APP下载

基于城市固废堆肥的尾矿库表土植物修复研究

2022-01-18曲贵伟

中国土壤与肥料 2021年6期
关键词:尾矿库水溶性供试

曲贵伟,宋 宇

(辽东学院城市建设学院,辽宁 丹东 118003)

葡萄牙S. Domingos矿区位于葡萄牙西南部(37°40′10.42″ N,7°29′39.28″ W),在19世纪初至20世纪中期以生产铜矿和硫矿为主,因资源匮乏于20世纪60年代停产关闭,但大规模的开采活动在地表堆积大量的尾矿,形成面积巨大的尾矿库,在尾矿库表层因长期风化和少量植物种类生长形成了厚度约1 m的初育土,该表土含有较多的重金属污染物,容易随着风蚀和水蚀进入周边环境,从而造成重金属污染[1],因此亟需进行生态治理。

植物修复技术通过增加尾矿库植被覆盖,减少因流失所引起的污染物迁移,同时植物生长还可以提取重金属,从而降低尾矿库的环境风险,是目前尾矿库生态修复中常用的技术手段[2-4]。然而尾矿库表土pH低、养分匮乏、重金属含量高以及水分保持能力差等恶劣条件会严重限制植株生长[5-6],进而影响了植物修复技术的效果。因此,通过使用各种修复物如有机物质(城市污泥和农业废弃物堆肥等)、石灰和化学肥料等辅助植物固定技术修复尾矿库表土是一种行之有效的方法[7-9]。

城市固废堆肥化技术作为城市固废垃圾无害化和资源化的一种低成本、实用并对环境绿色友好的技术已经引起广泛关注[10],但是城市固废堆肥中不同程度地含有重金属,长期和大量使用可能会导致土壤中重金属的积累,在重金属污染土壤上的应用存在加剧环境污染的风险,因此在重金属污染土壤上应用还需谨慎[11-12]。近年来大量研究表明,城市固废堆肥可以明显改善重金属污染土壤的理化性质和微生物活性,同时降低重金属活性,进而促进植株生长,但这些研究主要集中在发育良好的农业土壤上[13-16]。而城市固废堆肥配合植物修复技术在发育不良的尾矿库表土上的应用还很少[17]。此外,虽然城市固废堆肥对重金属污染土壤微生物和酶活性影响方面的研究较多,却少有城市固废堆肥与不同类型植株的交互作用对土壤微生物和酶活性影响方面的研究[18]。

植被恢复状况是矿山尾矿库生态修复效果最直接的表现,而植株个体生长状况则是植被恢复状况的集中反映。选择适宜修复植株通常是尾矿库植被恢复的首要目标。本研究选择了两种生长特点截然不同的草本植株果园草Dactylis glomerataL.(D. glomerata)和西班牙欧石楠Erica australisL.(E. australis),其 中D. glomerata是 多年生草本植物,可作牧草、干草、青贮饲料。在养分和水分供应充分的情况下,该种植株可以获得较高产量且植株含糖量较高,可作为优秀饲料应用于畜牧业生产。目前尚未在该尾矿库周边发现该种植株,因此在本试验中代表一种需要额外养分补充的外来植物。而E. australis是S.Domingos矿区尾矿库表土上生长的一种灌木,可以在酸性、养分贫瘠和寡照的区域生长,对土壤中Al、As、Pb、Sb和Mn有一定的耐性,而且该种还是药用植物,其提取物可用于消炎和止痛[1],在本试验中代表不需要额外化学肥料补充的本地植物。

土壤理化性质如土壤pH、土壤重金属状况以及土壤生物活性等常作为尾矿库生态修复的重要评价指标[19]。而土壤酶活性可以表征土壤中物质、能量代谢旺盛程度和土壤质量变化,其中土壤脱氢酶活性的变化通常能够反映微生物新陈代谢整体活性以及土壤氧化还原能力。而土壤葡萄糖苷酶、纤维素酶、脲酶、蛋白酶和酸性磷酸酶分别与土壤中有机物(如纤维素和糖类化合物等)降解以及N、P等养分的循环密切相关。在之前有关S.Domingos尾矿库周边重金属污染土壤修复研究中,以上这些指标对不同修复措施的效果均发挥了良好的评价作用[20-21]。因此在本研究中,也被用于评价城市固废和不同植株对尾矿库表土的修复效果。

本研究以葡萄牙S.Domingos矿山尾矿库表土植被恢复为目标,通过盆栽试验研究城市固废堆肥与两种不同植株对该尾矿库表土植被恢复的影响,主要目的包括:(1)明确城市固废堆肥是否可以有效改善尾矿库表土植株的生长,从而促进表土植被覆盖;(2)探讨城市固废堆肥和两种不同类型植株对土壤酶活性的交互作用,为选择合理的修复方式提供理论依据。

