APP下载

密植条件下玉米品种混播提高籽粒灌浆性能和产量

2021-05-12胡旦旦李荣发刘鹏董树亭赵斌张吉旺任佰朝

中国农业科学 2021年9期
关键词:夏玉米灌浆籽粒

胡旦旦,李荣发,刘鹏,董树亭,赵斌,张吉旺,任佰朝

密植条件下玉米品种混播提高籽粒灌浆性能和产量

胡旦旦,李荣发,刘鹏,董树亭,赵斌,张吉旺,任佰朝

山东农业大学农学院/作物生物学国家重点实验室,山东泰安 271018

【】探究密植条件下玉米品种混播对夏玉米籽粒灌浆性能及产量形成的影响。以郑单958(ZD958)和登海605(DH605)为试验材料,设置3个种植密度(D1,67 500株/hm2;D2,82 500株/hm2;D3,97 500株/hm2)和2个不同混播方式(M:等种子量混合后随机播种;I:1行郑单958和1行登海605混播),以相同密度下单播郑单958(SZD958)和登海605(SDH605)为对照,研究密植夏玉米品种混播对花后干物质积累与转运、籽粒灌浆特性和产量形成的影响。随种植密度增加,不同播种方式处理的花后干物质积累量显著增加,成熟期单株干物质积累量和籽粒灌浆参数降低;虽然千粒重降低但群体产量显著增加。在D1密度下,混播处理较单播无显著增产优势;D2和D3密度下,2个品种混播后夏玉米产量显著增加。D2密度下M和I处理2年平均产量较SZD958分别增加8.70%和8.09%,较SDH605分别增加6.92%和6.32%;D3密度下M和I处理2年平均产量较SZD958分别增加7.24%和7.55%,较SDH605分别增加4.98%和5.28%。D2和D3密度下,2个品种混播后增加了籽粒最大灌浆速率(Gmax)、灌浆速率最大时的生长量(Wmax)和粒重,且百粒重与灌浆速率达到最大时需要的天数(Tmax)、Wmax、Gmax、籽粒灌浆活跃期(P)呈极显著正相关。D2密度下M和I处理2年平均Wmax较SZD958分别显著增加11.61%和11.12%,较SDH605分别增加5.86%和5.38%;D3密度下M和I处理2年平均Wmax较SZD958显著增加10.32%和9.75%,较SDH605显著增加5.63%和5.08%。混播后成熟期单株干物质积累量、花后干物质积累量、转运量、干物质转运率较单播增加。D2密度下M和I处理2年平均花后干物质积累量较SZD958分别显著增加4.43%和7.56%,较SDH605分别显著增加5.25%和8.36%;D3密度下M和I处理2年平均花后干物质积累量较SZD958分别显著增加3.85%和4.68%,较SDH605分别显著增加4.52%和5.36%。低密度下混播无增产效应,在82 500株/hm2和97 500株/hm2密度下,混播显著增加了花后干物质积累与转运,提高了夏玉米籽粒最大灌浆速率和灌浆速率最大时的生长量,促进了籽粒灌浆,最终夏玉米产量显著增加。

夏玉米;密度;混播;籽粒灌浆特性;产量

0 引言

【研究意义】随着全球人口数量增加及人们生活水平提高,到2050年粮食产量需要在现有基础上再增加70%—100%,每年至少需要增加440万t[1-5]。当前玉米产量的提高主要归因于种植密度的增加[6-8]。但随种植密度增加,植株间对光温水肥等资源的竞争加剧,群体内冠层透光率降低,削弱了中下部叶片的通风受光条件,降低植株的光合性能,玉米籽粒灌浆过程受到影响,籽粒灌浆速率降低,粒重减小,限制了籽粒库的发育,最终限制籽粒产量的增加[9-13]。混播通过相同作物不同品种之间互补性差异,改善群体的冠层结构,使得叶面积指数、净光合速率提高,进而延长籽粒灌浆时间,提高中后期的灌浆速率,达到提高群体产量的目的[14-17]。【前人研究进展】利用不同基因型玉米品种1﹕1混播,与单播相比,混播品种产量有的增加,有的减少,但群体产量增加,主要是由于吐丝后玉米叶面积指数大于单播,绿叶面积持续时间长,穗粒数、粒重显著提高[18]。平展型与紧凑型玉米品种混播,通过增加叶片保护酶的活性,延缓玉米叶片的衰老,且土地当量比均>1,提高土地利用效率[19]。紧凑型与半紧凑型玉米品种1﹕1混播后,增加了生育后期群体叶面积指数,且单株叶面积降低幅度较慢,提高了群体干物质积累量,进而增加产量[20]。适宜玉米品种组合混播后,花期遇到连续阴雨天气时,通过延长授粉时间,提高雌蕊的受精率,达到增产减灾的目的[21]。普通玉米授高油玉米花粉后,籽粒灌浆期缩短,最大籽粒灌浆速率增加,使籽粒干重增加[22]。苏新宏[15]研究认为,混播可延长玉米有效灌浆期,提高灌浆后期籽粒灌浆速率。【本研究切入点】前人就混播条件下光合性能的变化研究较多,而对密植条件下玉米品种混播的籽粒灌浆性能的研究较少。【拟解决的关键问题】本试验通过设置不同混播处理,研究不同种植密度下玉米品种混播对夏玉米花后干物质积累与转运、籽粒灌浆特性及产量的影响,探讨不同密度和混播条件下夏玉米籽粒灌浆性能的差异,为黄淮海密植玉米的稳产提供新的技术支撑。

