APP下载

被子植物同域物种形成研究进展

2022-03-17汪章沛陈林王贤荣

广西植物 2022年1期

汪章沛 陈林 王贤荣

摘 要:  同域物種形成是指在缺少地理隔离的情况下分化出新种,相比异域物种形成更为罕见,存在较多的研究空白。该文分析了近十年来与被子植物同域物种形成相关的国内外研究,着重论述同域物种形成的影响因素和种对间的生殖隔离。考虑到历史上的地理隔离难以确定,加之种对间亲缘关系很近,同域物种的判定容易引发争议。其成因可分为生态因素和突变因素:生态因素即特殊小生境产生的分化选择压,促使原始群体分化出差异显著的偏好,并借助资源竞争和协同演化不断加强;突变因素涉及杂交和多倍化,以异源多倍体成种的贡献最大,而同倍体杂交成种和同源多倍体成种虽广泛发生但少见成功案例。生殖隔离是影响物种形成的重要因素之一,可分为前隔离和后隔离,其中以花期隔离和传粉者隔离为主的前隔离起主导作用,而花粉竞争、配子不亲和以及杂种不活、不育和杂种衰退等后隔离会带来高额的生殖成本,从而加速前隔离或自交的演化。同域物种的形成是各方因素共同作用的结果,种间通常同时存在着较强的生殖隔离和一定的基因交流,以生态位竞争为前提,尤其是在充足的分化选择压下,即使基因流较为频繁也能分化形成同域物种。

关键词: 被子植物, 同域物种形成, 分化选择模型, 生殖隔离

中图分类号:  Q111.2

文献标识码:  A

文章编号:  1000-3142(2022)01-0014-11

基金项目:  国家自然科学基金(31300558, 32071782);江苏省基础研究计划项目(BK20130972);江苏省高校优势学科建设工程资助项目(PAPD);江苏高校品牌专业建设工程资助项目(TAPP)  [Supported by National Natural Science Foundation of China (31300558, 32071782); Basic Research Plan Foundation of Jiangsu Province (BK20130972); Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD); Top-notch Academic Program Project of Jiangsu Higher Education Institution (TAPP)]。

第一作者: 汪章沛(1997-),硕士研究生,研究方向为木犀属植物资源的保护与利用,(E-mail) 447549052@qq.com。

*通信作者:  陈林,博士,副教授,研究方向为植物种质资源的保护、开发与利用,(E-mail) clinechen@njfu.edu.cn。

Research progress of angiosperms sympatric speciation

WANG Zhangpei1,2, CHEN Lin1,2*, WANG Xianrong1,2

( 1. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,  China;

2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037,  China )

Abstract:  Sympatric speciation means that new species ignore the absence of geographic isolation. Compared with allopatric speciation, there are more blanks that need to be filled because of rarity. This paper analyzes the researches about angiosperms sympatric speciation in the past ten years, and focuses on the origin factors and reproductive isolation. Judging seems to be more difficult because of the uncertain historic geographic and close relationship between related species. The origin can be divided into ecological factors that mean destructive selection from special niches and gene factors that include hybridization and polyploids. The former drives ancestor into subgroups with different preferences and strengthened by resource competition and co-evolution. The latter creates species faster in places where the allopolyploid has most contribution, the homoploid hybrid and autopolyploid seem to be wide, but insignificant to the speciation. Similarly, reproductive isolation can be divided into the prezygotic and the postzygotic. The former plays a leading role, with more important flowering isolation and pollinator isolation, while the pollen competition, gamete incompatibility and the later that includes hybrid defect such as abortion, infertility and decline are slight and will accelerate the evolution of prezygotic as well as selfing because of high reproductive costs. In short, sympatric speciation requires the cooperation of various factors and the reproductive isolation can conexist with gene flow, which is driven by the niche competition, especially when the destructive selection is strong enough, sympatric speciation can continue even if the gene flow is frequent.

Key words: angiosperms, sympatric speciation, disruptive selection model, reproductive isolation

物种是生物学研究的基石和构成生物多样性的基础核心单元。它不仅是遗传信息在生物个体上的直接表达和遗传多样性的载体,而且也是构成群落和生态系统以及在宏观尺度上体现生物多样性的基本功能单位(吕昊敏等,2015;谢平,2016)。长期以来,物种的概念争议不断,一般来说物种作为一个独立演化的遗传谱系,其种内群体间的生殖隔离应远远小于种间群体,同时有着不同于其他物种的生态位和形态特征(龚佐山等,2012;李琪等,2014;刘健全,2016)。物种形成是新物种从旧物种中分化而出的过程,以种内变异为起点,进一步产生适应性变异群体,最终产生新种。主要有4种模式,即异域物种形成、边域物种形成、邻域物种形成和同域物种形成(Darwin, 1859; Coyne, 2004)。其中,强调地理因素阻碍种间基因流(gene flow among species),以及伴随生境变化的选择压差异的异域物种形成最为常见。而同域物种形成作为进化论的补充,主要强调小生境或传粉者等带来的分化选择压(disruptive selection pressure),结合基因突变或基因重组,促使原始群体在缺少地理隔离的情况下分化成不同物种,相比异域物种形成,同域物种形成尚有更多的空白有待研究(Dieckmann et al., 1999; 魏美才等,2010; Feder et al., 2013)。

被子植物豐富的多样性使得其物种演化机制不尽相同,现有的模型难以全面解释不同物种的形成机制,探究同域物种的形成模式可为物种形成机制研究提供新的方向和角度(Soltis et al., 2009; Michel et al., 2010; Bird et al., 2012)。同域物种判定标准严格:(1)演化过程中一直处于同一区域,允许存在一定距离(根据物种特性而定);(2)亲缘关系很近,必须是单系起源(Feder et al., 2013; Marques et al., 2019)。但是,由于形成条件苛刻,被子植物中的同域物种远比异域物种稀少,并且常是成对出现,以目前的技术难以确定历史上的地理隔离,因此孤岛上的姊妹种成为同域物种形成研究的热点(Wu et al., 2000)。另外,由于同域物种间的差异较小,加之基因流较为频繁,因此对是否应该合并成一个种也时有争议(Bolnick et al., 2007)。

同域物种的研究可分为两大类:一类侧重于生态因素尤其是分化选择(disruptive selection)的影响;另一类侧重于群体内部尤其是多倍化及杂交导致的基因重组,考虑到缺少地理隔离,遗传漂变和均一选择(uniform selection)的影响非常小(Schluter, 2009; McPeek, 2016)。此外,种间的生殖隔离机制也是研究热点之一,一般来说前隔离起主导作用,包括花期隔离、传粉者隔离、花粉竞争及配子不亲和;后隔离作为辅助,包括杂种不活、不育及杂种衰退。本文总结了近年来被子植物同域物种形成的研究进展,并对争议点和研究趋势进行了总结。