1 材料与方法

1.1 供试土壤样本

土壤样本采自葡萄牙S.Domingos矿区尾矿库表土,土壤pH较低,养分匮乏,Pb和As的总量很高(表1)。

表1 供试土壤和堆肥的基本性质

1.2 供试城市固废堆肥

供试城市固废堆肥(MSWC)由葡萄牙里斯本大学高级农业研究所生物工程技术中心研制,主要由植物残落物和城市生活垃圾等经人工堆沤而成,其基本性质见表1。堆肥中重金属含量均在2001年欧盟环境理事会发布的第二草案规定的范围之内[22],也低于供试土壤。

1.3 供试植株

外来植株D. glomerata和矿区本土植株E.australis。

1.4 盆栽试验设计

土壤样本过8 mm筛,每千克土样分别与0、15和30 g的MSWC均匀混合,每个栽培钵(上部直径21 cm,高18 cm)添加4 kg处理后土样。每个MSWC处理(含处理0)分别设置无植株生长[分别6个月(none6)和12个月(none12)]、种植D.glomerata6个月(D.glomerata)、种植E. australis12个月(E.australis)等共计12个处理,每个处理重复4次。E. australis幼苗(约10 cm高)直接采自矿区,然后每钵移栽一颗,土壤中不添加底肥,12个月后收获植株。种植D. glomerata的土壤每千克土样分别添加100 mg N(NH4NO3)、100 mg P[Ca(H2PO4)2]、120 mg K(K2SO4)和30 mg Mg(MgSO4)等化学肥料做底肥,混匀后播种,出苗两周后间苗至60颗,然后分别在93、120、148和176 d收获4茬,每茬留2 cm地上部植株并补充N 100 mg/钵。所有栽培钵每天称重,并及时灌溉,以保证土壤含水量始终维持在土壤最大持水量的60%,以排除在春夏秋干旱季节因为水分丰缺所导致的植株生长的差异。盆栽试验布置在里斯本大学高级农业研究所农业化学系网室内,当有降雨时移至临近的温室内。

1.5 样本分析

植株地上部收获后用去离子水清洗,在65℃下烘干、称重后粉碎,用于测定植株体内P的含量(用于衡量底肥使用对植株生物量的贡献,采用微波消解-ICP-AES法测定)。风干土样用于测定土壤pH(1∶2.5土水比)和土壤中水溶性矿物质(含重金属)含量[1∶50土水比,6 h振荡后离心,上清液中P采用钼锑抗比色法,As采用石墨炉原子吸收法,其他阳离子(Fe、Ca、Mg、K、Na、Mn、Cu、Pb、Zn等)采用火焰原子吸收法测定]。试验结束后分别采集土壤样本,新鲜的土样用于测定土壤脱氢酶活性,冷冻(-24℃)保存的土样分别用于测定土壤葡萄糖苷酶、酸性磷酸酶、纤维素酶、脲酶和蛋白酶等活性,以上这些酶活性的测定方法与之前研究中的方法相同[20]。

1.6 数据分析

采用通用线性模式(GLM)分析所有试验数据之间的差异,平均值的差异显著性比较使用Newman-Keuls法在0.05水平下检验。主成分分析(PCA)用于验证MSWC和两种不同植株的应用效果以及分析关键供试参数对数据差异的影响。

2 结果与分析

2.1 MSWC处理和不同植株对土壤pH和土壤中水溶性矿物质含量的影响

无论有无植株生长,土壤pH随着MSWC的使用量的增加而提高,分别提高了0.7~2.1个单位,且不同用量之间差异显著。然而两种植株的生长对土壤pH产生明显不同的影响,与没有植株生长的处理相比,D. glomerata的生长在一定程度上降低了土壤pH,而E. australis则对土壤pH影响不大(表2)。

表2 MSWC处理和不同植株对土壤pH的影响

表3 结果表明,和不使用MSWC的处理相比,没有植株生长的土壤水溶性P、Fe、K、Ca、Mg和Na随着MSWC用量的增加而增加,分别增加了1.91~3.47、0.62~0.94、7.7~16.3、0~1.1、0.7~2.3和0.4~0.9倍。与其他处理相比,其中30 g/kg的处理增加最为显著。植株生长则导致这些元素的含量普遍下降。除了0水平处理外,均与无植株处理存在明显差异。