1 材料与方法

1.1 试验地点

大田试验于2017—2018年在山东农业大学黄淮海区域玉米技术创新中心和作物生物学国家重点实验室进行。试验田土壤为棕壤土,0—20 cm土层有机质含量为10.35 g·kg-1,全氮含量为0.82 g·kg-1,速效磷含量为28.13 mg·kg-1,速效钾含量为110.41 mg·kg-1。

1.2 试验方法

1.2.1 品种选择与特性 以紧凑型玉米品种郑单958(ZD958)和登海605(DH605)为试验材料。2个品种生育期相近,适应范围广、耐密植、抗倒性强、高抗病性;其中郑单958上部叶片宽大,而登海605上部叶片窄细,二者有一定互补性。

1.2.2 试验设计 试验采用双因素裂区设计,种植方式为主区,密度为副区,小区面积60 m2,重复3次。其中种植方式设置2个品种相同数量种子混合后随机混播(M)、郑单958和登海605 2个品种1﹕1混播(2个品种各1行)(I)、单播郑单958(SZD958)和单播登海605(SDH605)4个水平,密度设置67 500株/hm2(D1)、82 500株/hm2(D2)、97 500株/hm2(D3)3个水平,采用温特斯泰格小区精密播种机单粒精播。各小区施肥情况均为施氮320 kg·hm-2、P2O572 kg·hm-2、K2O 96 kg·hm-2。氮肥(尿素,含纯氮46%)在拔节期施入50%,大喇叭口期施入50%;磷肥(过磷酸钙,含有17%的P2O5)和钾肥(氯化钾,含有60%的K2O)全部用作基肥施入。其他管理同一般高产田。

1.3 测定项目与方法

1.3.1 干物质积累分别于开花期(VT)和成熟期(R6)取样10株,每株按照茎秆、叶片、穗轴、雄穗、苞叶和籽粒部分分开,于105℃杀青30 min,80℃烘干至恒重,称重。参照周玲等[23]方法计算花后干物质积累量、转运量、转运率和花后干物质转运对籽粒的贡献。

1.3.2 籽粒灌浆特性 于开花期,选择有代表性且生长一致的植株50株,挂牌标记。自开花期开始至籽粒完熟期,每隔10 d取样1次,每处理取10个果穗,从每个果穗中部选取100个籽粒烘干至恒重,并称重。参考朱庆森等[24]、顾世梁等[25]的计算方法,用Richards方程模拟籽粒灌浆过程,用Richards方程参数计算下列籽粒灌浆参数。

W = A(1+Be-Ct)-1/D;

Tmax= (ln B-ln D)/C ;

Wmax= A(D+1)-1/D;

Gmax=(C×Wmax/D)[1-(Wmax/A)D];

P=6/C。

式中,t:开花后天数;W:所取籽粒重量;A:终极生长量;B:初级参数;C:生长速率参数;D:形状参数,当D=1时即为Logistic方程。Tmax:达最大灌浆速率时的天数;Wmax:灌浆速率最大时的生长量;Gmax:最大灌浆速率;P:灌浆活跃期。

1.3.3 测产 M和单播收获中间3行,I收获中间6行以计算产量。随机选取30个果穗自然风干后用于室内考种,每个处理3次重复。

1.4 数据分析

采用Microsoft Excel 2010软件进行数据处理,用SigmaPlot 12.5(Systat Software,San Jose,CA)作图,用DPS 16.05和SPSS 17.0 软件进行数据的统计和分析。