1 同域物种形成的影响因素

1.1 生态因素

Thoday & Gibosn(1962)提出了分化选择模型,强调在特殊的生境下,选择压只有利于居群中两种具有极端性状的个体,中间性状的反而难以存活,倘若此时性状的改变也会影响生殖,同域物种便分化而成。如澳大利亚西海岸豪勋爵岛上的棕榈科姊妹种卷叶豪威椰(Howea belmoreana)和垂羽豪威椰(H. forsteriana)的花期相差六周,同为二倍体却少有自然杂交(Babik et al., 2009; Hipperson et al., 2016);同时,原始群体在200万年前受岛上酸性和碱性土壤镶嵌分布的影响,分化出不同的耐盐和耐旱基因,使得前者喜酸后者喜碱并进一步影响了花期,最终分化成不同物种(Papadopulos et al., 2019; Calabrese et al., 2020)。近年来的研究表明,即使处于同一区域,群体为了减少竞争也会朝着不同的生态位演化。如南美碧冬茄属的Petunia axillaris和P. exserta,前者花冠白色、多生于向阳处、具芳香并由蛾类传粉,后者花冠红色、多生于岩洞内、无香味并由蜂鸟传粉,这种与传粉者建立的特化关系有助于降低生殖成本,从而成为同域物种形成的推力之一(Bird, 2012; Schnitzler et al., 2020)。总的来说,作为一种特殊的生态成种理论,分化选择模型强调外界存在差异显著且势均力敌的小生境,诱发物种分化的一两个基因突变,在适应选择压的同时恰好影响了花期或授粉,进而阻碍了基因交流并不断强化各自的偏好直至分化完成(Feder et al., 2013; Marques et al., 2019)。

除土壤酸碱性、传粉者外,地形、地貌等小生境与共生菌等因素均会影响同域演化。如透骨草科的Mimulus guttatus和M. laciniatus,前者喜生于草甸,受到食草动物的影响演化出较大的体型,后者喜生于花岗岩地带,受到旱境的影响演化出较小的体型和浅裂叶。进一步的研究表明,M. guttatus起源于富含铜矿的地区,其铜耐受性由两个连锁的基因座控制,从而导致了杂种的耐受性差,在竞争中处于劣势(Wright et al., 2013; Ferris & Willis, 2018)。以色列卡梅尔山谷的野生小麦(Triticum turgidum ssp. dicoccoides)受南北坡太阳辐射强度的影响(南坡是北坡的2~8倍),约一万年前分化成了三个小群体(SFS1, SFS2, NFS),其中NFS在北坡湿润的环境中演化并获得了对该地区多种真菌的抗性,另两个在南坡干旱的环境中演化,SFS1的花期推迟以避免紫外线伤害,SFS2则进化出了更有效的活性氧清除能力(Wang et al., 2020)。同时,共生菌是许多植物生长必不可少的条件,菌根较快的演化速度,可能对共生种的演化有促进作用。如在北京松山的七种舌唇兰中,由于菌根群落的明显差异,细距舌唇兰(Platanthera bifolia)喜生于酸性土壤,二叶舌唇兰(P. chlorantha)喜生于碱性土壤,杂交种类似前者,因此在混合区域的竞争中处于劣势(Pena et al., 2018; Chen et al., 2019);手参(Gymnadenia conopsea)有三种倍性(2x、3x、4x),其中2x和4x菌根的细菌种类和活性差异明显,推测是由于多倍体的细胞更大、代谢更缓慢,而3x的菌根则类似前者,虽然不具优势但性状更加稳定(Těitelová et al., 2013)。另外,小生境的差异可对共生菌的种类、活性及菌根的扩散等产生明显影响。如前文的垂羽豪威椰虽然能在酸性土壤中生长,但菌根会严重受损,从而促进不同物种对环境的适应性进化(Osborne et al., 2018)。

Dieckmann & Doebeli于1999年完善了分化选择模型,认为资源竞争本身会使物种演化出不同的性状,进而形成同域种,其中对传粉者的竞争是最常见的方式。如蛾类传粉的Petunia axillaris和蜂鸟传粉的P. exserta(Bird, 2012; Schnitzler et al., 2020),大黄蜂传粉的Roscoea tumjensis和长舌蝇传粉的R. purpurea(Paudel et al., 2018)等均在花期上有所差异,推测其祖先起初分化为早开花和晚开花的两个群体,之后形成了各自的传粉组合并通过协同演化不断强化(Dieckmann & Doebeli, 1999)。而蜂类、蜂鸟和蛾类等传粉者口器(或嘴)的长短分化促使了耧斗菜属(Aquilegia)不同种的距长产生从短(原始)到长(进化)的明显分化,表明传粉者的偏好产生了分化选择压,促使植物分化出同域种(Bastid et al., 2010)。

此外,植食性昆虫、人为采集和寄主植物都有可能加强分化选择,但相关案例较少。如用蛾类Greya politella侵染Heuchera grossulariifolia二倍体和四倍体的种子,发现经多代筛选之后,四倍体倾向于提早开花且缩短花茎,二倍体则刚好相反(Nuismer & Ridenhour, 2008)。梭砂贝母(Fritillaria delavayi)作为一种中药材长期被当地人采集,其植株颜色开始从绿色演化为和生长环境相似的棕灰色,从而加大被发现的难度(Niu et al., 2020)。槲寄生属的Struthanthus flexicaulis多寄生于落叶植物,在寄主的落叶期会同步落叶,因此与寄生于常绿植物的同域种S. martianus表现出了近乎相反的花期和果期(Teixeira-Costa et al., 2017)。以上三个案例都较为特殊,有待进一步的研究加以阐明。

1.2 突变因素

相比生态因素,突变因素主导的同域物种形成涉及杂交和多倍化,成种速度更快,发生范围更广。研究表明,约25%的植物在演化过程中发生过杂交,而杂种结合了不同谱系的遗传变异,进而产生一系列的新表型,虽然难以和亲本竞争旧有的生态位,但有助于适应多变的环境(Mallet, 2005; Sanghera et al., 2011);同时,几乎所有的被子植物都经历过多倍化(约30%又退回了原有的倍性),使植株变得更高大,抗逆性增强,从而在发生环境灾变时提高生存几率(Comal, 2005; Jiao et al., 2011)。上述优势结合生境变化,共同推动同域物种的分化,具体来说可分为异源多倍体成种(allopolyploid speciation)、同源多倍体成种(autopolyploid speciation)和同倍体杂交成种(homoploid hybrid speciation)。

