁按摩器的制作方法
煤泥水中煤与不同矿物相互作用的模拟研究
黏土多肉植物
对我国矿物加工工程技术的研究
报纸“黏土”等
纳米TiO2与SiO2改性PVA基复合涂膜研究