APP下载

微生物菌剂对厨余垃圾堆肥温室气体减排的影响

2022-03-10陈文旭刘逸飞蒋思楠武泽月王骞旗李国学李彦明宫小燕

农业工程学报 2022年23期
关键词:堆体厨余菌剂

陈文旭,刘逸飞,蒋思楠,武泽月,王骞旗,李国学,李彦明,宫小燕

微生物菌剂对厨余垃圾堆肥温室气体减排的影响

陈文旭1,2,刘逸飞1,蒋思楠1,武泽月1,王骞旗1,李国学1,李彦明1,宫小燕1※

(1. 中国农业大学资源与环境学院农田土壤污染防控与修复北京市重点实验室,北京 100193;2. 青岛汇君环境能源工程有限公司,青岛 266100)

为对厨余垃圾堆肥过程中的温室气体进行减排,在60 L强制通风静态堆肥装置中进行为期35 d的厨余垃圾和园林废弃物的联合好氧堆肥试验。在堆肥原料中分别添加复合微生物菌剂VT1000(VT)、枯草芽孢杆菌(BS)和地衣芽孢杆菌(BL)三种菌剂,并以不加菌剂的堆肥处理(CK)作为对照,监测堆肥过程中的CH4和N2O排放,以研究不同微生物菌剂对于厨余垃圾堆肥温室气体排放的影响。结果表明:微生物菌剂的添加会加快堆体升温和促进腐熟,同时能够实现不同程度的温室气体减排。堆肥过程中N2O的排放量在总温室气体二氧化碳排放当量中占比远高于甲烷,达到总排放当量的76.83%~88.57%,排放高峰期分别出现在堆肥初期和腐熟期。各处理的总温室气体排放当量分别为95.84 kg/t(CK)、52.31 kg/t(VT)、42.03 kg/t(BS)和62.49 kg/t(BL)。与CK处理相比,BS处理的总温室气体的减排效果最好,减排率为56.15%,BL处理的减排率最低,为34.80%,VT处理减排率为45.42%。相较于CH4,菌剂对N2O的减排效果更好,可达35.32%~61.86%。结合堆肥过程的温度及各腐熟度指标,该研究选取的微生物菌剂能够在保证堆肥效率和产品质量的前提下有效减少温室气体排放。

好氧;堆肥;温室气体减排;微生物菌剂;厨余垃圾

0 引 言

厨余垃圾是指居民日常生活和学校、公司、餐馆等单位供餐,以及餐厅服务等活动中产生的垃圾,在生活垃圾中占比达到49.4%~64.5%[1]。在中国垃圾分类政策推行以后,厨余垃圾与可回收垃圾、有害垃圾进行了分类投放,提高了厨余垃圾分类收集效率,为其高效处理提供可能。厨余垃圾具有高含水率和有机质的特点,如未经妥善处理,在自然环境下容易腐烂,会对环境造成严重污染。然而经过妥善处理和加工,厨余垃圾可转化为新的资源[2-3]。

堆肥能够对厨余垃圾在无害化、减量化的基础上进行资源化利用,将有机废弃物转化为相对稳定的产品,可用作肥料或土壤改良剂[4]。然而堆肥过程中的负面效应,如CO2、CH4、N2O等温室气体的排放,不但降低了堆肥产品的价值,同时也对环境造成二次污染[5]。温室气体的增加导致全球气候变化,近年来,温室效应的加剧给各国造成了巨大经济损失。因此针对这一问题展开了一系列的研究,以减少对环境的污染。Yang等[6]发现添加玉米秸秆等辅料能够有效减少厨余垃圾堆肥过程的温室气体排放,其他研究添加园林废弃物作为辅料也得到了相似的结果[5,7]。此外,提高通风速率[7],进行蚯蚓辅助堆肥,添加腐熟堆肥[8-9]和使用化学添加剂[10]等方式也可对温室气体进行减排。堆肥过程是微生物对有机物进行降解和转化、同时自身得到繁殖的生化过程,通过添加适宜的外源微生物,能够在堆肥初期增加高效降解菌的数量,从而缩短堆肥时间、加速有机质降解并提高堆肥产品中氮磷的含量,在堆肥中具有广阔的应用前景[11-13]。

有研究表明,虽然CH4和N2O的排放规律仍有争议,但其排放与功能微生物密切相关,添加微生物可有效控制温室气体的排放。在CH4大量产生的堆肥前期, 接种菌剂可降低堆体中与甲烷产生相关的mcr A基因丰度, 而增加与甲烷消耗有关的pmo A基因丰度,从而减少甲烷的排放[14-16]。添加排硫硫杆菌()和硫磺可以减少鸡粪堆肥中46.13%的N2O释放量[17]。接种具有纤维素降解功能的复合微生物菌剂可以在牛粪堆肥中减少33%的CH4和45%的N2O释放量[18]。微生物菌剂的添加不仅能提高堆肥效率,而且可以避免额外增加堆肥产品盐度等其他化学添加剂可能产生的问题,具有很好的应用潜力。垃圾分类政策实施之前,大多数的研究聚焦于粪便堆肥过程中的气体减排。随着全国各地垃圾分类不断推进,厨余垃圾的分出量急剧增加,为其堆肥处理带来了挑战,而微生物菌剂在此领域的温室气体减排效果也鲜有报道。

基于此,本文以城市中收集的园林废弃物(园林剪枝)作为辅料,对城市厨余垃圾进行好氧堆肥,通过分别添加多种微生物菌剂,以研究外源单一和复合微生物对堆肥过程中温室气体排放的影响,为厨余垃圾堆肥的污染气体减排提供技术和理论支持。