异源多倍体成种是在杂交的同时发生了染色体加倍,子代和亲本间存在强烈的生殖隔离,是最常见的成种模式之一。常见的作物如烟草(Nicotiana tabacum)、小麦(Triticum aestivum等都是由此起源,其中烟草由林烟草(Nicotiana sylvestris)和茸毛烟草(N. tomentosiformis)杂交产生,而小麦则经过了两轮杂交,先由乌拉尔图小麦(Triticum urartu)和拟山羊草(Aegilops speltoides)杂交产生二粒小麦(Triticum turgidum),经过人工驯化后又和节节麦(Aegilops tauschii)杂交(Clarkson, 2010; Marcussen, 2014)。由于亲本差异较大,刚诞生的异源多倍体往往会经历转录子休克(transcriptomic shock),需要重排染色体以达成新的平衡,过程中也伴随染色体片段的交换、重复基因的丢失以及大量的基因沉默(Lashermes, 2016)。一般来说,杂种的性状会偏向亲本中的一方,如来自二粒小麦的基因组(负责调控小麦的整体发育)就比來自节节麦的(负责提高小麦的环境适应性)更加活跃(Li et al., 2014);由林烟草做母本和欧布特斯烟草(Nicotiana obtusifolia)做父本杂交产生的N. nesophila在演化过程中,母本的基因组加倍并侵占了父本的位置,导致后者只留下零星的染色体片段(Parisod et al., 2012)。虽然偏向性的机制尚且不明,但亲本自身的特性肯定会产生影响,如荠菜(Capsella bursa-pastoris)由C. grandiflora(多异交)和C. orientalis(多自交)杂交而来,前者的基因组负责调控花器官的发育而后者的负责调控根和叶(Kryvokhyzha et al., 2019)。总的来说,这一途径的成种速度极快,不乏千年以内的案例,但研究表明杂种后代的变化很大,需要较长时间的演化以达成最终平衡。如紫萼路边青(Geum rivale)和欧亚路边青(G. urbanum)两个异源六倍体起源于1 700万年前,前者演化出下垂的花朵以适应传粉者,而后者演化出直立的花朵以适应自交,这一分歧导致种间基因流大大降低从而保证了分化(Ramsey, 2002; Jordan et al., 2018)。

同源多倍体成种即增加的染色体来自同一物种,或加倍染色体保留同源性,在减数分裂时形成多价体(multivalent),或染色体重构丢失不同部位的基因致使无法配对(Doyle et al., 2008)。和异源多倍体相比,其后代的多样性虽然更低,但也享有染色体加倍带来的优势。如许多兰科植物的四倍体比二倍体有着更大的花和不同的花香,繁殖成功率也更高(Gross & Schiestl, 2015);忍冬科植物Knautia arvensis存在两种倍性,研究表明混合区域主要是四倍体,而二倍体处于劣势(Hanzl et al., 2014)。总的来说,虽然细胞体型增大且容易产生生殖隔离,但大部分同源多倍体在植株表型上和亲本差异不大。如美国常见的蓝茎草(Andropogon gerardii)同时存在六倍体和九倍体(Keeler et al., 1999; Soltis et al., 2007);而一些异源多倍体,如虎耳草科由Lithophragma bolanderi(2n=14)和L. glabrum(2n=14)融合形成的L. bolanderi(2n=28)虽与母本L. bolanderi形态非常相似,但在基因层面上已经符合了新种的要求(Keeler & Davis, 1999; Soltis et al., 2007)。

同倍体杂交成种即单纯地杂交而不经过染色体加倍的成种模式,其判定标准较为严格,不仅要求杂种和亲本间存在较强的生殖隔离,而且还需要试验证实隔离源自杂交而非其他演化因素(如异源多倍体通过丢失基因组退回原有倍性),加之亲本的配对染色体在减数分裂时难以正常分离致使杂种不育,这一途径虽然广泛发生但成功案例较少(Schumer et al., 2014)。其中,以菊科的Senecio squalidus为代表,其亲本S. aethnensis和S. chrysanthemifolius分别有着各自的连锁基因座,杂交重排后产生了类似多倍体的生殖隔离(Hegarty et al., 2008);而柳叶菜科月见草属(Oenothera)八个杂交起源种由于核质不相容失去了有性生殖能力,只能依赖无性繁殖,自然也隔离了种间基因流(Hollister et al., 2019)。同倍体杂种没有多倍体的强壮优势,在旧有的生态位竞争中也弱于亲本,只能借助新分化的生态位进行扩张。如对多个向日葵远古杂交种的研究表明,基因重组使它们能够在旱境中生长从而避免了和亲本竞争(Donovan et al., 2010)。不仅如此,同倍体杂种也会表现出亲本偏向性。如由锥栗(Castanea henryi)和板栗(C. mollissima)杂交而来的峨眉锥栗(C. henryi var. omeiensis)的植株形态以及花果期都和锥栗近似(Sun et al., 2020);基因证据表明大别山冬青(Ilex dabieshanensis)为枸骨(I. cornuta)和大叶冬青(I. latifolia)的杂交种,与亲本间的生殖隔离不明显,应当降低分类等级(Shi et al., 2016)。可见,杂交成种对亲本的要求较高,过于频繁的基因流会导致两者融合成一个种,只有亲缘关系适中时(杂交发生的稳定且缓慢)才有可能形成新种。但是,当两物种的杂交后代与亲本之一反复回交,把某一亲本的基因片段带入另一亲本产生基因渐渗(introgression)时,容易导致物种同化。如野生稻(Oryza rufipogon)受到了栽培稻(O. sativa)的同化并在中国台湾、泰国等地濒临灭绝(Akimoto et al., 1999; McPeek, 2016)。

2 同域物种种对间的生殖隔离

根据是否受精可将生殖隔离分为前隔离和后隔离。对同域分布的被子植物而言,前隔离可以阻碍95%以上的基因流,甚至发生于多倍体同域种间,推测可能是因为分化初期种间差异很小,只有建立有效的前隔离才能继续分化并不断加强,同时后隔离会带来高额的生殖成本,特别是对刚诞生的多倍体而言,亲本庞大的数量会使其处于严重劣势(Silvia et al., 2011; Shafer & Wolf, 2013)。

2.1 花期隔离

花期隔离即错开开花高峰期,直接避免错误授粉导致的基因流。青藏高原具有较长花冠管的麻花艽(Gentiana straminea)与花冠管较短的管花秦艽(G. siphonantha)虽然都由苏氏熊蜂(Bombus sushikini)传粉,但前者开花高峰为8月中旬,后者为9月中旬,两者花期完美相错,保证了传粉的效率和有效性(侯勤正等,2008)。天南星科同域种全缘灯台莲(Arisaema sikokianum)和A. tosaense,前者花期约39 d,后者约52 d,虽然有约10 d的重叠,但在后者处于开花高峰期时前者的授粉就已基本完成(Matsumoto et al., 2019)。而前文提到的卷叶豪威椰和垂羽豪威椰间的隔离也主要来自错开的花期(Babik et al., 2009)。然而,由于适宜开花的时期有限,因此花期隔离对非热带地区分布的植物并不是一个很好的选择。

