APP下载

PGPR菌剂配合化肥减施对植烟土壤nosZ型细菌群落的影响

2020-07-18余伟闫芳芳冯文龙陈强张映杰张宗锦辜运富

中国烟草科学 2020年3期

余伟 闫芳芳 冯文龙 陈强 张映杰 张宗锦 辜运富

摘  要:研究化肥減施情况下PGPR(plant growth promoting rhizobacteria)菌剂对植烟土壤反硝化作用的微生物调控机制,为植烟土壤科学施肥、培肥地力提供理论依据。本试验在四川攀枝花米易县的传统烤烟种植区通过化学分析和末端限制性长度多态性分析手段(T-RFLP)分别对PGPR菌剂配合化肥减肥处理下的植烟土壤理化性质及土壤nosZ型细菌群落组成和多样性进行研究。结果表明,与常规施肥相比,PGPR菌剂配合化肥减施的处理土壤pH和碱解氮含量显著提高,有机质、全氮含量提高但未达显著水平,部分处理速效磷、速效钾含量显著提高。PGPR菌剂配合化肥减施改变了nosZ型细菌的物种组成,Rhodobacter (红杆菌属)和Bacterium(杆菌属)为5个施肥处理共有的优势菌属,而Bradyrhizobium(慢生根瘤菌属)和Azospirillum(固氮螺菌属)仅为施用PGPR菌剂处理的优势菌。全量化肥配施PGPR菌剂处理下的Shannon多样性指数和均匀度显著低于其他处理,其他各处理细菌群落多样性之间无显著差异。冗余分析表明,土壤pH、有机质和速效钾是影响植烟土壤nosZ型细菌群落结构变化的主要因子。综上所述,PGPR菌剂配合化肥减施影响了土壤理化性质进而导致土壤nosZ型细菌群落结构组成发生改变。

关键词:PGPR菌剂;化肥减施;T-RFLP;nosZ细菌群落

Abstract: The nosZ-type bacterial community variation in flue-cured tobacco cultivation soils under the condition of plant growth promoting rhizobacteria (PGPR) application plus reduction of chemical fertilizer (RCF) was investigated so as to reveal the microbial mediated mechanisms of the denitrifying process in these specific soils, and to establish reasonable fertilizer regimes and provide theoretical foundations for maintaining soil quality. The study was carried out in a traditional flue-cured tobacco cultivation field in Miyi County, Sichuan Province. Chemical analysis and terminal restriction fragment length polymorphism (T-RFLP) were conducted to study the variation of soil physicochemical parameters and nosZ-type bacterial community composition under the condition of PGPR+RCF fertilizer. The results showed that the soil pH and available nitrogen were significantly increased under the treatment of PGPR+RCF fertilizer as compared with the conventional fertilization (CK) (p<0.05). Meanwhile, the soil organic carbon and total nitrogen were also increased although not significantly, and available phosphorus and available potassium were also increased under some fertilizer treatments (30% RCF). The T-RFLP experiment showed that using PGPR in combination with fertilizers increased the composition and diversity of the nosZ-type bacterial community. Rhodobacter and Bacterium were the dominant genera in the soils under the five different fertilization treatments, while Bradyrhizobium and Azospirillum were dominant in the soil treated with only PGPR inocula. The Shannon diversity index and Evenness in the soil under total amount chemical fertilizer plus PGPR inoculant were the lowest among the five different fertilizer treatments, while those diversity indexes in the soil under the other four fertilizer treatments showed no significantly difference. Redundancy Analysis (RDA) showed that soil pH, soil organic matter and available potassium were the most important factors in shaping nosZ-type bacterial community in the flue-cured tobacco cultivation soil. Taken together, the using of PGPR in combination with reduced chemical fertilizers would change the soil physicochemical properties thus modify the composition of nosZ-type bacterial community composition, and increase their diversity.