1 材料与方法

1.1 堆肥原料、设备与方法

试验地点为中国农业大学上庄试验站,堆肥原料为厨余垃圾和园林剪枝。厨余垃圾于堆肥当天取自北京市马家楼垃圾转运站,经人工分拣,去除金属、玻璃、塑料等其他垃圾,得到厨余垃圾作为堆肥原料。园林剪枝取自美尚生态景观股份有限公司的无锡生态景观园林剪枝。微生物接种剂分别为复合微生物菌剂:VT,主要由芽孢杆菌、白腐菌、霉菌和酵母菌构成,购于北京沃土天地生物科技股份有限公司;单一菌剂:枯草芽孢杆菌和地衣芽孢杆菌,广西农保生物工程有限公司。厨余垃圾和园林剪枝的理化指标见表1。

表1 厨余垃圾和园林剪枝的理化性质

将厨余垃圾、园林剪枝及所用微生物菌剂混合均匀,装入60 L堆肥发酵罐中,进行高温好氧堆肥,发酵罐结构见文献[5]。厨余垃圾和园林剪枝的湿重比为85∶15,此时达到适宜的含水率(65%),微生物菌剂的添加量以厨余垃圾和园林废弃物总干质量比计,为1.5%。通风方式为机械强制间歇通风,每30 min通风15 min,通风速率控制在0.28 L/(min·kg)。试验设置4个处理,分别添加复合菌剂(VT)、枯草芽孢杆菌(BS)和地衣芽孢杆菌(BL),以不添加菌剂的处理作为对照(CK)。

1.2 测定项目与分析方法

堆肥周期为35 d,堆体温度由温度传感器测定,自动测温仪(175-T3,Testo,德国)通过红外装置接收读取数据。堆肥实验开始后分别于第3、7、14、21、28天和35天翻堆并取混合新鲜样品500 g,分成两份。一份用于含水率的测定(105 ℃烘干);另一份用于水浸提液的制备(固液比1∶10),并使用多参数分析仪(DZS-706-A,雷磁,上海)测定 pH值和电导率值(EC)。取上述水浸提液5 mL于盛有10粒萝卜种子并铺有滤纸的培养皿中,置于(20±1)℃培养箱(SHP-250,精宏,上海)中避光培养48 h,测定种子发芽率指数(GI)。通过便携式沼气分析仪(Biogas 5000,Geotech,英国)于每天固定时间直接读数测定CO2含量。此外,于每天固定时间使用铝箔采气袋在容器的排气管收集气体,通过安装有火焰电离检测器、电子捕获检测器的气相色谱(SP-3420A,北京北分瑞利分析仪器有限责任公司,中国)测定CH4和N2O。

1.3 数据处理

所有试验数值以均值表示,作图采用 origin 2018 软件完成;统计分析采用 Microsoft Excel 和 SPSS 20.0 软件完成。

2 结果与讨论

2.1 温度和CO2含量变化趋势

温度能够反映堆体中的微生物代谢强度,当堆体温度超过55 ℃时,堆肥进入高温期。如图1a所示,所有处理温度变化呈现相似的趋势,经过了升温、高温、降温和腐熟四个阶段,高温期(≥55 ℃)均能持续10 d以上,满足超过5 d堆肥的安全卫生学标准(NY/T 3442-2019)。VT和BL处理于堆肥开始第2天即进入高温期,于第4天达到最高温,分别为74.13 ℃和73.81 ℃,CK和BS处理均延迟一天进入高温期,此后所有处理温度逐渐降低,在28 d后温度达到稳定并伴有小幅波动。第7和14天翻堆后各处理温度略有回升,这说明翻堆使堆体的疏松程度、均匀性和通气效果得到改善,加速了微生物代谢速率,提高了产热量[19]。此外,在第14天翻堆后,VT处理回温最快且温度最高,BS处理次之,而BL处理较CK处理慢,说明VT在提高堆肥升温方面具有优势。CK处理在第2天进入高温期,并在第4天温度达到最高74 ℃,表明即使没有外源微生物的加入,本文所选取原料的物料比也能够获得堆体快速升温的效果。

注:CK为不添加菌剂的处理,VT为添加VT1000的处理,BS为添加枯草芽孢杆菌的处理,BL为添加地衣芽孢杆菌的处理(下同)。

温度和CO2能够反映堆肥过程中的微生物代谢活性和有机物降解速率,而CO2含量的变化则主要反映了有机物矿化速率,在整个堆肥过程中,温度和CO2含量呈显著正相关(=0.900,<0.01)。在堆肥初始阶段,各处理尾气的CO2含量迅速升高,其最高值均出现在第3~5天,处于11.3%~12.7%范围内,表明此阶段有机物的矿化过程非常活跃,微生物代谢活动较为剧烈。此后CO2含量呈现出翻堆后小幅上升,整体为波动下降的趋势并于第23天前后达到稳定。

2.2 基本腐熟度指标变化分析

电导率(EC)是衡量堆肥含盐量的重要参数,当EC值过高时,抑制植物生长,当低于3 mS/cm时,不会对植物产生不利影响[20]。堆肥过程EC值变化趋势如图2a所示,所有处理的初始EC值在1.88~2.28 mS/cm范围内,堆肥初期各处理的EC均出现上升趋势,这可能是由于大量小分子油价算和无机盐物质被微生物分解利用所致[21],到第3天达到最高,这与已报道的研究结果一致[22]。第3天后,各处理EC值有所回落,这是由于此阶段已进入高温期,有机质的矿化作用使氨气的挥发所致[23]。在第7~28天,EC值先出现了小幅上升,这可能是由于翻堆使物料再讲解的过程中转变成为更易溶解的无机盐离子所致[24]。堆肥结束时所有处理稳定在1.77~2.11 mS/cm范围内,均未超过3.0 mS/cm,表明EC值在作物生长安全范围之内[21]。