2 结果

2.1 密植条件下玉米品种混播对产量及其构成的影响

年份、密度和种植方式以及密度与种植方式的交互作用对夏玉米产量、穗粒数、千粒重有显著影响(<0.05)(表1)。随种植密度增加,各处理的穗粒数、千粒重则显著下降,收获穗数的显著增加提高了籽粒产量;同一密度下穗数无显著差异,籽粒产量提升主要是穗粒数或千粒重的提高。密度相同时,混播处理籽粒产量高于单播处理,且随密度增加,混播处理优势更加明显。D1密度下,混播处理较单播籽粒产量无显著差异。D2密度下M和I处理2年平均产量较SZD958分别显著增加8.70%和8.09%,较SDH605分别显著增加6.92%和6.32%;D3密度下M和I处理2年平均产量较SZD958分别显著增加7.24%和7.55%,较SDH605分别显著增加4.98%和5.28%。D1密度下,混播处理较单播穗粒数和千粒重无显著差异。但在D2和D3密度下,混播处理穗粒数显著高于单播处理;混播处理千粒重显著高于SZD958,与SDH605之间无显著差异。此外,混播处理的空秆率都有不同程度的降低,D1密度下,混播较单播无显著差异。D2和D3密度下,2年均表现为SDH605>SZD958>I>M。

2.2 密植条件下玉米品种混播对夏玉米籽粒灌浆特性的影响

2.2.1 籽粒干重 随种植密度的增加,籽粒干重呈逐渐降低的趋势。混播对籽粒干重的变化趋势无显著影响,各处理籽粒干重均呈现慢-快-慢的增长趋势(图 1)。吐丝后10—20 d籽粒干重呈现缓慢增加趋势。20—30 d籽粒干重呈现急剧增加趋势,之后开始下降。改变种植方式对籽粒干重具有显著影响。低密度条件下,混播处理籽粒干重较单播无显著差异。D2和D3密度下,吐丝后30—50 d,混播处理较单播显著增加。花后50 d,D2密度下,M和I处理2年平均籽粒干重较SZD958分别显著增加11.64%和10.94%,较SDH605分别显著增加5.66%和4.98%;D3密度下M和I处理2年平均较SZD958分别显著增加9.50%和8.73%,较SDH605分别显著增加5.02%和4.28%。

表1 密植条件下玉米品种混播对产量及其构成的影响

同一性状中的数值标以不同字母表示在同一年度不同密度下不同处理在<0.05水平差异显著。***表示在<0.001 水平上显著;**表示在<0.01 水平上显著;*表示在<0.05 水平上显著;NS表示无显著性差异。ZD958:郑单958;DH605:登海605。S:单播;M:按同等比例混合后随机播种;I:1行郑单958,1行登海605。下同

The values in the same character were marked with different letters to indicate that there were significant differences in different treatments under the different densities in the same year (<0.05). Ns, not significant; *, significant at<0.05; **, significant at<0.01; ***, significant at<0.001. ZD958: Zhengdan958; DH605: Denghai605; S: monoculture; M: random sowing after mixing seeds of the two hybrids in the same proportion; I, raw ratio of ZD958 to DH605 is 1:1. The same as below

S:单播;M:按同等比例混合后随机播种;I:1行郑单958,1行登海605。下同

2.2.2 籽粒灌浆速率 各处理籽粒灌浆速率呈现先增加后降低的趋势(图 2)。相同种植密度下,授粉后10 d至20 d各处理籽粒灌浆速率无显著差异。D1密度下,混播处理最大籽粒灌浆速率较单播无显著差异。D2和D3密度下,最大籽粒灌浆速率2年均表现为M>I>SDH605>SZD958。此外,不同种植密度对籽粒灌浆速率也具有显著影响。随种植密度增加,籽粒灌浆速率呈逐渐降低的趋势。

2.2.3 籽粒灌浆参数 随种植密度增加,Tmax、Wmax、Gmax、P均呈逐渐下降的趋势(表 2)。混播处理显著影响密植夏玉米籽粒灌浆特性。D1密度下,混播处理籽粒灌浆参数较单播无显著差异。D2和D3密度下,混播处理的Wmax、Gmax值均高于单播,而Tmax和P较单播无显著差异。D2密度下M和I处理2年平均Wmax较SZD958分别显著增加11.61%和11.12%,较SDH605分别显著增加5.86%和5.38%;D3密度下M和I处理2年平均较SZD958分别显著增加10.32%和9.75%,较SDH605分别显著增加5.63%和5.08%。D2和D3密度下,Gmax2年均表现为M>I>SDH605>SZD958,D2、D3密度下M处理2年平均Gmax较SZD958分别显著增加11.54%和8.31%,较SDH605分别显著增加5.16%和4.02%。