2.2 传粉者隔离

传粉者隔离包括专化传粉者(specialist pollinator)和忠实性传粉者(faithful pollinator)。专化传粉者指的是不同物种对不同传粉者的适应性演化,如仙人掌科植物Eriosyce subgibbosa和另外三个同域种相比,为独享蜂鸟和一种小蜜蜂的传粉,演化出了对应的花部结构(Guerrero et al., 2019);Penstemon roseus和P. gentianoides杂交产生的两个不同花色的同域种,紫红色吸引蜂鸟,而蓝色更吸引大黄蜂(Juliana et al., 2020)。兰科植物常通过特定的分泌物或不同比例的组合来吸引不同的传粉者,如Ophrys insectifera和O. aymoninii花期相似,后者的分泌物中具有独特的烯烃和蜡酯(Murúa et al., 2017; Gervasi et al., 2017)。类似的,O. fusca和O. bilunulata的分泌物中烷烃的组合类似而烯烃的差异很大,能够吸引两种不同的蜂类传粉(Carmona-Díaz & Garcia-Franco, 2009; Ayasse et al., 2011);而倒距兰属(Anacamptis)四种兰花依靠烯烃和醛的不同比例吸引来不同的传粉者(Pegoraro et al., 2016)。

特化的传粉关系是兰科植物多样性高的因素之一,特别是大量同域种的形成,有时只需分泌物的简单改动就能切换不同的传粉者(Dearnaley et al., 2016)。特化的传粉关系能大量节省花蜜生产成本,加上花粉块的结构差异,使兰科植物的同域种间少有自然杂交,虽能保持种间隔离的稳定性,但一旦杂交成功就会不断渗透并破坏其稳定性。如Bulbophyllum macranthum和B. praetervisum分别使用姜油酮、甲基丁香酚和覆盆子酮来模拟雄果蝇的分泌物吸引雌果蝇传粉。然而,由于姜油酮能同时吸引两种果蝇传粉,打破了隔离,因此使两者产生了较多的天然杂交种(Katte et al., 2019)。类似的,Mandevilla pentlandiana和M. laxa有着不同的花型,前者靠夜间活动的蛾类传粉而后者靠蜂鸟传粉,两者存在较多的自然杂交种,其花型處于中间态,虽然花距与蛾类喙长吻合,却主要靠蜂鸟传粉(Nakahira et al., 2018)。除兰科外,榕属(Ficus)也有着类似的特化传粉关系,其雌花能释放不同比例组合的挥发物来吸引不同的传粉者(Souto-Vilarós et al., 2018),而Ficus bernaysii、F. auriculata等六种榕属植物的花柱长与特定榕小蜂的产卵器长度一一对应,从而有效避免了种间的自然杂交(Wang Gang et al., 2016; 黄建峰等,2018)。

忠实性传粉者即虽然共享传粉者,但能通过不同的花结构来减少错误授粉,如喜马拉雅地区的四种报春花属(Primula)同域種则靠异长花柱来保证正确授粉(Li et al., 2018);舌瓣鼠尾草(Salvia liguliloba)和南丹参(S. bowleyana)均以三条熊蜂(Bombus trifasciatus)作为传粉者,但前者花更小,上下唇瓣更短,熊蜂直接靠近冠筒取蜜,使得花粉粘在其额部,后者则借助杠杆机制,熊蜂落在下唇取蜜,使得花粉粘在其背部(黄艳波等,2015);而早春开花的毛茛科植物Helleborus foetidus花球状闭合,底部微开,传粉者需探入头部才能沾上花粉,同属H. bocconei的花则碗状开放,通过传粉者腹部即可沾上花粉进行授粉(Luis & Ettore, 2009)。此外,不同形态的花序也会对授粉者的行动产生影响(Ambroise et al., 2019)。

传粉者虽然会促使同域物种的花部特征产生分化,但有些类群过于明显的花部特征分化可能还有其他因素参与。如马先篙属(Pedicularis)植物都由苏氏熊蜂传粉,但近2/3的种类集中于喜马拉雅横断山脉地区,花冠形态和冠管长度的变化很大,从黄色到蓝色,从管长1 cm到10 cm及以上(Liu et al., 2016),可能是山脉运动发生过地理隔离,异域演化后扩张到了一起。

2.3 花粉竞争

花粉竞争表现为异种花粉无法萌发或花粉管难以正常生长,如玉蜀黍(Zea mays)的驯化种和野生种在Tcb1和Ga1基因上存在差异,使雌蕊分泌的果胶脱脂酶的量不同,造成异种花粉难以萌发(Lu, 2019);仙人掌科的Opuntia elata和O. retrorsa共享传粉者,异种花粉虽然可以萌发但却无法穿过柱头(Fachardo & Sigrist, 2019);黄帚橐吾(Ligularia virgaurea)和箭叶橐吾(L. sagitta)少数萌发的花粉管会在12 h后产生胼胝质限制花粉管进一步伸长,或使正常萌发的花粉管伸长方向散乱而无法顺利抵达胚珠(王焱宁等,2018)等。对碧冬茄属(Petunia)、茄属(Solanum)及烟草属(Nicotiana)的多对同域种的研究表明,HD-AGPs基因虽能控制胞外基质运输而影响花粉萌发,但此基因的活跃度不同从而影响了同域种的分化(Callaway & Singh-Cundy, 2019)。如伊比利亚半岛的Gladiolus communis,其四倍体和八倍体同域种的花期重叠,花部结构类似且共享传粉者,由于倍性的缘故,因此异种花粉会被强烈排斥,从而阻断基因交流,即花粉竞争的总体贡献虽然较小,但在多倍体植物中有时也会起主导作用(Castro et al., 2020)。

2.4 其他

自交是一种对后隔离的响应,由于自交容易导致有害基因的积累,因此多作为辅助策略帮助植物繁衍。如Gladiolus communis的四倍体和八倍体间存在强烈的花粉竞争,提高了各自的生殖成本,从而分别演化出不同程度的自交(Castro et al., 2020)。提前自交可以减少生殖成本,如相比Collinsia linearis更易吸引传粉者的C. rattanii会通过提前自交来降低高达40%的错误授粉率(Randle et al., 2018)。同时,在人工授粉实验中有时可以观察到配子不亲和及后隔离现象。如秘鲁的野生番茄section Lycopersicon的同域种对杂交虽能成功受精但在球形胚阶段死亡,不能形成正常果实(Baek et al., 2016);透骨草科Mimulus guttatus和M. nudatus的杂种胚乳败育形成小而空的种子(Oneal et al., 2016);卷叶豪威椰和垂羽豪威椰的少量天然杂交种无法活到成年(Babik et al., 2009)等。另外,亲缘关系很近的同域种间杂交能产生可育后代。如牛耳朵(Primulina eburnea)和马坝报春苣苔(P. mabaensis)(张小龙等,2017);偏花报春(Primula secundifora)和海仙报春(P. poissonii)(谢艳萍等,2017)等。需要注意的是,后隔离的高成本会加速同域物种形成更强的前隔离,如小天蓝绣球(Phlox drummondii)和P. cuspidata的花朵都是淡蓝色,但混生区的P. cuspidata演化出了红色的花朵以减少错误授粉。进一步研究表明杂交频率比杂交成本更能推动前隔离的形成,如Phlox roemeriana与两者间的生殖隔离虽然更强,但由于杂交带较小因此响应得更慢(Suni & Hopkins, 2018)。