图2 堆肥过程中堆肥腐熟度指标变化

由于厨余垃圾的易腐特性,堆肥初始堆体积累少量有机酸,使pH值呈弱酸性,在5.38~5.76之间。随着堆肥的进行,pH值持续升高,第7天达到最高。在此阶段堆体持续升温到达高温期,微生物代谢活跃,有机酸经矿化以二氧化碳的形式排出,同时氨态氮累积,导致堆体pH值持续升高[25-26]。此后,堆体中的有机物逐渐耗尽,pH值趋于稳定,至堆肥结束时pH值在8.80~8.95之间,符合腐熟堆肥弱碱性的要求。

种子发芽率指数(GI)作为检验堆肥产品是否具有生物毒性的重要指标,可以对堆肥腐熟度进行评价[27]。我国有机肥料标准(NY525-2021)规定,当GI≥70%时可认为堆体达到腐熟。由图2c可知,各处理种子发芽率指数持续上升。堆肥初始各处理的GI值均接近0,表明堆肥原料对种子具有较大的毒害作用。随着堆肥进行,微生物持续对有机物进行分解,转化为稳定的腐殖质,随着对植物生长有毒害物质的降解,堆体的GI值逐渐升高。BS处理在前期GI值最高且升高最快,于第14天即达到72.83%,达到腐熟标准,这表明三种菌剂中枯草芽孢杆菌在腐熟度方面较VT和地衣芽孢杆菌略有优势。CK、BL和VT处理虽腐熟较慢,但于第21天也均超过了70%,至堆肥结束时,5个处理的堆肥产品浸提液GI分别为117.13%(CK)、116.73%(VT)、124.02%(BS)和113.78%(BL),均达到堆肥产品的腐熟度要求。

2.3 CH4排放规律

CH4是有机质厌氧降解的产物,主要由产甲烷菌转化乙酸及氢气和CO2生成[28]。不同处理的CH4排放特征如图3所示,4个处理具有相似的排放规律,经过较长的延迟期,在堆肥的降温期呈现出先上升后下降的趋势,这与陈辉等[29]的研究结果一致。堆肥升温和高温阶段供氧充足,较高氧化还原电位抑制了产甲烷菌的活性。从排放速率来看,除BS处理外,其余4个处理的CH4排放量在前17天一直维持在较低水平。随后,所有处理均出现排放高峰期(第18~24 d),这是由于翻堆后堆体出现了二次升温,微生物代谢活跃,随着高温持续和有机质降解造成了堆体局部厌氧,二氧化碳含量增加而氧气含量降低(图1b),从而促进了甲烷的排放[30]。王义祥等[31]表明添加微生物菌剂会提高堆肥过程中的CO2排放量,随着后期堆体温度的降低,CH4排放增加。VT和BS处理在高峰期的CH4排放量相对较低,而BL处理相对CK处理的CH4排放量较高,所有处理的最高峰值出现在第19 d,分别为4.38 mg/(kg·d)(CK)、2.80 mg/(kg·d)(VT)、2.71 mg/(kg·d)(BS)和4.96 mg/(kg·d)(BL)。堆肥结束时,CK处理的CH4累计排放量最高,为39.29 mg/(kg·d),VT处理累计释放量最低,为31.87 mg/(kg·d),其余2个处理没有较大差异。李舒清等[16]在使用复合菌剂对牛粪堆肥的CH4减排中也得到了类似的研究结果。

图3 堆肥过程CH4的排放特征

4个处理的CH4累积排放量由高到低依次为CK、地衣芽孢杆菌、枯草芽孢杆菌、VT,结果表明VT的CH4减排效果最好,为18.89%。李旺旺等[32]通过在污泥堆肥中添加VT也实现了CH4的减排,他们表示可能是由于VT与土著产甲烷菌发生竞争从而抑制了CH4的排放。

2.4 N2O排放规律

堆肥中铵态氮的硝化反应与硝态氮的反硝化过程均会产生N2O[28]。不同处理的N2O排放规律如图4所示,与CH4不同的是,N2O的排放具有两个高峰,第一个出现在堆肥初期,于第3天达到峰值,这与李丹阳等[33]的研究结果相似。此阶段的高排放量主要是源于堆肥开始前物料堆积产生的硝态氮积累,随着温度的升高,反硝化作用使氧化亚氮开始排放[34],VT处理的排放量要高于其他处理,杨佳等[35]表明VT菌剂会通过加强反硝化作用增加N2O的产生量,这与本研究的结果一致。随着堆体温度的升高,N2O排放量迅速降低,这可能是由于高温抑制了硝化细菌的活性,使得铵根离子无法通过硝化作用转化所致[5]。在第一次排放高峰期,CK的氧化亚氮累积排放量达到30.00 mg/(kg·d),其余3个处理分别为54.73 mg/(kg·d)(VT)、26.83 mg/(kg·d)(BS)和30.09 mg/(kg·d)(BL)。随着有机质的降解,堆肥进入腐熟期,堆体温度下降,对硝化细菌的抑制作用减弱,硝化作用增强,N2O排放再次增加,第28天出现了第二个高峰[36]。BS和VT处理的第二次排放峰值远低于第一次,这与其他研究结果是相似的[37],而CK和BL处理在第二个高峰期排放量仍然较高,这表明添加地衣芽孢杆菌在堆肥后期对N2O的减排效果并不明显,而枯草芽孢杆菌和VT或可对硝化作用产生抑制。堆肥结束时,BS处理的N2O累积排放量最低,为126.13 mg/(kg·d),VT和BL分别为167.96和213.94 mg/kg,CK最高,为330.78 mg/kg。王佳等[38]在同比例玉米秸秆添加的厨余垃圾堆肥中也得到了类似的排放量,这表明该试验所选取的微生物菌剂确可对N2O进行减排。