图2 密植条件下玉米品种混播对夏玉米籽粒灌浆速率的影响

2.3 密植条件下玉米品种混播对夏玉米干物质积累、分配与转运的影响

2.3.1 单株干物质积累与分配 随种植密度的增加,相同处理成熟期整株、籽粒、茎秆、叶片干物质积累量逐渐降低(图 3)。D1密度下,混播处理植株干物质积累量较单播无显著差异,D2和D3密度下,混播处理明显高于单播。D2密度下M和I处理2年平均干物质积累量较SZD958分别显著增加6.08%和6.73%,较SDH605分别显著增加5.25%和5.91%;D3密度下M和I处理2年平均较SZD958分别显著增加3.33%和3.86%,较SDH605分别增加2.85%和3.40%。D2和D3密度下,籽粒干物质积累量均表现为M>I>S(除2017年M和I外)。

由表3可知,随种植密度的增加,叶片所占干物质比例逐渐降低,茎秆和籽粒所占干物质比例逐渐增加。此外,D2和D3密度下混播处理增加了干物质向籽粒的分配比例。

2.3.2 花后干物质积累与转运 花后干物质积累量、转运量、转运率以及干物质转移对籽粒的贡献率均表现为D3>D2>D1(表 4)。D1密度下,各处理间无显著差异。D2和D3密度下,混播花后干物质积累量、转运量、转运率较单播增加。各处理间花后干物质转移对籽粒的贡献率无显著差异。D2密度下M和I处理2年平均花后干物质积累量较SZD958分别显著增加4.43%和7.56%,较SDH605分别显著增加5.25%和8.36%;D3密度下M和I处理2年平均较SZD958分别增加3.85%和4.68%,较SDH605分别增加4.52%和5.36%。

表2 密植条件下玉米品种混播对夏玉米籽粒灌浆参数的影响

R:相关系数;A:终极生长量;B:初级参数;C:生长速率参数;Tmax:灌浆速率达到最大时需要的天数;Wmax:灌浆速率达到最大值的粒重;Gmax:籽粒最大灌浆速率;P:籽粒活跃灌浆期

R: Correlation coefficients; A: Ultimate growth mass; B: Primary parameter; C: Growth rate parameter;Tmax: Days needed for reaching the maximum grain-filling rate; Wmax: Kernel weight at the maximum grain-filling rate; Gmax: Maximum grain-filling rate; P: Active grain-filling period

2.4 灌浆参数、干物质积累量、干物质转运率与产量的相关性分析

群体籽粒产量与群体干物质转运量(0.376**)、花后干物质积累量(0.926**)呈极显著正相关,与干物质转运率(0.264*)呈显著正相关;与Wmax(-0.390**)、Gmax(-0.340**)极显著负相关,与Tmax(-0.273*)显著负相关。干物质转运率与Wmax、Gmax、P正相关,但未达显著水平。成熟期单株干物质积累量与Tmax(0.472**)、Wmax(0.362**)、Gmax(0.503**)显著正相关。百粒重与Tmax(0.631**)、Wmax(0.958**)、Gmax(0.815**)、P(0.504**)呈极显著正相关(表5)。

3 讨论

3.1 密植条件下玉米品种混播对夏玉米籽粒灌浆特性和产量的影响

随种植密度的增加,叶片之间相互遮蔽,群体穗位层、下层透光性变差,影响籽粒灌浆进程,导致籽粒重量显著降低[9, 26]。高密度下,通过改善冠层中下部光的分布,维持生育后期较高光合绿叶面积,增加花后光合同化物的积累与分配,促使较多光合同化物向籽粒的转运,进而实现增产[27-28]。籽粒灌浆期是玉米生长发育的重要时期[29-31],籽粒灌浆持续期和灌浆速率决定了粒重和产量[25, 32-34],灌浆期长度和灌浆速率高低与百粒重间存在显著正相关关系[35]。本研究条件下,百粒重与灌浆速率达到最大时需要的天数(Tmax)、粒重(Wmax)、籽粒活跃灌浆期(P)、籽粒最大灌浆速率(Gmax)呈显著正相关。相同密度各处理灌浆期籽粒干重均呈“慢-快-慢”的增长趋势。百粒重、Tmax、Wmax、P、Gmax均随密度的增加而降低。这与Jia等[36]研究结果一致。苏新宏[15]研究发现,不同基因型玉米品种混播,延长了籽粒灌浆有效期,提高了灌浆中后期的灌浆速率。本研究中,D1密度下,混播处理籽粒灌浆参数较单播无显著差异。D2和D3密度下混播后籽粒干重、Gmax和Wmax较单播增加。由此可见,混播增加了籽粒灌浆速率,使粒重增加,从而提高籽粒产量。主要是由于混播改善夏玉米群体透光率,使得花后叶片抗氧化酶活性增强,叶绿素含量和净光合速率降低减缓,延缓叶片衰老,增加功能叶的光合有效持续期[37]。