表3 MSWC处理对土壤中各种水溶性矿质元素含量(非重金属)的影响(12个月)

土壤中水溶性重金属的含量是评价重金属生物有效性的重要指标之一。尽管As在化学属性上属于非金属,但因其对人和生物的毒性较强,其作为污染物也常归于重金属污染类别中。从表4可以看出,除As外,无论有无植株的生长,MSWC使用对土壤水溶性重金属如Mn、Cu、Zn和Pb的含量几乎没有影响,各个处理的数值分别为1.44、3.07、1.13和0.65 mg/kg干土左右,而土壤水溶性As则随着MSWC使用数量的增加而显著提高,分别比不使用MSWC处理提高了2.2~3.1倍,不同用量水平的处理间差异显著,而且与其他重金属相似,两种植株的生长虽然在一定程度上造成了水溶性As含量下降的趋势,但与无植株处理相比,差异并不显著。

表4 MSWC处理和不同植株对土壤水溶性重金属含量的影响

2.2 MSWC对植株生长的影响

图1 结果显示,MSWC显著改善了两种植株的生长,其中D. glomerata生物量比不使用堆肥的处理提高了0.69~0.91倍(图1),处理间差异显著;而E. australis则提高了7.75~8.83倍,然而30 g/kg的MSWC处理导致了该植株枝条出现了失绿现象,其生物量也略低于15 g/kg的处理。D. glomerata的生物量和植株体内P含量均明显高于E. australis,分别提高了2.73~15.94倍和3.58~4.93倍。随着堆肥用量的增加,两种植株中P的含量均有所下降,其中30 g/kg堆肥处理的E. australis下降最明显(图1)。

2.3 城市固废堆肥和不同植株对土壤酶活性的影响

从图2可以看出,无植株生长的土壤上(6个月和12个月培养),MSWC的应用改善了所有供试土壤酶(脱氢酶、葡萄糖苷酶、纤维素酶、脲酶、蛋白酶和酸性磷酸酶)的活性,分别比无MSWC处理增加了228.31%~666.96%、161.24%~564.54%、55.06%~109.87%、59.86%~261.84%、136.68%~653.34%和31.64%~76.70%,差异显著,而且脱氢酶、酸性磷酸酶和蛋白酶的活性还随着MSWC用量的增加而明显增加;此外,除脲酶外,使用MSWC处理的土壤酶活性均随培养时间的延长而有所下降,其中葡萄糖苷酶、酸性磷酸酶和蛋白酶的活性显著下降,相反脲酶活性却在一定程度上显著提高。两种植株的生长对这些酶的活性产生了不同影响,在无MSWC处理中,生长D. glomerata的所有土壤酶活性均显著高于E. australis;而使 用MSWC后,D. glomerata生长的土壤脱氢酶、酸性磷酸酶、葡萄糖苷酶、纤维素酶的活性增加更加明显,分别比E. australis增加了176.08%~379.16%、186.53%~294.23%、195.27%~204.76%和395.64%~552.04%,而脲酶和蛋白酶的活性差异不显著;图2结果还表明,在没有MSWC处理中,E. australis的生长对葡萄糖苷酶和纤维素酶的活性影响不大,而使用MSWC后,纤维素酶的活性却得到一定改善;E. australis对脲酶的活性影响不显著,却对土壤蛋白酶的活性起到了明显的促进作用,而且在无MSWC和30 g/kg MSWC处理的土壤酸性磷酸酶的活性以及15 g/kg MSWC处理的葡萄糖苷酶的活性都受到了明显的抑制。

2.4 主成分分析

表5 中主成分分析的结果表明,除了脲酶外,所有参数分别在第一或第二主成分上有显著的正载荷。生长D. glomerata的处理均处于第一主成分的正值区,而E. australis则处于第一主成分的负值区。这两个处理随着不同水平堆肥的应用逐渐由第二主成分的负值区向正值区转变(图3)。

表5 主成分分析中各参数在第一和第二主成分上的载荷

3 讨论

3.1 土壤pH和水溶性矿物质含量

从表2可以看出,没有植株生长的MSWC处理的土壤pH的提高应归因于该堆肥本身较高的pH(表1),而D. glomerata的生长造成pH的显著下降则表明堆肥中的有机质在提高土壤缓冲性能方面的积极作用[21]还不足以弥补由于植株生长改善导致的根系分泌物(低分子量有机酸等)和植物吸收导致的阴阳离子的失衡所带来的酸性效应。而E. australis对土壤pH没有附加额外的影响,这可能是因为该种植株生物量较低,根系分泌物较少,也可能是因为该种植株长期生长在尾矿库重金属胁迫环境中,应激产生的一种通过根系降低分泌质子氢的效应,从而使根际周围土壤维持较高的pH[23]。