图4 堆肥过程N2O的排放特征

综上,添加菌剂对N2O的减排作用体现在第二个排放高峰期,通过抑制硝化过程实现对N2O的减排。此外Guo等[39]研究发现,在猪粪和麦秸混合堆肥中添加5%的巨大芽孢杆菌可以促进高温期氨氧化细菌的生长、增加氨单加氧酶基因amoA的丰度、调节硝化和反硝化过程,从而减少N2O的排放。在本研究中,枯草芽孢杆菌对于N2O的减排效果最好,减排率高达61.86%,VT次之,减排率为49.22%,地衣芽孢杆菌最低,减排率为35.32%。

2.5 温室效应变化分析

IPCC第五次评估报告表示,CH4和N2O的全球增温潜势(GWP)分别是28和256[40]。将 CH4和N2O转化成二氧化碳当量(CO2-eq),计算出堆肥过程中温室气体排放当量如表2所示。

表2 堆肥过程中温室效应

注:对N2O和CH4分别使用的全球变暖潜势为CO2的256和28倍;kg·t-1指每吨物料(以干基计)温室气体排放的二氧化碳当量。

Note: The global warming potential used for N2O and CH4is 256 and 28 times that of CO2, respectively; kg·t-1refers to the amount of carbon dioxide equivalent emitted by greenhouse gas emissions per ton of material (based on wet mass basis)

数据表明,堆肥过程中排放的N2O对温室效应的贡献相对较大,占三种温室气体总CO2排放当量的76.83%~88.57%。本研究中,微生物菌剂的加入能够有效的对温室气体进行减排,BS(添加枯草芽孢杆菌)处理的综合减排效果最好,高达56.15%。BL(添加地衣芽孢杆菌)处理的CO2排放量最低,为6.69 kg/t,与CK处理相比减少约33.50%的排放量;复合菌剂VT处理的CH4减排效果最好,为19.10%,但其排放量与其他处理相比并无较大差别,温室气体的减排是重要课题,但堆肥是个高温好氧的过程,必然伴随着CO2的排放,这是实现堆肥CO2减排的矛盾点,如何在保证堆肥质量的同时减少CO2和CH4排放,降低碳素损失是今后需要克服的问题。BS处理的N2O减排效果最好,高达61.87%,因此枯草芽孢杆菌对于控制堆肥过程中的N2O排放具有重要意义,本研究中无明显渗滤液外排,氮元素主要以气体形式损失,研究表明添加外源微生物菌剂可通过减少气体外排提高堆体的肥效,增加堆肥结束时的总氮含量[41-43]。

研究表明,一些无机化学试剂如磷石膏等的添加可以实现7.3%~19.31%的温室气体减排效果[44-45]。而使用其他生物添加如腐熟堆肥时,可以获得更好的减排效果(37.62%~69.17%),这是可能是由于腐熟堆肥中含有的大量微生物参与了堆肥反应[46]。当外源微生物为添加剂时,即使添加量仅为20 g/t,联合热风循环工艺也可减排17.5%的温室气体排放量[47]。生物添加在温室气体减排方面具有更好的优势,本试验所用微生物菌剂也表现出较好的减排效果,VT菌剂作为复合菌对温室气体具有较好的减排效果,但略低于枯草芽孢杆菌。有研究表明复合菌剂内部各菌的比例对堆肥效果有较大的影响[48-49],VT作为复合菌,其内部不同的功能菌可在堆肥不同阶段发挥作用,通过影响堆体内的微生物群落结构进行温室气体的减排,但添加BS的处理减排效果要优于添加VT的处理,这可能是菌剂内部的复合比例产生了影响。曹玉博等[50]表明堆肥过程中温室气体的排放与氮素的转化等过程互相关联,堆肥过程的氮素转化和N2O排放与堆肥各阶段的微生物群落及功能性微生物密切相关,因此对于N2O的减排可能是通过外源菌剂与硝化、反硝化菌竞争获取养分,从而影响N2O的产生实现的。虽对于N2O的减排已有较多研究,但缺少针对CH4进行减排的微生物菌剂。因此若想在温室气体减排上取得更好的效果,适应性强、效果稳定且能实现温室气体协同减排的多功能复合菌剂应是未来研究的重点,且需对其复合菌剂中菌种的比例进行进一步优化。

3 结 论

1)从温度和CO2含量变化来看,3种微生物菌剂能够加快堆体升温,4个处理均能快速升温并保持足够长的高温期从而使堆体达到无害化,结合腐熟度指标分析,微生物菌剂的加入可以在一定程度上加快堆肥进程和腐熟。

2)添加菌剂对于CH4和N2O的排放规律没有影响,可以有效减少累积排放量。各处理的CH4排放峰值均出现在17~21 d降温期,其中VT1000处理的累积排放量最低;N2O具有2个排放峰值,分别均出现在3~4 d的堆肥初期和28~29 d腐熟期,其中枯草芽孢杆菌处理的累积排放量最低。

3)根据温室效应分析,添加微生物菌剂可以不同程度降低温室气体排放当量,减排率为34.80%~56.15%,其中枯草芽孢杆菌的减排效果最好。

[1] 盛维杰,靳晨曦,李光明,等. 厨余垃圾好氧堆肥技术研究进展[J]. 上海节能,2021(6):554-563.