同域物种间的生殖隔离常常是不对称的,优先加固隔离的一方多是由于个体数量较少或倍性差异,或是由于花期、花部结构等因素而处于劣势,如云南蝇子草(Silene yunnanensis)的花期较晚且雄蕊先熟,使其可以为掌脉蝇子草(S. asclepiadea)授粉而不受对方花粉的影响(Zhang et al., 2016);而对报春花科的研究表明来自短花柱植物的花粉难以顺利进入长花柱植物的子房(唐星林等,2014)。

总的来说,虽然单个因子足以阻碍大部分基因交流,但自然条件下常常是多个因子综合作用的结果,并且当选择压足够强时,即使存在频繁的基因流也能成功分化,这在旋花科的Ipomoea cordatotriloba和I. lacunosa,桃金娘科的多型铁心木(Metrosideros polymorpha)等物种中得到了证实(Smadjia & Butlin, 2011; Rifkin et al., 2018; Ekar et al., 2019)。此外,在同域物种形成的相关基因中还有着很多空白有待研究,目前仅在拟南芥和橐吾属(Ligularia)等的研究中发现SPDS1、FCLY、Tic21和BGLU25等基因可以调控RNA编辑和ABA信号传导,光保护反应、碳水化合物代谢以及调节花期的光敏受体基因可能对同域物种的分化存在影响(Yang et al., 2012; Qian et al., 2018)。

3 总结与展望

和异域物种相比,同域物种的数量十分稀少,在被子植物中的占比不明且多为虫媒植物。其成因可分为两大类:一类侧重于差异显著且势均力敌的小生境(不同的土壤酸碱性、地形、共生菌、传粉者), 促使原始群体分化出不同的偏好并借助资源竞争和协同演化逐渐加强;另一类侧重于群体自身的遗传变异(杂交和多倍化),其中异源多倍体的贡献最大,而同倍体杂种和同源多倍体虽然广泛发生但罕有成种案例(Schluter, 2009; Schumer et al., 2014)。虽然侧重点不同,但两类因素常常是共同作用且以生态位的竞争为前提,尤其是在分化选择压足够强大的前提下,即使基因流较为频繁也能分化成功。

被子植物同域物种间的生殖隔离常常是不對称的,一般来说前隔离起主导作用,其中虫媒植物多借助传粉者隔离,或通过不同的花部特征和分泌物来吸引不同的传粉者,或通过花序、上下唇瓣等结构使花粉落在同一传粉者的不同部位;风媒植物多借助花期隔离,作为一个通用选择,其也常被虫媒植物所采用,尤其是缺乏传粉者的高山植物和可以全年生长的热带植物(Silvia et al., 2011; Babik et al., 2009)。前隔离占主导的原因有三个:一是许多同域种受传粉者的选择而分化;二是分化初期难以建立有效的后隔离;三是后隔离和前隔离中的花粉竞争、配子不亲和会大大提高生殖成本,而异源多倍体由于基因重组容易产生不同的花部特征从而形成前隔离,对刚分化出的个体而言,由于亲本庞大的数量会使其陷入严重劣势,因此以前隔离为主。尽管如此,由于亲缘关系很近加之分化时间较晚,同域种间容易发生天然杂交,而杂交本身就会加固前隔离,其中杂交频率比杂交成本的影响更大,而自交大多是作为一种辅助手段。

总的来说,在同域物种的判定上存在3处争议:(1) 通过无性繁殖形成居群的杂交种是否需要划出,类似的和亲本生殖隔离较弱的杂交种是否需要降级;(2) 以马先蒿属为主的高山植物是否因山脉运动发生过异域演化,否则在共享传粉者的情况下是如何演化出如此丰富的表型多样性;(3)表型差异不大的同源多倍体同域种是否需要划出。在同域物种的形成机制上有7点需要进一步研究:(1)一些同域物种是如何在较强的基因流下完成分化的;(2)连锁基因座以及基因重组对同倍体杂交成种的影响;(3)杂交成种中亲本偏向性的具体机制;(4)传粉者在同域物种分化初期是如何作用的;(5)共生菌对同域物种形成的贡献有多大;(6)一些小众因素如植食性昆虫、矿质元素及寄主植物的影响;(7)多倍体同域种是如何建立初期优势从而不因数量稀少消亡的。在稳定机制上则有6点需要进一步研究:(1)对多倍体同域物种而言,花粉竞争的贡献是否很大;(2)不对称生殖隔离(如较晚开花)往往会使其中一方处于劣势,同域物种是如何就此进行博弈的;(3)在一些不缺乏传粉者的地区也会出现采用忠实性传粉者的情况,两种策略间的利弊;(4)自交虽然能减少种间基因流,但也会造成自身基因多样性的减少,其平衡点在何处;(5)一些同域物种间的基因交流过于频繁,是否会在未来融合成一个种;(6)控制隔离的关键基因(如花部特征)具体有哪些。

参考文献:

AKIMOTO M, SHIMAMOTO Y, MORISHIMA H, 1999. The extinction of genetic resources of Asian wild rice,Oryza rufipogon Griff.: A case study in Thailand [J]. Genet Resour Crop Evol, 46: 419-425.

AMBROISE V, ESPOSITO F, SCOPECE G, et al., 2019. Can phenotypic selection on floral traits explain the presence of enigmatic intermediate individuals in sympatric populations of Platanthera bifolia and P. Chlorantha (Orchidaceae)? [J]. Plant Spec Biol, 35(1): 59-71.

AYASSE M, STOKL J, FRANCKE W, 2011. Chemical ecology and pollinatordriven speciation in sexually deceptive orchids [J]. Phytochemistry, 72(3): 1667-1677.

BABIK W, BUTLIN RK, BAKER WJ, et al., 2009. How sympatric is speciation in the Howea palms of Lord Howe Island? [J]. Mol Ecol, 18(17): 3629-3638.

BAEK YS, ROYER SM, BROZ AK, 2016. Interspecific reproductive barriers between sympatric populations of wild tomato species(Solanum section Lycopersicon) [J]. Amer J Bot, 103(11): 1964-1978.

BASTID JM, ALCANTARA JM, REY PJ, et al., 2010. Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations [J]. Plant Syst Evol, 284(26): 171-185.

BIRD CE, FERNANDEZ-SILVA I, SKILLINGS DJ, et al., 2012. Sympatric speciation in the post “Modern Synthesis” era of evolutionary biology [J]. Evol Biol, 39(2): 158-180.

