APP下载

储能技术在新能源电力系统的应用研究

2021-05-16易志宇

电子乐园·上旬刊 2021年8期
关键词:储能技术电力系统新能源

易志宇

摘要:随着我国经济实力的快速提升,我国迎来了高速发展的全新时代,国内高速发展的经济使得各行业对能源的需求量激增,火力發电等传统发电方式为国家的可持续发展带来了较大压力,新能源电力系统的研究与应用成为电力行业发展的重要方式。为了实现对风能、太阳能等新能源的高效应用,储能技术成为电力企业的重点研究技术内容,相关企业希望通过高效的储能转化技术为电力系统的可靠运行提供支持,推动新能源在电力系统中的可靠应用。

关键词:储能技术;新能源;电力系统;应用

1储能技术

1.1飞轮储能

在飞轮储能系统中,电能将加速一个放在真空外壳内的转子(达几万转/每分钟),即由固体材料制成的大质量圆柱体,从而将电能以动能形式储存起来(利用大转轮所储存的惯性能量)。当需要释放电能时,便利用这些动能来发电。飞轮储能一般运行在真空环境下,这样可以最大程度降低风阻及摩擦带来的损耗。飞轮储能的优点是寿命长、效率高、稳定性好、较少需要维护、有较高的功率密度及响应速度快。缺点是能量密度低,只可持续几秒至几分钟。当前一般应用在蓄电池系统中进行补充。

1.2物理储能

物理储能包括压缩空气、飞轮以及抽水储能几种类型,能够以物理能的形式存储电能,在实际应用时,电力企业通常可以结合发电类型、环境现状等合理选择储能方式,实现对能源的高效应用。抽水储能虽然储能容量较高,但是该技术容易受环境限制,在环境位置不合适的情况下往往会消耗更多的应用成本,该技术在风力资源丰富的西北地区缺少应用的环境基础;飞轮储能主要是将电能存储为机械能,虽然具有较高的功率密度,但是缺少足够的能源存储量,在磁悬浮、材料相关技术的限制下,该技术难以实现大规模应用;压缩空气储能与抽水储能类似,对环境要求高,通常需要在密封良好的空间内使用,其建设快且造价低,但是在储能效率方面存在欠缺。

1.3超导储能

超导储能系统是由用超导材料制成的、放在一个低温容器中的线圈、功率调节系统和低温制冷系统等组成。能量以超导线圈中循环流动的直流电流方式储存在磁场之中。由于该储能方式直接将电能储存在磁场当中,没有能量形式的转换,因此功率密度很高,能量的充放电速度非常快,响应速度与转换效率也较高。但是由于其材料价格昂贵,维护较为复杂,且需要维持低温环境等原因,当前阶段在电力系统中应用较少。

2储能技术在新能源电力系统的应用研究

2.1储能技术在太阳能电力系统中的应用

太阳能发电产生的电能需要通过光伏并网的方式为电网输送电能,为了避免新能源电能造成电网波动等问题,电力企业需要积极研究高效的储能技术,尽可能提升储能设备的稳定性和瞬时功率传输水平,确保电能输送过程的平滑性,确保光伏并网的顺利进行。为了提升技术应用效果,电力企业可以将信息化、智能化计算机技术与储能技术融合应用,通过智能系统对技术应用过程进行自动化控制,规避设备并网运行隐患。在太阳能电力系统应用储能技术时,电力企业需要根据光热、光伏等不同的系统运行模式选择适宜的储能技术方案,合理应用相变储能、电化学储能等方式实现对太阳能的高效应用。

2.2负荷响应

电力系统实际运行过程中,为了能够保证电网运行的有效性,尽量减少意外事故出现的概率,通常会对一些大功率的负荷进行自动化的调整,在负荷较高的状态下不同部分的电网通常会交替运行,这样就能够保证高峰时段电网的运行能够满足人们的实际需求,确保供电的稳定性。电力用户在使用光伏储能系统的时候,能够最大限度地保证用户电能供应的稳定性,然而,在这一过程中,相关工作人员也应该重点关注储能电站以及电网之间在负荷响应系统中的连接问题,需要保证至少有一条通信线路能够正常运行,使用这样的方式才能够最大限度地避免高功率设备,真正满足负荷的响应需求。在新能源系统中使用负荷响应技术,通过对不同电网的有效选择进行交替应用,才能够降低系统运行过程中出现故障的概率,利用符合响应技术能够对高功率负荷进行相应的调整,确保在临界值范围以内进行稳定工作,保证电能供应质量的前提下,还能够尽量减少调整供电量时,对电网的稳定运行产生的不利影响,保证电力系统的安全稳定运行,最大限度地保证电能供应的稳定性。

2.3风光系统和化学储能电站联运

在新能源系统处于用电低谷时间,无法维持满负荷工作状态,为降低设备损耗,减少实地运维成本,不需要主动进行联运。而达到用电平衡时间段,风光系统为不满发的情况,此时启动的联运模式是:储能电站借助低谷时期获得的电量,支持风光系统处于平衡状态的用电及运维需要。在储能电站自身容量超过风光系统的输出电量,也有其他管理方式。例如,储能电站在用电低谷时获取的冗余电量,支持各类系统在此时段运维。而储能电站处于用电平衡时段获得的储能,同样可支持系统此时段运维。在用电高峰时段购进的电能,支持风光系统处于用电平衡时期的运维。

2.4改善电能质量

由于受到天气、温度、组件倾角等因素的影响,新能源系统的输出功率会有所变化,造成了发电量的不稳定,使发电量预测的难度增加,对馈入电网的谐波产生影响。并且,随着太阳光照强度的变化,光伏发电功率会对电网潮流中的负荷特性产生一定的影响。新能源系统并入电网之后,会对电网潮流的方向、现有电网调度、规划运行方式等产生影响,加大对电网调度及控制的难度。当大量新能源系统接入电网后,将加剧电压波动,引起电压调节装置的频繁动作,使电网的电能质量下降。当储能接入光伏发电系统后,由相应的能量转换系统控制储能装置的充放电,可以达到对电网调峰的目的,使新能源系统的发电量得到有效控制。

结语

在新能源系统中,储能技术的应用会涉及各个方面,企业也应该顺应时代快速发展的需求,充分应用先进的互联网技术,妥善处理储能技术的应用条件以及具体的影响因素,尽量排除外界环境产生的影响,切实提高企业的储能管理水平,通过有效的激励机制,建立更加安全、可靠的新能源系统,为人们提供更加稳定的电能。

参考文献

[1]新形势下开展电力系统党建工作的策略[J].魏汉炎.中外企业家.2017(12).

猜你喜欢

储能技术电力系统新能源
储能技术在现代供暖中的应用
平抑风电出力波动储能技术比较及分析
“储能原理及应用”课程教学改革创新与实践
浅谈能源互联网储能节能技术发展及应用
买不买新能源汽车
信息时代的电力系统信息化经验谈
探讨电力系统中配网自动化技术
配网自动化技术的应用探讨
绿色新能源
貌似冰雪的新能源