Sheng Weijie, Jin Chenxi, Li Guangming, et al.Research progress on aerobic composting technology of food waste[J]. Shanghai Energy Conversion, 2021(6): 554-563. (in Chinese with English abstract)

[2] 郭颢,杨桂玲,虞轶俊,等. 厨余垃圾有机堆肥风险因子管控研究进展[J]. 浙江农业科学,2022,63(2):234-240,243.

Guo Hao, Yang Guiling, Yu Yijun, et al. Research progress on risk factors control of kitchen waste composting[J]. Journal of Zhejiang Agricultural Sciences,2022, 63(2): 234-240, 243. (in Chinese with English abstract)

[3] 欧蓓,薛映,肖可可,等. 添加秸秆堆肥处理厨余垃圾过程中蛋白类物质转化及微生物群落研究[J]. 华中科技大学学报(自然科学版),2022,50(10):83-96.

Ou Bei, Xue Ying, Xiao Keke, et al. Study on proteinaceous components conversion and microbial communityduring composting of food waste added by straw bulking agents[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition): 2022, 50(10): 83-96. (in Chinese with English abstract)

[4] Zhang B, Fan F, Guo C, et al. Evaluation of maturity and odor emissions in the process of combined composting of kitchen waste and garden waste[J]. Applied Sciences, 2021, 11(12).

[5] 杨帆,欧阳喜辉,李国学,等. 膨松剂对厨余垃圾堆肥CH4、N2O和NH3排放的影响[J]. 农业工程学报,2013,29(18):226-233.

Yang Fan, Ouyang Xihui, Li Guoxue, et al. Effect of bulking agent on CH4, N2O and NH3emissions in kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 226-233. (in Chinese with English abstract)

[6] Yang F, Li G, Yang Q, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393-1399.

[7] Xu Z, Xu W, Zhang L, et al. Bacterial dynamics and functions driven by bulking agents to mitigate gaseous emissions in kitchen waste composting[J]. Bioresource Technology, 2021, 332: 125028.

[8] 杨帆,李国学,江滔,等. 蚯蚓辅助堆肥处理蔬菜废弃物及其温室气体减排效果[J]. 农业工程学报,2012,28(16):190-196.

Yang Fan, Li Guoxue, Jiang Tao, et al. Vermicomposting treatment of vegetable waste and its greenhouse gas emissions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 190-196. (in Chinese with English abstract)

[9] Hwang H Y, Kim S H, Shim J, et al. Composting process and gas emissions during food waste composting under the effect of different additives[J]. Sustainability, 2020, 12(18).

[10] Li Y, Liu T, Song J, et al. Effects of chemical additives on emissions of ammonia and greenhouse gas during sewage sludge composting[J]. Process Safety and Environmental Protection, 2020, 143: 129-137.

[11] Fan Y V, Klemeš J J, Lee C T, et al. Efficiency of microbial inoculation for a cleaner composting technology[J]. Clean Technologies and Environmental Policy, 2017, 20(3): 517-527.

[12] 傅梓铖,兴虹,张煜,等. 微生物菌剂对厨余垃圾好氧堆肥影响[J]. 辽宁科技学院学报,2020,22(1):13-15.

Fu Zicheng, Xing Hong, Zhang Yu, et al. Effect of microbial inoculation on aerobic composting of kitchen waste[J]. Journal of Liaoning Institute of Science and Technology, 2020, 22(1): 13-15. (in Chinese with English abstract)

[13] 赵彬涵,孙宪昀,黄俊,等. 微生物在有机固废堆肥中的作用与应用[J]. 微生物学通报,2021,48(1):223-240.

Zhao Binhan, Sun Xianyun, Huang Jun, et al. Application and effects of microbial additives in aerobic composting of organic solid wastes: A review[J]. Microbiology China, 2021, 48(1): 223-240. (in Chinese with English abstract)

[14] SunX, Lu P, Jiang T, et al. Influence of bulking agents on CH4, N2O, and NH3emissions during rapid composting of pig manure from the Chinese Ganqinfen system[J]. Journal of Zhejiang University-Science B,2014, 15(4): 353-364.

[15] Wang Y, Gao L, Xin S, et al. Greenhouse gas emission and its correlation with microbial in composting of waste packing and fungus chaff[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4662-4669.

[16] 李舒清,张镜丹,纪程,等. 接种复合菌剂对牛粪好氧堆肥进程及温室气体(CH4和N2O)排放的影响[J]. 南京农业大学学报,2017,40(6):1041-1050.

Li Shuqing, Zhang Jingdan, Ji Cheng, et al. Effects of inoculation of complex microbial inoculants on the process andgreenhouse gas (CH4and N2O) emissions of cattle manure aerobic composting[J]. Journal of Nanjing Agricultural University, 2017, 40(6): 1041-1050. (in Chinese with English abstract)

[17] Gu W, Sun W, Lu Y, et al. Effect of Thiobacillus thioparus 1904 and sulphur addition on odour emission during aerobic composting[J]. Bioresource Technology, 2018, 249: 254-260.