表3 密植条件下玉米品种混播对夏玉米成熟期单株干物质分配的影响

表4 密植条件下玉米品种混播花后干物质积累、分配及转运

表5 灌浆参数、群体干物质积累量、干物质转运率与产量的相关性分析

A1:达最大灌浆速率时的天数(Tmax);A2:灌浆速率最大时的生长量(Wmax);A3:最大灌浆速率(Gmax);A4:活跃灌浆期(P);A5:干物质转运量;A6:干物质转运率;A7:花后干物质积累量;A8:成熟期单株干物质积累量;A9:百粒重;A10:产量

A1: Days needed for reaching the maximum grain-filling rate; A2: Kernel weight at the maximum grain-filling rate; A3: Maximum grain-filling rate; A4: Active grain-filling period; A5: Transfer amount of dry matter; A6: Translocation efficiency of dry matter; A7: Dry matter accumulation after anthesis; A8: Dry matter accumulation of per plant; A9: 100-kernel weight; A10: Yield

不同小写字母的数值在5%水平差异显著The different small letters are significantly different at 5% probability level

不同株型的玉米品种混播,由于株型互补改变冠层结构,增加了受光面积,混播群体产量显著增加[38]。不同氮效率的玉米品种在不同氮素水平下2﹕2混播,与单播相比,提高了净光合速率,增加地上部生物量、穗粒数和千粒重,使产量增加[39]。玉米品种克单11与12混播,4种种植密度产量均高于单播[40]。本研究认为,随种植密度增加,群体穗数增加,千粒重和穗粒数显著降低,籽粒玉米产量显著增加。D1密度下,混播处理产量较单播无显著差异,但在D2和D3密度下,混播处理优势更明显,其群体产量显著高于单播。此外,混播处理穗粒数和千粒重均高于单播处理。这主要与籽粒灌浆速率最大时的生长量、最大灌浆速率增加有关。

3.2 密植条件下玉米品种混播对夏玉米干物质积累特性的影响

干物质积累是玉米籽粒形成的物质基础,而花后干物质的积累与分配是决定籽粒产量主要因素[41-43]。本研究中,花后干物质积累量、干物质转运量、干物质转运率与产量之间存在显著正相关。D2和D3密度下,混播显著增加了成熟期单株干物质的积累,降低了茎秆等营养物质所占比例,提高了干物质向籽粒的分配比例,进而使籽粒干重增加。前人研究表明,随种植密度的增加,花后干物质积累量、转运量和转运率显著增加,且对籽粒干重的贡献呈现先增加后降低的趋势[28]。本研究表明,花后干物质积累量、转运量及转运率对籽粒的贡献随种植密度增加呈逐渐上升的趋势,这可能与种植条件及品种不同有关。刘天学等[44]认为滑丰9号和浚单20的单播群体花后干物质的积累量均大于混播,但群体产量却又小于混播,这可能是由于群体冠层结构的改善,从而增强了光合产物向籽粒的转运能力。本研究中,D2和D3密度下,混播增加了花后干物质积累量和转运率。因此混播通过增加单株及花后干物质积累量,促进光合产物向籽粒的分配比例,进而提高籽粒产量。

4 结论

82 500株/hm2和97 500株/hm2密度下,混播能增加夏玉米整株及花后干物质积累量,提高干物质转运量以及转运率,从而使产量显著提高。混播能增大花后光合产物向籽粒的分配比例,提高籽粒灌浆速率以及灌浆速率最大时的生长量,有效增加粒重,从而为密植条件下玉米高产稳产奠定一定的理论与实践依据。

[1] TESTER M, LANGRIDGE P.Breeding technologies to increase crop production in a changing world. Science, 2010, 327(5967): 818-822.

[2] AINSWORTH E A, YENDREK C R, SKONECZKA K A, LONG S P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell and Environment, 2012, 35(1): 38-52.

[3] ALEXANDRATOS N, BRUINSMA J. World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Papers, 2012.

[4] WART J V, KERSEBAUM K C, PENG S B, MILNER M, CASSMAN K G. Estimating crop yield potential at regional to national scales. Field Crops Research, 2013, 143(1): 34-43.

[5] TILMAN D, CLARK M. Food, agriculture & the environment: Can we feed the world and save the earth? Daedalus, 2015, 144(4): 8-23.