Keywords: PGPR inoculum; chemical fertilizer reduction; T-RFLP; nosZ-type bacterial community

反硝化作用是土壤氮素损失的主要途径,也是温室气体N2O的主要来源[1]。研究表明,全球大部分的N2O排放来自土壤,其中45%归因于农业微生物氮循环。长期施用化肥为反硝化提供充足的底物,促进土壤反硝化作用及N2O的产生,并导致农田土壤酸化,进而显著提高反硝化对N2O产生的贡献[2-3]。由反硝化微生物介导的N2O还原为N2,是减少温室气体N2O产生的主要途径,同时还能达到清除土壤过多活性氮素的目的[4]。在N2O还原过程中,由nosZ基因编码的N2O还原酶(nosZ)是唯一一种将N2O转化为N2的酶,而nosZ基因的丰度和多样性往往用来反映土壤N2O还原能力[1,5]。nosZ型反硝化细菌群落对施肥的响应较为敏感[4],在石灰性紫色土中,化肥和有機肥配施显著促进nosZ型反硝化细菌的群落组成、丰度和分布[6]。因此,研究化肥施用与nosZ型反硝化细菌群落的关系,对于理解农业生态系统中氮素损失与温室气体的排放至关重要。

氮肥施用过量是造成农田生态环境恶化的主要原因,优化施氮技术和严控施氮量是提高氮肥利用率和降低环境污染的有效途径[7-9]。研究表明,在化肥减量20% ~ 30%的范围内配施生物有机肥提高了土壤酶活性及养分含量,进而优化了土壤根际环境,最终提高作物产量[10-11]。生物有机肥是有机肥与多种有益微生物菌群结合形成的新型有机复合肥,兼具微生物肥料和有机肥的效应,其中独特的生物菌活性对土壤有一定的改良作用[12]。植物根际促生菌(plant growth promoting rhizobacteria,PGPR)是一类重要的微生物肥料。研究表明,PGPR对西红柿和辣椒抵抗水分胁迫具有潜在的积极作用,对小麦、玉米、豌豆和黄瓜等产生有益作用,能有效提高作物产量,此外,PGPR还可以增加大豆结瘤、氮素吸收、促进生长和高产[13-15]。由此可见,应用PGPR菌剂减少化肥施用或部分替代化肥有利于促进作物生长。

本试验通过PGPR菌剂配合化肥减施的方式,研究其对植烟区土壤nosZ细菌群落组成及多样性的影响,以期为在减少化肥投入量的同时,提高土壤质量和土壤肥力,实现植烟土壤环境的可持续发展提供理论依据。

1  材料与方法

1.1  研究区概况

本试验在四川攀枝花米易烟区进行(29°10'50'' N,105°09'26'' E)。该地区属亚热带季风气候,冬无严寒,夏无酷暑,雨热同季,光照充足,是烟叶种植区划中烤烟生态最适宜区。试验地土壤为渗育紫泥田土属,成土母质为紫色页岩风化残坡积物,酸紫泥田土种。土壤基础养分为:pH 6.25,有机质1.30%,全氮1.47 g/kg,碱解氮124.63 mg/kg,有效磷9.69 mg/kg,速效钾137.94 mg/kg。

1.2  试验设计

本试验设5个处理,采用田间随机区组排列,每个处理3次重复。化肥减量只针对基肥中的复合肥而言,常规施肥基肥中复合肥用量为750 kg/hm2。具体处理为:(T1)常规施肥(酒糟有机肥750 kg/hm2+复合肥750 kg/hm2);(T2)PGPR菌剂+酒糟有机肥750 kg/hm2+复合肥750 kg/hm2;(T3)PGPR菌剂+酒糟有机肥750 kg/hm2+复合肥675 kg/hm2(化肥减施10%);(T4)PGPR菌剂+酒糟有机肥750 kg/hm2+复合肥600 kg/hm2(减施20%);(T5)PGPR菌剂+酒糟有机肥750 kg/hm2+复合肥525 kg/hm2(减施30%)。试验所用酒糟有机肥及复合肥均由攀枝花烟草公司提供。酒糟有机肥养分含量为:有机质含量≥45%,氮+磷+钾≥5%,pH 5.5~8.5。复合肥中N、P2O5、K2O质量分数分别为12%、12%、25%。移栽后30 d各处理均追施复合肥225 kg/hm2。PGPR菌剂是由本实验室前期筛选出的产IAA、溶磷溶钾等最佳的3株放线菌CNS42(Streptomycete sp.)、P29(Streptomycete sp.)和P60(Streptomycete sp.),稀释成含活菌浓度约为1×107 cfu/mL的菌液,按1:1:1的比例混合制成PGPR菌剂。2016年4月21日施基肥、起垄、覆膜及烤烟移栽。相关的田间管理均按当地生产规范进行。