与他人研究结果一致[24-25],在本试验中,MSWC的应用明显提高了尾矿库表土中水溶性矿质元素(非重金属)的有效性(表3),这也是MSWC能够促进植株生长的主要原因之一,而且这种结果也可以从水溶性矿质养分含量下降得以佐证,这种作用对于养分匮乏的尾矿库表土的植被恢复有十分重要的意义。

大多研究表明重金属污染土壤中大多数重金属的有效性会随着MSWC的应用而降低[26-27],但在本试验中,尽管供试MSWC中含有多种重金属,而且供试土壤中的重金属总量(Pb、As等)也较高(表1),然而无论有无植株生长,在6个月和12个月的时间里,MSWC处理的尾矿库表土中只有水溶性As的含量显著增加(表4),这可能与土壤中P的有效性、有机质的分解和Fe含量的增加有关[28],此外,As与有机质的亲和度较低以及土壤pH的升高,也可能造成土壤中As有效性的提高[29-30],而且不同植株生长并没有对As的含量产生明显影响,这可能是土壤中水溶性P的增加所致,尤其是对于外源P加入的D. glomerata处理,研究表明,As和P在根系吸收上由于使用相同的膜转运蛋白,从而产生竞争关系[31],然而对于E. australis而言,其较低的生物量以及本身可能是一种排斥As的耐As植物即可以在高As水平下生存却不吸收As[32],也可能是原因之一。Mei等[33]认为在多种重金属污染的农业土壤上使用堆肥还需谨慎,因为往往会在降低其他重金属含量的同时导致As活性的增加,而且在这些重金属污染的农业土壤上,As活性的增加可能造成的潜在危害也更值得关注。然而本试验主要目的之一是确定MSWC是否有助于尾矿库表土的植被恢复和固定,而且As活性的明显提高并未影响到植物生长和土壤酶活性,尤其在该表土中As的总量也很高的大背景下,这种程度变化对整个修复过程影响不大。由于本试验未对植株体内的重金属含量进行分析,长期使用MSWC对土壤重金属有效性的影响以及植株对重金属的富集效应(尤其是As)还需要进一步研究明确。

3.2 植株生长

表1 显示供试尾矿库表土为酸性土壤、养分匮乏且重金属含量较高,这些均是限制植株生长的主要因素。然而在本研究中土壤pH(4.8)和土壤水溶性重金属含量却不是影响植株生长的主要因素,因为较低的土壤pH对D. glomerata的生长明显没有产生任何抑制作用,却在较高的pH下抑制了E. australis的生长(图1,表2),而且土壤水溶性重金属的有效性也未发生明显变化。MSWC的使用明显改善了土壤的养分供应水平(表3),两种植株的生长也因此得到显著提高(图1),MSWC对E. australis的增益效果要好于D. glomerata。D. glomerata与E. australis生物量上的明显差异则应归因于化学肥料(底肥)的参与,这一点也可以从两种植株体内P含量的显著差异得以佐证(图1)。而E. australis甚至在高水平的MSWC处理下出现了植株失绿的现象,这可能是MSWC中较高的盐分(表3土壤中的K和Na显著提高),或者较高的pH以及MSWC中有机质的分解提高了土壤中如Ca、Mg、Fe等阳离子的活性(表3),造成了土壤中有效P和微量元素含量的下降,而实际上30 g/kg的MSWC处理该植株中P含量也显著降低(图1),以上结果充分说明养分如N、P、K和Mg等的匮乏才是该尾矿库表土限制植株生长的主要因素。因此,这种尾矿库表土适宜的植被恢复方法应是采用类似D.glomerata的快速生长的植株,在养分供应得到保证的情况下,在尾矿库表土上获得持续覆盖,但成本也因连续施肥而增加;或者通过使用MSWC促进类似E. australis的本地植株的生长,尽管其生物量不高,但其养分需求较低(如P),成本也明显下降,而且其对尾矿库恶劣环境适应性较强,同时也能保证其表土在12个月时间里的植被覆盖,进而降低表土因风蚀和水蚀而产生周边环境污染风险。