[6] SANGOI L, GRACIETTI M A, RAMPAZZOV C, BIANCHETTI P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Research, 2002, 79(1): 39-51.

[7] TOKATLIDIS I S, KOUTROUBAS S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004, 88(2/3): 103-114.

[8] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143(1): 91-97.

[9] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455. LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)

[10] 陈晨, 董树亭, 刘鹏, 张吉旺, 赵斌. 种植密度对玉米自交系产量和灌浆特性的影响. 玉米科学, 2012, 20(6): 107-111.

CHEN C, DONG ST, LIU P, ZHANG J W, ZHAO B. Effects of planting density on grain filling characteristics of different maize inbred lines.Journal of Maize Sciences, 2012, 20(6): 107-111. (in Chinese)

[11] FATEMEH F, MANI M, SHAHRAM L. The effect of source-sink restriction and plant density changes on the role of assimilate remobilization in corn grain yield. International Journal of Agriculture and Crop Sciences, 2013, 5(20): 2459-2465.

[12] XUE J, GOU L, ZHAO Y S, YAO M N, YAO H S, TIAN J S, ZHANG W F. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016, 188: 133-141.

[13] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.

JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

[14] ZHU Y Y, CHEN H R, FAN J H, WANG Y Y, CHEN J B, FAN J X, YANG S S, HU L P. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718-722.

[15] 苏新宏. 不同基因型玉米间作效应研究[D]. 郑州: 河南农业大学, 2001.

SU X H. Studies on intercropping effects of different genotypes maize [D].Zhengzhou: Henan Agricultural University, 2001. (in Chinese)

[16] DAELLENBACH G C, KERRIDGE P C, WOLFE M S, FROSSARD E, FINCKH M R. Plant productivity in cassava-based mixed cropping systems in Colombian hillside farms. Agriculture Ecosystems & Environment, 2005, 105(4): 595-614.

[17] 赵亚丽, 康杰, 刘天学, 李潮海. 不同基因型玉米间混作优势带型配置. 生态学报, 2013, 33(12): 3855-3864. ZHAO Y L, KANG J, LIU T X, LI C H. Optimum stripe arrangement for inter-cropping and mixed-cropping of different maize genotypes. Acta Ecologica Sinica, 2013, 33(12): 3855-3864. (in Chinese)

[18] 苏新宏, 李潮海, 孙敦立, 张怀志.不同基因型玉米间作研究初报. 玉米科学, 2000, 8(4): 57-60.

SU X H, LI C H, SUN D L, ZHANG H Z. Preliminary report on intercropping with different genotypes of maize. Journal of Maize Sciences, 2000, 8(4): 57-60. (in Chinese)

[19] 刘天学, 李潮海, 马新明, 赵霞, 刘士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响. 植物生态学报, 2008, 32(4): 914-921. LIU T X, LI C H, MA X M, ZHAO X, LIU S Y. Effects of maize intercropping with different genotypes on leaf senescence and grain yield and quality. Chinese Journal of Plant Ecology, 2008, 32(4): 914-921. (in Chinese)

[20] 王小林, 张岁岐, 王淑庆, 王志梁. 黄土源区不同品种玉米间作群体生长特征的动态变化. 生态学报, 2012, 32(23): 7383-7390. WANG X L, ZHANG S Q, WANG S Q, WANG Z L. The dynamic variation of maize (L.) population growth characteristics under cultivars intercropped on the Loess Plateau. Acta Ecologica Sinica, 2012, 32(23): 7383-7390. (in Chinese)

[21] 张三坤, 陈文平. 玉米间混作增产又减灾. 河南农业, 2005(6): 26.

ZHANG S K, CHEN W P. Corn intercropping increases yield and reduces disaster. Agriculture of Henan, 2005(6): 26. (in Chinese)

[22] LIU Y E, LIU P, DONG S T, ZHANG J W. Hormonal changes caused by the Xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Science, 2010, 50(1): 215-221.

[23] 周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析.生态学报, 2012, 32(13): 4123-4131. ZHOU L, WANG Z H, LI F C, MENG X Y, LI K Y, LI S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland. Acta Ecologica Sinica, 2012, 32(13): 4123-4131. (in Chinese)

[24] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14(3):182-193.

ZHU Q S, CAO X Z, LUO Y Q. Growth analysis on the process of grain filling in rice. Acta Agronomica Sinica, 1988, 14(3): 182-193. (in Chinese)

[25] 顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料子粒灌浆特性的分析. 作物学报, 2001, 27(1): 7-14.