1.3  土壤样品采集

于烤烟收获后,每个小区按照五点取样法结合抖根法采取0~20 cm烤烟根际土样,混匀为一个样品,放入有冰袋的保温箱中迅速运回实验室,挑出石砾和杂草落叶,一部分土壤保存于?20 ℃,一部分风干磨碎后过2 mm筛用于测定土壤理化性质。

1.4  测定方法

1.4.1  土壤理化性质测定  土壤理化性质的具体测定方法参见文献[16]。其中,土壤pH用玻璃电极法测定,m土:V水=1:2.5,全氮和碱解氮分别采用凯氏定氮法和碱扩散滴定法测定,有机质采用重铬酸钾容量法测定,有效磷采用浸提-钼锑抗比色法测定,速效钾采用火焰光度计法测定。

1.4.2  土壤微生物总DNA提取  称取0.5 g于–20 ℃ 保存的新鲜土壤样品,采用Fast DNA SPIN Kit For Soil (Qbiogene, Carlsbad, CA, USA)试剂盒,按照说明书上的步骤提取土壤微生物总DNA。

1.4.3  nosZ基因末端限制性片段长度多态性(T-RFLP)分析  nosZ基因扩增所用引物为nosZF(5′-CGYTGTTCMTCGACAGCCAG-3′)[17]和nosZ1622 R(5′-CGSACCTTSTTGCCSTYGCG-3′)[18]。其中每对引物的正向引物都带有FAM荧光标记。扩增体系为50 μL:PCR Mix 25 μL,引物各2.5 μL(10 μmol/L),DNA模板10 μL(10 ng/μL),超纯水补至50 μL。扩增程序:95 ℃预变性3 min;94 ℃变性30 S,57 ℃退火45 S,72 ℃ 延伸55 S,32 个循环;72 ℃最终延伸10 min。PCR产物用BstUI和HhaI两种限制性内切酶进行酶切。在37 ℃ 的恒温培养箱中放置 14~16 h后取出在80 ℃的恒温箱中失活30 min。最后送生工生物工程股份有限公司(上海)对末端带有荧光标记的片段(末端限制性片段,T-RFs)进行检测和分析。处理后的T-RFs片段在NCBI数据库中进行比对,计算nosZ细菌群落组成和多样性指数的统计,多样性指数主要为Shannon多样性指数、丰富度和均匀度等指标[19]。

1.5  数据分析

土壤理化性质及nosZ细菌群落多样性指数等基础数据的处理和绘图利用Excel 2013进行,单因素方差分析利用SPSS 21.0完成。利用CANOCO 5.0软件对土壤环境参数和nosZ细菌群落相关性进行冗余分析(Redundancy Analysis, RDA)。

2  结  果

2.1  PGPR菌剂配合化肥减施对植烟土壤理化性质的影响

由表1可知,与不施PGPR菌剂处理(T1)相比,在全量化肥基础上加施菌肥(T2),土壤各理化指标均无显著变化。而与T1相比,PGPR菌剂配合化肥减施的处理(T3、T4、T5)土壤pH均显著提高,T3处理最高,但各减肥处理之间差异不显著;土壤有机质、全氮含量略有提高,但未达到显著差异;土壤碱解氮含量显著提高;除T4外,有效磷和有效钾含量均较T1、T2提高,其中减少30 %化肥用量的处理土壤有效磷含量最高,减施化肥10%的处理土壤有效钾含量最高,与T1、T2处理达到显著差异。此可见,施用PGPR菌剂同时减施10%~30%的化肥对提高植烟区土壤肥力、改善土壤质量具有一定促进作用。

2.2   PGPR菌剂配合化肥减施对植烟土壤nosZ细菌群落组成的影响

图1示出了nosZ细菌群落T-RFLP分析中丰度排名前10的优势菌。结果表明,PGPR菌剂配合化肥减施明显改变土壤nosZ土壤细菌的群落组成。各处理中共有的优势菌属为Polymorphum(多形菌属),Rhodobacter(红杆菌属)和Bacterium(杆菌属)。其中,Polymorphum(多形菌属)随着化肥施用量减少呈先增加后降低的趋势,在减肥10%~20%的处理中占主导;Bacterium(杆菌属)在施用PGPR菌剂处理中丰度均有所提高;Rhodobacter 则在不施PGPR菌剂的处理中占优势,配施菌剂之后随化肥施用量减少有逐渐减少趋势;而Bradyrhizobium(慢生根瘤菌属)和Azospirillum(固氮螺菌属)仅为施用PGPR菌剂处理的优势菌。总体而言,PGPR菌剂配合化肥减施会对土壤中的nosZ细菌群落组成产生明显影响。