[18] 卢彬,武肖媛. 复合微生物菌剂对高温堆肥进程及有害气体排放的影响[J]. 过程工程学报,2018,18(S1):122-128.

Lu Bin, Wu Xiaoyuan. Effects of compound microbial agents on high-temperature composting process and harmful gas emissions[J]. The Chinese Journal of Process Engineering, 2018, 18(S1): 122-128. (in Chinese with English abstract)

[19] 李赟,袁京,李国学,等. 辅料添加对厨余垃圾快速堆肥腐熟度和臭气排放的影响[J]. 中国环境科学,2017,37(3):1031-1039.

Li Yun, Yuan Jing, Li Guoxue, et al. Use of additive to control odors and promote maturity of municipal kitchen wasteduring aerobic composting[J]. China Environmental Science, 2017, 37(3): 1031-1039. (in Chinese with English abstract)

[20] 张红玉. 厨余垃圾、猪粪和秸秆联合堆肥的腐熟度评价[J]. 环境工程,2013,31(Z1):470-474.

Zhang Hongyu. Maturity evaluation of kitchen waste, pig manure and corn-straw co-composting[J]. Environmental Engineering, 2013, 31(Z1): 470-474. (in Chinese with English abstract)

[21] 李文兵,毕江涛,刘鹏,等. 牛粪好氧堆肥发酵微生物群落结构演替与环境因子和腐熟度的相关性[J]. 环境工程,2022,40(1):69-77.

Li Wengbing, Bi Jiangtao, Liu Peng, et al. Correlation between the succession of microbial community structure and environmental factors and maturity of cattle manure aerobic composting[J]. Environmental Engineering, 2022, 40(1): 69-77. (in Chinese with English abstract)

[22] 秦韩淼,谭志海,李世浩,等. 秸秆对厨余垃圾堆肥渗滤液减排的影响[J]. 西安工程大学学报,2021,35(2):9-14.

Qin Hanmiao,Tan Zhihai, Li Shihao, et al.Effect of straw on emission reduction of kitchen waste compostingleachate[J]. Journal of Xi'an Polytechnic University, 2021, 35(2): 9-14. (in Chinese with English abstract)

[23] Nair J, Okamitsu K, Microbial inoculants for small scale composting of putrescible kitchen wastes[J]. Waste Management, 2010, 30(6): 977-982.

[24] 李春燕,张曦,沈玉君,等. 翻堆策略对猪粪沼渣好氧发酵特性的影响[J]. 环境工程,2021,39(1):130-135.

Li Chungyan, Zhang Xi, Shen Yujun, et al. Effectsof turning strategy on aerobic fermentation property of pig biogas residue[J]. Environmental Engineering, 2021, 39(1): 130-135. (in Chinese with English abstract)

[25] Manyapu V, Mandpe A, Kumar S.Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste[J]. Bioresour Technol, 2018, 251: 114-120.

[26] 迟孟浩. 厨余垃圾与污泥联合堆肥对腐熟度和氮素损失的影响研究[D]. 长春:吉林农业大学,2018.

Chi Menghao. The Maturity and Nitrogen Loss during Kitchen Waste and Sewage Sluge Composting[D]. Changun: Jilin Agricultural University, 2018. (in Chinese with English abstract)

[27] 方伟成,肖红飞,田云丽. 园林废弃物与厨余垃圾混合堆肥工艺综合评价[J]. 湖北农业科学,2017,56(2):259-262.

Fang Weicheng, Xiao Hongfei, Tian Yunli. Comprehensive evaluation of co-composting process with garben waste anb kitchen waste[J]. Hubei Agricultural Sciences, 2017, 56(2): 259-262. (in Chinese with English abstract)

[28] 罗一鸣,李国学,Frank Schuchardt,等. 过磷酸钙添加剂对猪粪堆肥温室气体和氨气减排的作用[J]. 农业工程学报,2012,28(22):235-242.

Luo Yiming, Li Guoxue, Frank Schuchardt, et al. Effects of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 235-242. (in Chinese with English abstract)

[29] 陈辉,王巨媛,田晓飞,等. 含水率与C/N耦合对驴粪堆肥过程中温室气体排放的影响[J]. 生态环境学报,2019,28(2):341-347.

Chen Hui, Wang Juyuan, Tian Xiaofei, et al. Effects of different water content and C/N coupling on greenhouse gas emissions during donkey dung composting[J]. Ecology and Environmental Sciences, 2019, 28(2): 341-347. (in Chinese with English abstract)

[30] 闫召伟,杨菲宇,高兴祖,等. 含硫添加剂对猪粪堆肥过程甲烷与臭气排放的影响[J]. 农业环境科学学报,2021,40(11):2448-2455.

Yan Zhaowei, Yang Feiyu, Gao Xingzu, et al. Effect of sulfur-containing additives on methane and odor emissions during pig manure composting[J]. Journal of Agro-Environment Science, 2021, 40(11): 2448-2455. (in Chinese with English abstract)

[31] 王义祥,叶菁,林怡,等. 花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响[J]. 中国农业大学学报,2021,26(6):114-125.

Wang Yixiang, Ye Jing, Lin Yi, et al. Effects of peanut shell biochar on greenhouse gas and NH3emissions during swine manure composting[J]. Journal of China Agricultural University, 2021, 26(6): 114-125. (in Chinese with English abstract)

[32] 李旺旺,刘燕,李国学,等. 菌剂和含磷添加剂联合添加对污泥堆肥污染气体排放及堆肥品质的影响[J]. 农业环境科学学报,2022,41(4):878-887.