GU S L, ZHU Q S, YANG J C, PENG S B. Analysis on grain filling characteristics for different rice types. Acta Agronomica Sinica, 2001, 27(1): 7-14. (in Chinese)

[26] 段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005, 13(4): 51-54.

DUAN M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. Journal of Maize Sciences, 2005, 13(4): 51-54. (in Chinese)

[27] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017, 50(12): 2238-2246.

ZHANG R H, WANG B X, YANG Y H, YANG X J, MA X F, ZHANG X H, HAO Y C, XUE J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Scientia Agricultura Sinica, 2017, 50(12): 2238-2246. (in Chinese)

[28] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响.作物学报, 2019, 45(12): 1868-1879.

BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)

[29] MUHAMMAD K, SU W, AHMAD I, MENG X, CUI W, ZHANG X, MOU S, AAQIL K, HAN Q, LIU T. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports, 2018, 8(1): 4818.

[30] JIANG Q, DU Y, TIAN X, WANG Q, XIONG R, XU G, YAN C, DING Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. European Journal of Agronomy, 2016, 74: 185-192.

[31] OKAMURA M, ARAI-SANOH Y, YOSHIDA H, MUKOUYAMA T, ADACHI S, YABE S, NAKAGAWA H, TSUTSUMI K, TANIGUCHI Y, KOBAYASHI N, KONDO M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Research, 2018, 219: 139-147.

[32] 李轶冰, 逄焕成, 李华, 李玉义, 杨雪, 董国豪, 郭良海, 王湘峻. 粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响. 中国农业科学, 2013, 46(14): 3055-3064.

LI Y B, PANG H C, LI H, LI Y Y, YANG X, DONG G H, GUO L H, WANG X J. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in North Huang-Huai-Hai region. Scientia Agricultura Sinica, 2013, 46(14): 3055-3064. (in Chinese)

[33] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47(18): 3557-3565. WANG X H, ZHANG L, LIU S L, CAO Y J, WEI W W, LIU C G, WANG Y J, BIAN S F, WANG L C. Grain filling characteristics of maize hybrids differing in maturities. Scientia Agricultura Sinica, 2014, 47(18): 3557-3565. (in Chinese)

[34] 徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41(2): 297-307. XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015, 41(2): 297-307. (in Chinese)

[35] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51(10): 1878-1889.

LI L L, MING B, GAO S, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Scientia Agricultura Sinica, 2018, 51(10): 1878-1889. (in Chinese)

[36] JIA Q M, SUN L F, MOU H Y, ALI S, LIU D H, ZHANG Y, ZHANG P, REN X L, JIA Z K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (L.) in semi-arid regions. Agricultural Water Management, 2018, 201: 287-298.

[37] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44(6): 920-930.

HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018, 44(6): 920-930. (in Chinese)

[38] 史振声, 朱敏, 李凤海, 王志斌. 玉米不同品种间作的增产效果研究. 玉米科学, 2008, 16(2): 112-114.

SHI Z S, ZHU M, LI F H, WANG Z B. Research on yield- increasing of different kinds of maize.Journal of Maize Sciences, 2008, 16(2): 112-114. (in Chinese)

[39] 陶静静, 王海标, 朱宗瑛, 谭金芳, 王宜伦.不同基因型夏玉米间作对产量及氮素吸收利用的影响. 华北农学报, 2016, 31(6): 185-191.

TAO J J, WANG H B, ZHU Z Y, TAN J F, WANG Y L. Effect of different genotype summer maize intercropping on yield and nitrogen absorption and utilization. Acta Agriculturae Boreali-Sinica, 2016, 31(6): 185-191. (in Chinese)

[40] 杨耿斌, 王屾, 谭福忠, 韩翠波, 刘兴焱, 何长安, 纪春学, 王辉. 两个玉米品种混种对产量及产量构成因素的影响. 玉米科学, 2009, 17(4):104-106.

YANG G B, WANG S, TAN F Z, HAN C B, LIU X Y, HE C A, JI C X, WANG H. Effects of mixed planting of two maize varieties on maize yield and component factors. Journal of Maize Sciences, 2009, 17(4): 104-106. (in Chinese)

[41] ECHARTE L, LUQUE S, ANDRADE F H, SADRAS V O, CIRILO A, OTEGUI M E, VEGA C R C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1995. Field Crops Research, 2000, 68: 1-8.

[42] ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016, 108(1): 196-204.

[43] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44(3): 104-112.

XU T J, LÜ T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinica, 2018, 44(3): 104-112. (in Chinese)

[44] 刘天学, 李潮海, 付景, 闫成辉. 不同基因型玉米间作的群体质量. 生态学报, 2009, 29(11): 6302-6309.