2.3  PGPR菌剂配合化肥减施对植烟土壤nosZ细菌群落多样性的影响

由表2可知,除T2处理Shannon多样性指数和均匀度显著低于其他处理外,其他处理之间Shannon多样性指数、丰富度和均匀度均未见显著差异。说明在全量化肥的条件下加施菌剂(Streptomycete sp.),会对部分nosZ细菌造成竞争,导致其群落多样性的下降,而化肥减施后则不产生影响。

2.4  土壤环境因子与nosZ细菌群落组成的相关性分析

运用冗余分析(RDA),对植烟土壤nosZ细菌群落组成与土壤理化性质相关性进行分析(图2)。从RDA排序图中可以看出,第 1 排序轴解释了土壤理化性质对nosZ细菌群落变异贡献率的44.62%,第2排序轴解释了土壤理化性质对nosZ细菌群落变异贡献率的21.47%,累计贡献率为66.09%。nosZ细菌群落与土壤pH、有机质和速效钾含量显著相关(p<0.05),可见,土壤pH、有机质(SOM)和速效钾(AK)含量是影响nosZ细菌群落的主要环境因子。图2显示,不施用PGPR菌剂(T1)处理与施用菌剂的T2、T4和T5处理相距较远,这表明,PGPR菌剂对nosZ细菌群落影响较大。施用菌剂的T2、T4、T5处理相对较为集中,表明施用PGPR菌剂及减施化肥20%~30%的土壤中nosZ细菌群落的差异性较小,而当PGPR菌剂配合减少10%的化肥施用量(T3)时,植烟土壤的nosZ细菌群落与其他处理差异较大。

3  讨  论

目前PGPR菌剂已广泛应用在不同作物的生产中,其中许多报道指出外源PGPR可以改变根际土壤中微生物结构和种群数量,且总体变化表现为细菌数量增加,真菌数量减少,放线菌数量变化不一致[20-21]。但关于PGPR菌剂结合化肥减施对土壤肥力的影响的报道尚不多见。本试验表明,PGPR菌剂配合化肥减量施用对提高土壤肥力具有重要影响。PGPR菌剂配合化肥减量施用显著增加土壤pH、碱解氮含量,一定程度上提高速效磷和速效钾含量,而土壤有机质、全氮也有不显著的增加,表明施用PGPR菌剂同时减施化肥对提高土壤肥力、改善土

壤状况具有积极影响。主要原因可能是本试验中所用PGPR菌剂为具有溶磷溶钾能力的抗病促生型菌株,有利于活化土壤中的磷钾元素,促进植物吸收,进而为土壤反馈更多的细胞脱落物及有机代谢物,从而提高土壤有机质[12]。

已有研究證实施用PGPR菌剂能增加土壤微生物菌群种类和数量,如施用PGPR菌剂配合有机肥,增加了玉米收获期土壤中的固氮菌、溶磷菌及纤维素分解菌数量[22],而施用PGPR菌剂和适量的氮肥能增加土壤纤维素分解菌、硝化细菌及固氮菌数量[23]。关于nosZ型反硝化细菌的研究已有大量报道,HARTER等[24]研究发现,Bradyrhizobium(慢生根瘤菌属)是nosZ反硝化细菌中最丰富的物种。Azoarcus(固氮弓菌属)和Bradyrhizobium(慢生根瘤菌属)能够在自由生活状态下进行脱氮作用,并能诱导豆科植物大量结瘤,与豆科植物形成共生关系,刺激植物生长。此外,Bradyrhizobium(慢生根瘤菌属)对土壤具有生物修复功能[24]。ITELIMA等[25]认为Azospirillum(固氮螺菌属)能够分泌赤霉素、乙烯和生长素,还可以刺激植物中黄酮类化合物的分泌,进而刺激根瘤菌中结瘤基因(nod)的表达。本试验中,施用PGPR菌剂均增加了土壤中Bradyrhizobium和Bacterium的丰度,并使Bradyrhizobium(慢生根瘤菌属)和Azospirillum(固氮螺菌属)丰度增加成为优势菌属,这表明施用PGPR改变了土壤含nosZ反硝化细菌群落组成且增加了有益微生物的数量。