BOLNICK DI, FITZPATRICK BM, 2007. Sympatric speciation: models and empirical evidence [J]. Ann Rev Ecol Syst, 38(1): 459-487.

CALABRESE GM, PFENNING KS, 2020. Reinforcement and the proliferation of species [J]. J Hered, 111(1): 138-146.

CALLAWAY TD, SINGH-CUNDY A, 2019.HD-AGPs as speciation genes: positive selection on a proline-rich domain in non-hybridizing species of Petunia, Solanum, and Nicotiana [J]. Plants, 8(7): 211.

CARMONA-DAZ G, GARCIA-FRANCO JG, 2009. Reproductive success in the Mexican rewardless Oncidium cosymbephorum (Orchidaceae) facilitated by the oil-rewarding Malpighia glabra (Malpighiaceae) [J]. Plant Ecol, 20(3): 253-261.

CASTRO M, LOUREIRO J, HUSBAND BC, et al., 2020. The role of multiple reproductive barriers: strong post-pollination interactions govern cytotype isolation in a tetraploid-octoploid contact zone [J]. Ann Bot, 22(4): 159-167.

CHEN Y, GAO Y, SONG LI, et al., 2019. Mycorrhizal fungal community composition in seven orchid species inhabiting Song Mountain, Beijing, China [J]. Sci Chin Life Sci, 62(6): 838-847.

CLARKSON JJ, KELLY LJ, LEITCH AR, et al., 2010. Nuclear glutamine synthetase evolution in Nicotiana: Phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids [J]. Mol Phylogenet Evol, 55(1): 99-112.

COMAL L, 2005. The advantages and disadvantages of being polyploid [J]. Nat Rev Genet, 6(11): 836-46.

COYNE J, 2004.Speciation [M]. Sunderland: Sinauer Associates: 120-140.

DARWIN CR, 1859. The origin of species [M]. London: John Murray: 200-210.

DEARNALEY J, 2016. Structure and development of orchid mycorrhizas [M]. Berlin Heidelberg: Springer: 63-68.

DIECKMANN U, DOEBELI M, 1999. On the origin of species by sympatric speciation [J]. Nature, 400(6742): 354-357.

DONOVAN LA, ROSENTHAL DR, SANCHEZ VM, et al., 2010. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats? [J]. J Evol Biol, 23(4): 805-816.

DOYLE JJ, FLAGEL LE, PATERSON AH, et al., 2008. Evolutionary genetics of genome merger and doubling in plants [J]. Ann Rev Genet, 42(4): 43-61.

EKAR JM, PRICE DK, JOHNSON MA, et al., 2019. Varieties of the highly dispersible and hypervariable tree, Metrosideros polymorpha, differ in response to mechanical stress and light across a sharp ecotone [J]. Botany, 106(8): 1106-1115.

FACHARDO ALS, SIGRIST MR, 2019. Pre-zygotic reproductive isolation between two synchronopatricOpuntia (Cactaceae) species in the Brazilian Chaco [J]. Plant Biol, 22(3): 487-493.

FEDER JL, FLAXMAN SM, EGAN SP, et al., 2013. Geographic mode of speciation and genomic divergence [J]. Ann Rev Ecol Syst, 44(1): 73-97.

FERRIS KG, WILLIS JH, 2018. Differential adaptation to a harsh granite outcrop habitat between sympatricMimulus species [J]. Evolution, 72(6): 1225-1241.

GERVASI DDL, SELOSSE MA, SAUVE M, et al., 2017. Floral scent and species divergence in a pair of sexually deceptive orchids [J]. Ecol Evol, 7(15): 6023-6034.

GONG ZS, MAIMAITIMING-SLM, 2012. The median means of species concepts and speciesdelimitation [J]. Guihaia, 32(2): 274-279.  [龚佐山, 买买提明·苏莱曼, 2012. 物种概念及其界定 [J]. 广西植物, 32(2): 274-279.]

GROSS K, SCHIESTL FP, 2015. Are tetraploids more successful?floral signals, reproductive success and floral isolation in mixed-ploidy populations of a terrestrial orchid [J]. Ann Bot, 115(2): 263-273.

GUERRERO PC, ANTINAO CA, VILLAGRA CA, et al., 2019. Bees may drive the reproduction of four sympatric cacti in a vanishing coastal mediterranean-type ecosystem [J]. Ecology, 10(1): 771-784.

HANZL M, KOLAR F, NOVAKOVA D, et al., 2014. Nonadaptive processes governing early stages of polyploid evolution:Insights from a primary contact zone of relict serpentine Knautia arvensis (Caprifoliaceae) [J]. Am J Bot, 101(6): 935-945.

HEGARTY M, BARKER GL, BRENNAN CE, et al., 2008. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio [J]. Philos Trans R Soc Lond B Biol Sci, 363(1506): 3055-3069.

HIPPERSON H, DUNNING LT, BAKER WJ, et al., 2016. Ecological speciation in sympatric palms: 2 Pre- and post-zygotic isolation [J]. J Evol Biol, 29(11): 2143-2156.

HOLLISTER JD, GREINER S, JOHNSON MT, et al., 2019. Hybridization and a loss of sex shape genome-wide diversity and the origin of species in the evening primroses (Oenothera, Onagraceae) [J]. New Phytol, 224(3): 1372-1380.

HOU QZ, MENG LH, YANG HL, 2008. Pollination ecology of Gentiana siphonantha (Gentianaceae) and a further comparison with its sympatric congener species [J]. Acta Phytotax Sin, 7(4): 554-562.  [侯勤正, 孟麗华, 杨慧玲, 2008. 管花秦艽的传粉生态学研究——兼与同域分布近缘种的比较 [J]. 植物分类学报, 7(4): 554-562.]

HUANG JF, XU R, PENG YQ, 2018. Progress on the breakdown of one-to-one rule in symbiosis of figs and their pollinating wasps [J]. Biodivers Sci, 26(3): 295-303.  [黄建峰, 徐睿, 彭艳琼, 2018. 榕–传粉榕小蜂非一对一共生关系的研究进展 [J]. 生物多样性, 26(3): 295-303.]

HUANG YB, WEI YK, WANG Q, et al., 2015. Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever-like stamens [J]. Chin J Plant Ecol, 39(7): 753-761.  [黄艳波, 魏宇昆, 王琦, 等, 2015. 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制 [J]. 植物生态学报, 39(7): 753-761.]

JIAO Y, WICKETT NJ, AYYAMPALAYAM S, et al., 2011. Ancestral polyploidy in seed plants and angiosperms [J]. Nature, 473(7345): 97-100.

JORDAN CY, LOHSE K, TURNER F, et al., 2018. Maintaining their genetic distance: Little evidence for introgression between widely hybridizing species of Geum with contrasting mating systems [J]. Mol Ecol, 27(5): 1214-1228.