LIU T X, LI C H, FU J, YAN C H. Population quality of different maize (L.) genotypes intercropped. Acta Ecologica Sinica, 2009, 29(11): 6302-6309. (in Chinese)

Mixed-cropping Improved on Grain Filling Characteristics and Yield of Maize under High Planting Densities

HU DanDan, LI RongFa, LIU Peng, DONG ShuTing, ZHAO Bin, ZHANG JiWang, REN BaiZhao

College of Agriculture, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong

【】The aim of this study was to evaluate the effects of mixed planting of maize varieties on grain filling characteristics and yield under close planting conditions. 【】Zhengdan 958 (ZD958) and Denghai 605 (DH605) were used as experimental materials. Three planting densities (D1, 67 500 plants/hm2; D2, 82 500 plants/hm2; D3, 97 500 plants/hm2), and two different mixed-cropping planting patterns (mixture (M), random sowing after mixing seeds of the two varieties in the same proportion; I, one row of ZD958 and one row of DH605) were arranged, with the same density of Zhengdan 958 (SZD958) and Denghai 605 (SDH605) as controls. Effects of mixed planting of maize varieties on the dry matter accumulation and translocation, grain filling characteristics and yield of summer maize were investigated under close planting conditions. 【】With the increase of planting density, the dry matter accumulation of different planting methods after anthesis increased, while the dry matter accumulation per plant at maturity and the grain filling parameters decreased.Although the 1000-grain weight decreased, the population yield increased significantly. There were no significant differences in the grain yields among the different treatments at D1 density. The grain yields obtained under the M and I treatments were higher than those of the monoculture treatments at D2 and D3 densities. Under D2 density, the 2-year average data showed that the grain yields obtained under the M and I treatments increased by 8.70% and 8.09% than that of SZD958, and 6.92% and 6.32% than that of SDH605, respectively. At D3 density, the grain yields obtained under the M and I treatments increased by 7.24% and 7.55% than that of SZD958, and 4.98% and 5.28% than that of SDH605, respectively. At D2 and D3 densities, the Gmax(maximum grain-filling rate), Wmax(kernel weight at the maximum grain filling rate) and grain weight were increased under the M and I treatments. And the 100-kernel weight was extremely significantly positively correlated with the days needed for reaching the maximum grain-filling rate (Tmax), Wmax, Gmax, and active grain filling period (P) at<0.01. At D2 density, the average Wmaxfor two years under M and I treatments increased significantly by 11.61% and 11.12% than that of SZD958, and 5.86% and 5.38% than that of SDH605, respectively. The average Wmaxat M and I treatments at D3 density increased significantly by 10.32% and 9.75% than that of SZD958, and 5.63% and 5.08% than that of SDH605, respectively. The dry matter accumulation per plant at maturity, dry matter accumulation after anthesis, the transfer amount and translocation efficiency of dry matter for M and I treatments increased than those of SZD958 and SDH605. The 2-year average data showed that dry matter accumulation after anthesis obtained under the M and 1:1 treatments increased by 4.43% and 7.56% than that of SZD958, and 5.25% and 8.36% than that of SDH605 at D2 density, respectively. The dry matter accumulation after anthesis obtained under the M and I treatments increased by 3.85% and 4.68% than that of SZD958, and by 4.52% and 5.36% than that of SDH605 at D3 density, respectively.【】 There were no significant differences in the grain yields among the different treatments at low density. Under82 500 plant/hm2and 97 500 plant/hm2density, the mixed cropping significantly increased dry matter accumulation and transport after anthesis, improved the maximum grain filling rate of summer maize and weight of maximum grain filling rate, promoted grain filling, and finally increased the yield significantly.

summer maize; density; mixed-cropping; grain filling characteristics; yield

10.3864/j.issn.0578-1752.2021.09.004

2020-07-08;

2020-09-27

国家重点研发计划项目(2018YFD0300603,2016YFD0300106)

胡旦旦,E-mail:hudandan0110@163.com。通信作者刘鹏,E-mail:liupengsdau@126.com。通信作者董树亭,E-mail:stdong@sdau.edu.cn

(责任编辑 杨鑫浩)

猜你喜欢

夏玉米灌浆籽粒
山西省主推小麦品种籽粒形态性状分析
有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响
叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控
籽粒苋的饲用价值和高产栽培技术
气象条件对济南市济阳区夏玉米生长发育的影响
——以2020年为例
谷子灌浆期喷施硫酸锌增产
浅谈设备基础二次灌浆
基于EDEM 的洛稻籽粒堆积仿真研究
夏玉米高产高效栽培技术
小满过麦畴有感