研究表明,在煙草上应用PGPR菌剂能够增加土壤微生物群落多样性,促进烟株生长[26]。PGPR菌剂配合化肥减施对植烟土壤nosZ细菌群落多样性无显著影响,而全量化肥配施PGPR菌剂则降低了nosZ细菌群落多样性。这可能是由于化肥的施入调节土壤中的C/N从而影响了不同菌群的定殖能力,使PGPR菌剂中的菌群与nosZ菌群造成竞争导致。适当降低化肥用量有助于保持土壤中nosZ群落的多样性。这也再次证实了nosZ型反硝化细菌群落对施肥的响应较为敏感[4]。

环境因子与土壤微生物群落相互作用,密切相关[27]。大量研究表明土壤pH、有机碳、氮是影响反硝化细菌群落组成的重要环境因子[28-29],也有研究指出,nosZ菌群与土壤水分含量和有效磷相关性最强[30]。这都证实了土壤环境质量与功能微生物的生存息息相关。本试验中,RDA相关性分析表明土壤pH、有机质和有效钾是影响植烟土壤nosZ细菌群落组成的主要环境因子,其次是速效钾、全氮及碱解氮。这与前人的研究结果[31-32]一致。

4  结  论

研究表明PGPR菌剂结合化肥减施改变了土壤理化性质,不同程度地提高了土壤pH、碱解氮、速效磷和速效钾等养分含量。PGPR菌剂配合化肥减施对植烟土壤nosZ细菌群落多样性无显著影响,却明显改变了其结构组成;而全量化肥配施PGPR菌剂则降低细菌群落多样性。红杆菌属 (Rhodobacter)和杆菌属(Bacterium)是该地区植烟土壤主要nosZ型反硝化细菌,而慢生根瘤菌属(Bradyrhizobium)和固氮螺菌属(Azospirillum)等nosZ基因型反硝化细菌对施用PGPR菌剂处理响应最敏感。土壤pH、有机质及有效钾是影响植烟土壤nosZ型细菌群落的主要环境因子。相关研究可为在攀枝花烟区植烟土壤上建立合理的施肥制度、保护土壤质量提供理论依据。

参考文献

[1]CONTHE M, WITTORF L, KUENEN J G, et al. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture[J]. The ISME Journal, 2018, 12(4): 1142-1153.

[2]JONES C M, SPOR A, BRENNAN F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9): 801-805.

[3]DOBBIE K E, SMITH K A. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables[J]. Global Change Biology, 2003, 9(2): 204-218.

[4]郑燕,侯海军,秦红灵,等. 施氮对水稻土N2O释放及反硝化功能基因(narG/nosZ)丰度的影响[J]. 生态学报, 2012, 32(11):3386-3393.

ZHENG Y,HOU H J,QIN H L, et al. Effect of N application on the abundance of denitrifying genes (narG /nosZ) and N2O emission in paddy soil[J]. Acta Ecologica Sinica, 2012, 32(11): 3386-3393.

[5]STRES B, MAHNE I, AVGUSTIN G, et al. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated michigan soils[J]. Applied and Environmental Microbiology, 2004, 70(1):  301-307.

[6]WANG Y Y, LU S E, XIANG Q J, et al. Responses of N2O reductase gene (nosZ)-denitrifier communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil[J]. Journal of Integrative Agriculture, 2017(11): 2597-2611.

[7]ZHONG W H, CAI Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. Applied Soil Ecology, 2007, 36(2): 84-91.

[8]JASKULSKA I, JASKULSKI D, KOBIERSKI M. Effect of limingon the change of some agrochemical soil properties in a long-term fertilization experiment[J]. Plant Soil and Environment, 2014, 60(4): 146-150.

[9]MADARAS M, LIPAVSKY J. Interannual dynamics of available potassium in a long-term fertilization experiment[J]. Plant Soil and Environment, 2009, 55(8): 334-343.

[10]姜蓉,汤利,李淼,等. 设施土壤微生物结构和酶活性对减量化肥配施有机肥的响应[J]. 土壤通报,2017, 48(3):639-646.