3.3 土壤酶活性

MSWC的应用可以改善重金属污染土壤酶的活性,这已经从众多研究中得到证实[14,16,34],本试验也得到了相似的结果,而且这种增加在蛋白酶和脱氢酶的活性上表现更加显著,Alverenga等[18]也发现在矿区土壤上使用25、50和100 t/hm2的MSWC时也得到相似的结论。主成分分析结果表明,MSWC处理在第一主成分和第二主成分上的土壤酶活性(除脲酶外)均有较高正载荷,呈现显著相关,不同用量的处理也分别处于第一主成分和第二主成分的正值区并相互分开。在没有植株生长的土壤上,土壤脱氢酶活性并没有随着时间增加而发生明显变化,而且与土壤养分循环(C、N和P)相关的水解酶的活性还有所下降,这可能是由于随着时间变化,土壤中易分解的有机质的减少以及相应的微生物种群的变化引起的。与其他的土壤酶活性相反,MSWC处理的脲酶活性随时间延长而显著提高,这一结果可能与土壤中水溶性As的含量增加有关,研究表明,在0~200 mg/kg的As浓度下,一年后土壤脲酶活性显著提高[35]。

在本研究中两种不同植株的生长对土壤酶活性的影响存在明显差异(图2),这一点可以从主成分分析图中看出,D. glomerata生长使土壤脱氢酶、酸性磷酸酶、葡萄糖苷酶及纤维素酶活性获得最大值,因此处于第一主成分的正值区,而E. australis生长主要对土壤pH和蛋白酶的活性有明显的改善作用而处于第二主成分的正值区,两个植株的处理明显分开(图3)。这种土壤酶活性的变化可能与D. glomerata快速良好的生长促进了根系分泌物等低分子易分解有机物的释放,从而为微生物生长提供了良好碳源,以及施用底肥所带来的速效养分增加在一定程度上调节了微生物所需的养分比例有关。但化学肥料对土壤酶活性的作用还不明确,有时会增加土壤酶活性,而有时也会产生抑制作用[36-37]。而植株生长通常都会促进矿区土壤酶活性的提高[38-39]。

与D. glomerata相比,E. australis的生长对土壤酶活性的影响就比较复杂。其植株根系分泌物显然对土壤微生物的活性产生了一定的抑制作用,从而造成土壤脱氢酶、酸性磷酸酶、蔗糖酶活性的下降,因此,该处理一般处于第一主成分的负值区(图3)。Carballeira[40]研究发现,在E. australis植株生长的土壤中发现了4种酚酸类化合物(对羟基苯甲酸、原儿茶酸、香草酸和对香豆酸),这些化合物都有抗菌和抑菌的作用,如对羟基苯甲酸可以明显抑制土壤中微生物的活性,进而影响微生物群体结构[41-42]。罗红艳等[43]研究也表明,土壤中除多酚氧化酶外,其他酶活性均因植物根系分泌的酚类物质而受到明显抑制,所以这些酚类化合物可能是导致生长E. australis的土壤微生物活性较差的主要原因。E. australis与MSWC在对一些土壤酶活性的影响上存在一定的交互作用,如在没有使用MSWC的处理中,土壤蔗糖酶、纤维素酶和脲酶的活性对E. australis的生长没有明显反应,但使用MSWC后,纤维素酶的活性有所改善,而蛋白酶的活性则提高显著。Cecchi等[44]发现,酚类化合物的有效性可以通过与土壤粘粒和有机质的吸附与解吸而受到控制,因此在本研究中MSWC的使用增加了土壤有机质,提供了更多的吸附位点,从而减少了来自该种植株根系分泌物的酚类化合物对土壤酶和微生物的抑制作用,然而这种机制却没有对酸性磷酸酶和脱氢酶起到保护作用,具体的机理还有待于进一步研究。

4 结论

供试MSWC对所有的供试参数均起到了明显的促进作用,而且并未导致尾矿库表土重金属活性发生明显变化,因此可以作为一种安全的修复剂应用于该尾矿库表土的植被恢复。

两种不同类型植株的生长对土壤酶活性产生不同影响,这可能是两种植株生物量和植株根系分泌物的差异所致。

D. glomerata生长对土壤养分依赖较高,用于尾矿库植被恢复需要持续的化学肥料供应,适用于成本较高的集约化修复。

E. australis对土壤养分(尤其是P)需求较低,与MSWC结合使用也可维持表土的植被覆盖,且有效降低修复成本,因此比D. glomerata更具优势。

猜你喜欢

尾矿库水溶性供试
某铁矿山尾矿库回采工艺设计实例
小麦全程绿色防控用药试验分析
小麦全程绿色防控用药试验分析
长期运行尾矿库的排渗系统渗透特性的差异化反演分析
小麦全程防控应用拜耳公司农药产品试验
小麦全程防控应用拜耳公司农药产品试验
重庆市四季PM2.5化学组分分析
筑牢尾矿库安全防线
水溶性肥料的优势
水溶性肥料