JULIANA C, CARLOS L, JUAN FO, 2020. Pollinator divergence and pollination isolation between hybrids with different floral color and morphology in two sympatricPenstemon species [J]. Sci Reports, 10: 8126.

KATTE T, TAN KH, SU ZH, et al., 2019. Floral fragrances in two closely related fruit fly orchids, Bulbophyllum hortorum and B. macranthoides (Orchidaceae): assortments of phenylbutanoids to attract tephritid fruit fly males [J]. Appl Entomol Zool, 55(1): 55-64.

KEELER KH, DAVIS GA, 1999. Comparison of common cytotypes ofAndropogon gerardii (Andropogoneae, Poaceae) [J]. Amer J of Bot, 86(7): 974-979.

KRYVOKHYZHA D, MILESI P, DUAN T, et al., 2019. Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris) [J]. Plos Genet, 15(5): 215-225.

LASHERMES P, HUEBER Y, COMBES MC, et al., 2016. Inter-genomic DNA exchanges and homeologous gene silencing shaped the nascent allopolyploid coffee genome (Coffea arabica L.) [J]. G3 (Bethesda), 6(9): 2937-2948.

LI A, LIU D, WU J, et al., 2014. MRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat [J]. Plant Cell, 26(5): 1878-1900.

LI HD, REN ZX, ZHOU W, et al., 2018. Comparative intra- and interspecific sexual organ reciprocity in four distylous Primula species in the Himalaya-Hengduan Mountains [J]. Plant Biol (Stuttg), 20(4): 643-653.

LI Q, LIU J, KONG LF, 2014. Speciesconcept, species delimitation and species identification [J]. Per Ocean Univ Chin(Nat Sci Ed), 44(10): 57-64.  [李琪, 劉君, 孔令锋, 2014. 种的概念及种的界定与鉴定 [J]. 中国海洋大学学报(自然科学版), 44(10): 57-64.]

LIU JQ, 2016. “The integrative species concept” and “species on the speciation way”  [J]. Biodivers Sci, 24(9): 1004-1008.  [刘建全, 2016. “整合物种概念”和“分化路上的物种” [J]. 生物多样性, 24(9): 1004-1008.]

LIU YN, LI Y, YANG FS, et al., 2016. Floral nectary, nectar production dynamics, and floral reproductive isolation among closely related species of Pedicularis [J]. J Integr Plant Biol, 58(2): 78-87.

LI ZH, LIU ZL, WANG ML, et al., 2014. A review on studies of speciation in the presence of gene flow: evolution of reproductive isolation [J]. Biodivers Sci, 22(1): 88-96.  [李忠虎, 劉占林, 王玛丽, 等, 2014. 基因流存在条件下的物种形成研究述评: 生殖隔离机制进化 [J]. 生物多样性, 22(1): 88-96.]

LUIS VJ, ETTORE P, 2009. Pollination ecology in sympatric winter floweringHelleborus (Ranunculaceae) [J]. Flora, 10(2): 33-45.

LU YX, HOKIN SA, KERMICLE JL, et al., 2019. A pistil-expressed pectin methylesterase confers cross-incompatibility between strains of Zea mays [J]. Nat Commun, 10(1): 2304.

LYU HM, ZHOU RH, SHI SH, 2015. Recent advances in the study of ecological speciation [J]. Biodivers Sci, 23(3): 398-407.  [吕昊敏, 周仁超, 施苏华, 2015. 生态物种形成及其研究进展 [J]. 生物多样性, 23(3): 398-407.]

MALLET J, 2005. Hybridization as an invasion of the genome [J]. Trend Ecol Evolut, 20(5): 229-237.

MARCUSSEN T, SANDVE SR, HEIER L, 2014. Ancient hybridizations among the ancestral genomes of bread wheat [J]. Science, 345(6194): 1250092.

MARQUES DA, Meier JI, Seehausen O, 2019. A combinatorial view on speciation and adaptive radiation. Trend Ecol Evolut, 34(6): 531-544.

MATSUMOTO T K, MIYAZAKI Y, SUEYOSHI M, et al., 2019. Pre-pollination barriers between two sympatric Arisaema species in northern Shikoku Island, Japan [J]. Amer J Bot, 106(12): 1612-1621.

MCPEEK MA, BRONSTEIN JL, 2016. Theecological dynamics of natural selection: Traits and the coevolution of community structure [J]. Am Nat, 189(5): 77-94.

MICHEL AP, SIM S, POWELL THQ, et al., 2010. Widespread genomic divergence during sympatric speciation [J]. Proc Nat Acad Sci USA, 107(21): 9724-9729.

MURA M,ESPINDOLA A, MEDEL R, et al., 2017. Pollinators and crossability as reproductive isolation barriers in two sympatric oil-rewarding Calceolaria (Calceolariaceae) species [J]. Evol Ecol, 31(4): 421-434.

NAKAHIRA M, ONO H, WEE SL, et al., 2018. Floral synomone diversification of sibling Bulbophyllum species (Orchidaceae) attracting fruit fly pollinators [J]. Biochem Syst Ecol, 81(3): 86-95.

NIU Y, STEVENS M, SUN H, 2020. Commercialharvesting has driven the evolution of camouflage in an alpine plant [J]. Curr Bio, 31(2): 446-449.

NUISMER SL, RIDENHOUR BJ, 2008. The contribution of parasitism to selection on floral traits inHeuchera grossulariifolia [J]. Evol Biol, 21(4): 958-965.

ONEAL E, WILLIS HJ, Franks RG, 2016. Disruption ofendosperm development is a major cause of hybrid seed inviability between Mimulus Guttatus and Mimulus Nudatus [J]. New Phytol, 201(3): 1107-1120.

OSBORNE OG, DE-KAYNE R, BIDARTONDO MI, et al., 2018. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island [J]. New Phytol, 217(3): 1254-1266.

PAPADOPULOS AST, IGEA J, DUNNING LT, et al., 2019. Ecological speciation in sympatric palms: 3. Genetic map reveals genomic islands underlying species divergence in Howea [J]. Evolution, 73(9): 1986-1995.

PARISOD C, MHIRI C, LIM KY, et al., 2012. Differential dynamics of transposable elements during long-term diploidization of Nicotiana section Repandae (Solanaceae) allopolyploid genomes [J]. PLoS ONE, 7(11): e50352.

PAUDEL BR, BURD M, SHRESTHA M, et al., 2018. Reproductive isolation in alpine gingers: How do coexisting Roscoea (R. purpurea and R. tumjensis) conserve species integrity?  [J]. Evolution, 72(9): 1840-1850.

PEGORARO L, CAFASSO D, RINALDI R, et al., 2016. Habitat preference and flowering-time variation contribute to reproductive isolation between diploid and autotetraploid Anacamptis pyramidalis [J]. J Evol Biol, 29(10): 2070-2082.