JIANG R, TANG L, LI M, et al. Response of greenhouse soil microbial community and enzyme activities to combined application of chemical fertilizer reduction with organic fertilizer [J]. Chinese Journal of Soil Science, 2017, 48(3): 639-646.

[11]宋以玲,于建,陈士更,等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J]. 水土保持学报,2018,32(1):352-360.

SONG Y L, YU J, CHEN S G, et al. Effects of reduced chemical fertilizer with application of bioorganic fertilizer on rape growth, microorganism and enzymes activities in soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 352-360.

[12]周莉华,李维炯,倪永珍. 长期施用 EM 生物有机肥对冬小麦生产的影响[J]. 农业工程学报,2005,21(S1): 221-224.

ZHOU L H, LI W J, NI Y Z. Effects of long-term application of EM biological-organic fertilizer on winter wheat production. Transactions of the CSAE, 2005, 21(S1): 221-224.

[13]KHALID A, ARSHAD M, ZAHIR Z A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat[J]. Journal of Applied Microbiology, 2010, 96(3): 473-480.

[14]CAKMAKCI R, DONMEZ F, AYDIN A, et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions[J]. Soil Biology and Biochemistry, 2006, 38(6): 1482-1487.

[15]BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1327-1350.

[16]鮑士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.

BAO S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.

[17]KLOOS K, MERGEL A, ROSCH C, et al. Denitri?cation within the genus Azospirillum and other associative bacteria[J]. Australian Journal of Plant Physiology, 2001, 28(9): 991-998.

[18]ENEALL K, PHILIPPOT L, HALLIN S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343.

[19]BHARTI N, BARNAWAL D, MAJI D, et al. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress[J]. Microbial Ecology, 2015, 70(1): 196-208.

[20]刘方春,邢尚军,马海林,等.根际促生细菌(PGPR)对冬枣根际土壤微生物数量及细菌多样性影响[J].林业科学,2013,49(8):75-80.

LIU F C, XING S J, MA H L, et al. Effect of plant growth-promoting rhizobacteria (PGPR) on the microorganism population and bacterial diversity in Ziziphus jujuba rhizosphere soil[J]. Scientia Silvae Sinicae, 2013, 49(8): 75-80.

[21]BUDDRUS-SCHIEMANN K, SCHMID M, SCHREINER K, et al. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley[J]. Microbial Ecology, 2010, 60(2): 381-393.

[22]GULNAZ Y, FATHIMA P S, KULMITRA A K, et al. Effect of PGPR and PSB on soil chemical properties, nutrient status and microbial population changes after harvest of irrigated maize under varying levels of phosphorus[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(10): 1707-1712.

[23]SALVO L P D, CELLUCCI G C, CARLINO M E, et al. Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays, L.) grain yield and modified rhizosphere microbial communities[J]. Applied Soil Ecology, 2018, 126: 113-120.

[24]HARTER J, EI-HADIDI M, HUSON D H, et al. Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N2O formation[J]. Scientific Reports, 2017, 7(3338): 1-14.

[25]ITELIMA J U, BANG W J, ONYIMBA I A, et al. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: a review[J]. Direct Research Journal of Agriculture and Food Science, 2018, 6(3): 73-83.

[26]黃阔,江其鹏,姚晓远,等. 微生物菌剂对烟草根结线虫及根际微生物群落多样性的影响[J]. 中国烟草科学,2019,40(5):36-43.

HUANG K, JIANG Q P, YAO X Y, et al. Effects of microbial agents on tobacco root-knot nematode and diversity of rhizosphere microbial communities[J]. Chinese Tobacco Science, 2019, 40(5): 36-43.

[27]GAIMSTER H, LSTON M, RICHARDSON D. Andrew gates and gary rowley transcriptional and environmental control of bacterial denitrification and N2O emissions[J]. FEMS Microbiology Letters, 2017, 365(5): 277-297.

[28]STEHFEST E, BOUWMAN A F. N2O and NO emissions from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 207-228.

[29]ZENG J, LOU K, ZHANG C J. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China[J]. Frontiers in Microbiology, 2016, 7: 1353-1365.

[30]JHA N, SAGGAR S, GILTRAP D, et al. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture[J]. Biogeosciences Discussions, 2017, 14(18): 1-19.

[31]WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270.

[32]GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews, 2013, 37(2): 112-129.