Li Wangwang, Liu Yan, Li Guoxue, et al. The effect of microbial agent and phosphorus-containing additives on compost maturity and pollutant gas emissions during sewage sludge composting[J]. Journal of Agro-Environment Science, 2022, 41(4): 878-887. (in Chinese with English abstract)

[33] 李丹阳,马若男,亓传仁,等. 含水率对羊粪堆肥腐熟度及污染气体排放的影响[J]. 农业工程学报,2020,36(20):254-262.

Li Danyang, Ma Ruonan, Qi Chuanren, et al. Effects of moisture content on maturity and pollution gas emissions during sheep manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 254-262. (in Chinese with English abstract)

[34] Petersen S O, Linda A M, Sommer S G. Nitrogen and organic matter losses during storage of cattle and pig manure[J]. The Journal of Agricultural Science, 1998, 130(1): 69-79.

[35] 杨佳,王国英,唐若兰,等. 生物炭和菌剂对羊粪微好氧堆肥腐熟度和温室气体排放的影响[J]. 农业工程学报,2022,38(10):224-231.

Yang Jia, Wang Guoying, Tang Ruolan, et al. Effects of biochar and microbial inoculum on maturity and greenhouse gas emissions during micro aerobic composting of sheep manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 224-231. (in Chinese with English abstract)

[36] Mulbry W, Ahn H. Greenhouse gas emissions during composting of dairy manure: Influence of the timing of pile mixing on total emissions[J]. Biosystems Engineering, 2014, 126: 126.

[37] He Y, Inamori Y, Mizuochi M, et al. Nitrous oxide emissions from aerated composting of organic waste[J]. Environmental science & technology 2001, 35(11): 2347-2351.

[38] 王佳,谷洁,王小娟,等. 不同填充剂对农村厨余垃圾堆肥氮转化及相关功能基因的影响[J]. 西北农业学报,2021,30(12):1879-1888.

Wang Jia, Gu Jie, Wang Xiaojuan, et al. Effects of different bulking agents on nitrogen transformation and related functional genes of kitchen waste composting in rural area[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(12): 1879-1888. (in Chinese with English abstract)

[39] Guo H, Gu J, Wang X, et al.Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure[J]. Bioresource Technology, 2020, 298, (C).

[40] 周谈龙,尚斌,董红敏,等. 低碳氮比条件下猪粪堆肥氨气和温室气体排放[J]. 中国农业气象,2017,38(11):689-698.

Zhou Tanong, Shang Bin, Dong Hongmin, et al. Emission characteristics of ammonia and greenhouse gas during the low C/N ratio swine manure composting[J]. Chinese Journal of Agrometeorology, 2017, 38(11): 689-698. (in Chinese with English abstract)

[41] 张国言,董元杰,孙桂阳,等. 复合菌剂对兔粪堆肥碳氮转化与损失的影响[J]. 中国农业大学学报,2022,27(11):153-165.

Zhang Guoyan, Dong Yuanjie, Sun Guiyang, et al. Effects of compound bacterial inoculant on the conversion and loss of carbon andnitrogen during rabbit manure composting[J]. Journal of China Agricultural University, 2022, 27(11): 153-165. (in Chinese with English abstract)

[42] 陈赛男,钟为章,牛建瑞,等. 复合菌剂对土霉素菌渣好氧堆肥腐熟及微生物群落结构影响[J]. 环境工程学报,2022,16(8):2672-2681.

Chen Sainan, Zhong Weizhang, Niu Jianrui, et al. Effect of compound bacterial agent on maturity and microbial community structure of oxytetracycline residue aerobic composting[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2672-2681. (in Chinese with English abstract)

[43] 胡菊,肖湘政,吕振宇,等. 接种VT菌剂堆肥过程中物理化学变化特征分析[J]. 农业环境科学学报,2005(5):140-144.

Hu Ju, Xiao Xiangzheng, Lv Zhenyu, et al. Physical and chemical indexes of composting inoculated VT microbes[J]. Journal of Agro-Environment Science, 2005(5): 140-144. (in Chinese with English abstract)

[44] 杨岩,孙钦平,李妮,等. 添加过磷酸钙对蔬菜废弃物堆肥中氨气及温室气体排放的影响[J]. 应用生态学报,2015,26(1):161-167.

Yang Yan, Sun Qinping, Li Ni, et al. Effects of super phosphate addition on NH3and greenhouse gas emissions during vegetable waste composting[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 161-167. (in Chinese with English abstract)

[45] Yang F, Li G, Shi H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70-76.

[46] Yang F, Li Y, Han Y, et al. Performance of mature compost to control gaseous emissions in kitchen waste composting[J]. Science of the Total Environment, 2019, 657: 262-269.

[47] 高丹,张红玉,李国学,等. 余热和菌剂对垃圾堆肥效率及温室气体减排的影响[J]. 农业工程学报,2010,26(10):264-271.

Gao Dan, Zhang Hongyu, Li Guoxue, et al. Effects of waste heat and microbial agents on composting efficiency and greenhouse gas emissions reduction of municipal solid wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 264-271. (in Chinese with English abstract)

[48] 林山杉,赵冰,乔美姣,等. 厨余垃圾好氧堆肥优势细菌的分离及处理效率研究[J]. 环境工程,2014,32(7):115-118,146.

Lin Shanshan, Zhao Bing, Qiao Meijiao, et al. Predominant bacterias isolation and treatment efficiency during kitchen waste composting[J]. Environmental Engineering, 2014, 32(7): 115-118, 146. (in Chinese with English abstract)

[49] 周营,朱能武,刘博文,等. 微生物菌剂复配及强化厨余垃圾好氧堆肥效果分析[J]. 环境工程学报,2018,12(1):294-303.