PENA TC, FEDOROVA E, PUEYO JJ, 2018. The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? [J]. Front Plant Sci, 8(10): 22-29.

QIAN CJ, YAN X, YIN HX, et al., 2018. Transcriptomes divergence of Ricotia lunaria between the two micro-climatic divergent slopes at “Evolution Canyon” I, Israel [J]. Front Genet,  9(4): 422-510.

RAMSEY J, SCHEMSKE DW, 2002. Neopolyploidy inflowering plants [J]. Ann Rev Ecol Syst, 33: 589-639.

RANDLE AM, SPIGLER RB, KALISZ S, 2018. Shifts to earlier selfing in sympatry may reduce costs of pollinator sharing [J]. Evolution, 72(8): 1587-1599.

RIFKIN JL, CASTILLO AS, LIAO IT, et al., 2018. Gene flow, divergent selection and resistance to introgression in two species of morning glories (Ipomoea) [J]. Mol Biol Evol, 28(7): 1709-1729.

SANGHERA GS, WANI SH, HUSSAIN W, et al., 2011. The magic of heterosis: New tools and complexities [J]. Nat Sci, 9(11): 42-53.

SCHLUTER D, 2009. Evidence for ecological speciation and its alternative [J]. Science, 9(15): 737-741.

SCHNITZLER CK, TURCHETTO C, TEIXEIRA MC, et al., 2020. What could be the fate of secondary contact zones between closely related plant species? [J]. Genet Mol Biol, 12(7): 28-45.

SHAFER ABA, WOLF JBW, 2013. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology [J]. Ecol Lett, 16(7): 940-950.

SHI L, LI NW, WANG SQ, et al., 2016. Molecular evidence for the hybrid origin of Ilex dabieshanensis (Aquifoliaceae) [J]. PLoS ONE, 11(1): e0147825.

SCHUMER M, ROSENTHAL GG, ANDOLFATTO P, 2014. How common is homoploid hybrid speciation? [J]. Evolution, 68(6): 1553-1560.

SMADJIA CM, BUTLIN RK, 2011. A framework for comparing processes of speciation in the presence of gene flow [J]. Mol Ecol, 20(24): 5123-5140.

SOLTIS DE, ALBERT VA, LEEBENS-MACK J, et al., 2009. Polyploidy and angiosperm diversification [J], Amer J Bot, 96(1): 336-348.

SOLTIS DE, SOLTIS PS, SCHEMSKE DW, et al., 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? [J]. Taxon, 56(1): 13-30.

SOUTO-VILARS D, PROFFIT M, BUATOIS B, et al., 2018. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism [J]. J Ecol, 106(6): 2256-2273.

SUNI SS, HOPKINS R, 2018. The relationship between postmating reproductive isolation and reinforcement in Phlox [J]. Evolution, 72(7): 1387-1398.

SUN YS,LU Z, ZHU X, et al., 2020. Genomic basis of homoploid hybrid speciation within chestnut trees [J]. Nat Comm, 11: 3375.

TANG XL, LIU YM, PAN HT, et al., 2014. Intergeneric cross-compatibility between Primula forbesii (section Monocarpicae) and Primula saxatilis (section Cortusoides) [J]. Acta Bot Boreal-Occident Sin, 34(2): 270-275.  [唐星林, 劉艳梅, 潘会堂, 等, 2014. 小报春与岩生报春种间杂交亲和性研究 [J].西北植物学报, 34(2): 270-275.]

TEIXEIRA-COSTA L, COELHO FM, CECCANTINI G, et al., 2017. Comparative phenology of mistletoes shows effect of different host species and temporal niche partitioning [J]. Botany, 95(3): 271-282.

TITELOV T,JERSAKOVA J, ROY L, et al., 2013. Ploidy-specific symbiotic interactions:divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae) [J]. New Phytol, 199(4): 1022-1033.

THODAY JM, GIBSON JB, 1962. Isolation by disruptive selection [J]. Nature, 193(4821): 1164-1176.

WANG G, CHARLES C, CHEN J, 2016. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa [J]. Proc Roy Soc Edinburgh Sect B, 283(1828): 29-63.

WANG HW, YIN HY, JIAO CZ, et al., 2020. Sympatric speciation of wild emmer wheat driven by ecology and chromosomal rearrangements [J]. Proc Nat Acad Sci USA, 117(11): 5955-5963.

WANG Y, WANG BS, HOU QZ, et al., 2018. Prezygotic reproductive isolation of two sympatric species of Ligularia weeds in eastern Qinghai-Tibet Plateau, China [J]. Chin J Appl Ecol, 29(11): 3587-3595.  [王焱宁, 王柏森, 侯勤正, 等, 2018. 青藏高原东缘同域分布的2种橐吾属杂草的合子前生殖隔离 [J]. 应用生态学报, 29(11): 3587-3595.]

WEI MC, NIE HY, NIU GY, 2010. Sympatric speciation:a principal pattern of speciation? [J]. J Cent S Univ For Technol, 30(3): 1-11.  [魏美才, 聂海燕, 牛耕耘, 2010. 同域物种形成: 物种演化和形成的基本模式? [J]. 中南林业科技大学学报, 30(3): 1-11.]

WRIGHT KM, LLOYD D, LOWRY DB, et al., 2013. Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus [J]. Plos Biol, 11(2): e1001498.

WU CI, 2000. Genetics of species differentiation, in evolutionary biology: limits to knowledge in evolutionary genetics [M]. Boston: Springer: 239-248.

XIE P, 2016. A brief review on the historical changes in the concept of species [J]. Biodivers Sci, 24(9): 1014-1019.  [谢平, 2016. 浅析物种概念的演变历史 [J]. 生物多样性, 24(9): 1014-1019.]

XIE YP, ZHAO JL, ZHU XF, et al., 2017. Asymmetric hybridization of Primula secundiflora and P. poissonii in three sympatric populations [J]. Biodivers Sci, 25(6): 647-653.  [谢艳萍, 赵建立, 朱兴福, 等, 2017. 偏花报春和海仙报春3个同域居群的不对称杂交 [J]. 生物多样性, 25(6): 647-653.]

YANG ZY, YI TS, PAN YZ, et al., 2012. Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains [J]. J Syst Evol, 50(4): 316-324.

ZHANG JJ, MONTGOMERY BR, HUANG SQ, 2016. Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two Silene species [J]. AoB Plants, 8: plw032.

ZHANG XL, YANG LH, KANG M, 2017.Post-pollination reproductive isolation of sympatric populations of Primulina eburnea and P. mabaensis (Gesneriaceae) [J]. Biodivers Sci, 25(6): 615-620.  [張小龙, 杨丽华, 康明, 2017. 牛耳朵和马坝报春苣苔同域种群授粉后的生殖隔离 [J]. 生物多样性, 25(6): 615-620.]

(责任编辑 蒋巧媛)

2150501186324