Zhou Ying, Zhu Nengwu, Liu Bowen, et al. Effect analysis of compound microbial agents and enhancement on kitchen waste aerobic composting[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 294-303. (in Chinese with English abstract)

[50] 曹玉博,张陆,王选,等. 畜禽废弃物堆肥氨气与温室气体协同减排研究[J]. 农业环境科学学报,2020,39(4):923-932.

Cao Yubo, Zhang Lu, Wang Xuan, et al. Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting[J]. Journal of Agro-Environment Science, 2020, 39(4): 923-932. (in Chinese with English abstract)

Mitigation effects of microbial agents on greenhouse gas emissions from kitchen waste composting

Chen Wenxu1,2, Liu Yifei1, Jiang Sinan1, Wu Zeyue1, Wang Qianqi1, Li Guoxue1, Li Yanming1, Gong Xiaoyan1※

(1.,,,100193,; 2.,266100,)

High-temperature aerobic composting has been ever-increasing developed rapidly for the fastest way to make high quality compost without any foul odors. However, the greenhouse gas (GHG) can also be produced during composting, including CH4and N2O. In this study, a 35-day aerobic co-composting of kitchen waste and yard trimming (chipped stems) was carried out in 60 L forced aerated static composting reactors, in order to reduce the GHG emission during composting. Three commercial microbial agents were also added to compost materials, including the VT1000 compound consortia (VT), Bacillus subtilize (BS), and Bacillus licheniformis (BL). Among them, the addition of fungi was 1.5% of the dry weight of all raw materials. The treatment without bacterial agents was used as the control (CK). Furthermore, CH4and N2O emissions during composting were monitored to investigate the effect of the microbial agents on the GHG emission. The results showed that the microbial agents significantly accelerated the maturity of compost with the rise of temperature, whereas, relatively reduced the GHG emission in the varying degrees. The duration of high temperature in all treatments was fully met the harmless requirements, in terms of reactor heating. But the treatment with the microbial agents presented the better secondary heating. The fastest temperature recovery and the highest temperature were achieved in the VT, followed by the BS, and the BL was slower than the CK. In maturity, the electric conductivity and pH value in all treatments were met the industrial requirements of compost quality. Specifically, the uninoculated microbial agent failed to the rot standard in the CK treatment. A slightly better compost maturity was obtained in the BS treatment, compared with the VT and BL. Among the GHG emission reduction, the N2O emission was accounted by 76.83%-88.57% of the total as the CO2-C equivalent, indicating the much higher amount than that of CH4. The peaks of emission occurred at the initial and mature stage. The CH4emission peak occurred at the cooling stage, where the cumulative emissions reached 1.65%-2.40% of the total GHG emissions equivalent. The cumulative CH4emissions in the four treatments were ranked as CK, BL, BS, VT in the descending order. As such, the best performances (18.89%) of the CH4and N2O emission reduction were achieved in the VT and BS treatment, respectively. The reduction rates were 49.22%, 61.86%, and 35.32% in the BS, VT, and BL treatment, respectively. The total GHG emissions equivalent were 95.84 (CK), 52.31 (VT), 42.03 (BS), and 62.49 kg/t (BL). Compared with the CK, the best total GHG mitigation was obtained in the BS treatment, with the reduction rate of 56.15%, the BL treatment was the lowest of 34.80%, while the VT treatment was 45.42%. The N2O abatement was better performed than methane with the inoculants, ranging from 35.32% to 61.87%. Taken together, the best effect was achieved in the treatment with 1.5% BS. Therefore, the microbial agents can be expected to effectively mitigate the GHG for the better quality of composting products.

aerobic; composting; greenhouse gases mitigation; microbial agents; kitchen waste

10.11975/j.issn.1002-6819.2022.23.019

X705

A

1002-6819(2022)-23-0181-07

陈文旭,刘逸飞,蒋思楠,等. 微生物菌剂对厨余垃圾堆肥温室气体减排的影响[J]. 农业工程学报,2022,38(23):181-187.doi:10.11975/j.issn.1002-6819.2022.23.019 http://www.tcsae.org

Chen Wenxu, Liu Yifei, Jiang Sinan, et al. Mitigation effects of microbial agents on greenhouse gas emissions from kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 181-187. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.23.019 http://www.tcsae.org

2022-09-28

2022-11-01

中国农业大学教授工作站-20210505(202105510310477);“十三五”国家重点研发计划项目,易腐有机固废多组份协同好氧降解转化技术及装备(2018YFC1901002)

陈文旭,研究方向固体废弃物处理与资源化。Email:cwx943364194i@163.com

宫小燕,博士,副教授,研究方向固体废弃物处理与资源化。Email:beixiaoxi@cau.edu.cn

猜你喜欢

堆体厨余菌剂
不同碳氮比下猪粪高温堆肥腐熟进程研究
食用菌菌糠堆肥化发酵特性及腐熟进程
厨余垃圾干式厌氧工程接种过程研究
厨余垃圾水热炭化处理技术研究进展
厨余垃圾变废为宝 有机肥市场方兴未艾
食用菌菌渣和白酒丢糟共堆肥过程中氮素变化及腐熟进程
复合微生物菌剂在农业生产中的应用
外生菌根真菌菌剂的制备及保存研究
新型液体菌剂研制成功
不同厨余垃圾发酵效果比较