APP下载

高压注浆加固造成铁路路基隆起的原因探究

2020-06-21张春利

河南科技 2020年11期
关键词:铁路

张春利

摘 要:高压注浆加固技术施工操作简便,可以广泛应用于铁路路基处理中,效果较好。本文结合工程应用案例,简要介绍了高压注浆加固技术的特点,分析了高压喷射注浆加固造成铁路路基隆起的原因,并提出具体对策,以期明显减少铁路路基隆起量,提升变形控制效果。

关键词:高压注浆加固技术;铁路;路基隆起

Abstract: The high-pressure grouting reinforcement technology is easy to operate and can be widely used in railway subgrade treatment with good results. This paper briefly introduced the characteristics of high-pressure grouting reinforcement technology, analyzed the reasons for high-pressure jet grouting reinforcement railway subgrade uplift, and put forward specific countermeasures to significantly reduce the amount of railway embankment uplift and improve the deformation control effect.

Keywords: high-pressure grouting reinforcement technology;railway;roadbed uplift

随着我国交通事业的飞速发展,铁路工程建设规模逐渐扩大。在铁路路基处理过程中,高压注浆加固技术不仅可以提升铁路路基的稳定性与安全性,还能够有效减少路基的不均匀沉降,但是容易引起路基隆起现象。为了更好地提升铁路路基的可靠性,避免发生路基隆起,本文重点探讨高压注浆加固造成铁路路基隆起的原因与解决措施。

1 案例背景

某城市铁路工程线路为东西走向,地铁隧道采用盾构施工工艺,利用管片进行有效支撑。工程所在区域的水文地质条件如下:地下水位浅部为潜水,外界降雨补给,对混凝土结构无侵蚀,黏土渗透系数为(0.21~3.90)×10-6 cm/s,粉质土的渗透系数为(0.32~8.10)×10-3 cm/s,砂性土渗透系数为(0.36~8.30)×10-3 cm/s,场地地基土属于软弱场地土类型,建筑场地类别是Ⅲ类,场地的抗震烈度为Ⅶ度。

2 高压注浆加固技术特点

高压注浆加固技术是指利用液压或气压将凝固浆液压入地层中,浆液将土颗粒之间的水分或空气完全填充,经过一段时间后,浆液能够将原有的土颗粒胶结为整体,提升土基稳定性,避免出现工后沉降现象。铁路路基加固期间运用高压注浆工艺,可以明显提高路基的稳固性,防止路基出现大范围的沉降。

为了保证高压注浆加固工艺得到更好运用,在实际施工过程中,施工单位要严格控制注浆材料质量,并结合铁路路基结构特点、工程所在区域的地质条件与水文条件,合理选择注浆工艺。高压喷射注浆材料种类比较多,施工单位要结合注浆目的,包括受注体的地质条件,有针对性地选择。通常来讲,高压喷射注浆材料主要分为两种类型,分别是化学注浆材料与粒状注浆材料,按照注浆材料的物化性能分类,其又分成稳定粒状材料与不稳定粒状材料、无机化学材料与有机化学材料等。

3 铁路路基隆起原因与对策

3.1 地基处理中存在的问题

本地铁工程采用盾构机施工工艺,顺着铁路隧道中心轴线方向,产生一定的水平位移,地表出现隆起。该铁路行车密度比较大,为了避免铁路路基出现较大变形,减小地铁隧道施工(盾构机下穿铁路)对铁路运行的负面影响,盾构机运行期间,施工单位决定在铁路两侧采取旋喷桩进行土体加固。

施工人员在旋喷桩的内部与外部分别采用注浆工艺,提升铁路路基的稳固性,旋喷设备采取双重管法。

但是,注浆施工期间,铁路路基出现较大的隆起,隆起量为17.6 mm,同时铁路基坑内部出现多处隆起,隆起量超过规定要求,对工程的整体施工进度产生较大影响。

因为采用高压喷射注浆工艺,在实际施工过程中,产生的注浆压力比较大,对铁路路基产生一定冲击与破坏,从而影响铁路基础上部各项设备与设施的安全运行[1]。

3.2 路基隆起原因

3.2.1 路基土体注水膨胀出现变形。高压喷射注浆施工工艺,主要指的是利用一定的压力,在土体内部注入高压浆液,其施工原理和土体注水试验类似,相关人员通过开展土体注水试验,进一步了解土体注水膨胀变形原理。通過对工程所在区域的土质进行全面分析,在黏土与黏土夹粉砂中开展注水试验,笔者发现,土体膨胀变形量与注水量呈正比,土体出现变形,主要是由骨架的弹性变形所引起。针对渗透性比较低的饱和土,相关人员根据挤土效果,深入分析无限土体中的小孔扩张现象,运用土弹塑性理论得知,在挤压的瞬间,土体应力达到最大,最终引发变形。

3.2.2 施工技术影响。高压注浆加固期间,若注入的水泥浆液量较大,土体总体积会明显增加。在铁路路基加固过程中,施工区域的注浆量较大,同时有大约20%浆液自旋喷桩孔冒出,剩余的浆液和土粒固结,成为基础的一部分,使得铁路路基体积变大。

此外,受喷射流脉冲作用的影响,土体表面稳定性下降,在脉冲负荷影响下,引发残余变形,土粒出现失衡现象,破坏土体,引发土体变形[2]。由于此铁路路基加固采用二重管法进行施工,注浆管在喷射高压浆液的过程中会喷射高压空气,水气同轴复合喷射过程中,高压空气流会对土体产生破坏作用,土粒从土体表面吹散,虽然能够改善高压喷射施工条件,但是,高压喷射流自身的破坏能力明显增强,扩大土体破坏范围,使得铁路路基位置出现较大隆起变形[3]。

3.3 解决对策

3.3.1 降低注浆压力。结合该铁路路基隆起原因得知,高压喷射注浆加固方案不完善,存在一定欠缺,会导致铁路路基变形量增加。为了减小铁路路基的隆起量,避免土骨架出现膨胀应变现象,施工人员要适当降低高压喷射注浆压力,保证土体应力得到更好传递,提升土骨架的稳定性,防止其出现较大的膨胀应变[4]。

减小高压喷射注浆压力,能够显著降低土体瞬间变形量,保证土骨架的变速率满足规定要求。在具体施工过程中,施工人员要适当放慢施工速度,若铁路路基隆起速度过快,可以暂停注浆施工,保证土体的瞬时弹性变形快速恢复,将每隔1个桩体施工,变为每隔4个桩体施工,避免相邻桩体应力叠加,防止铁路路基出现较大变形。

根据注水膨胀试验得知,与黏土相比,粉砂变形速率更大,所以,施工人员在粉砂层施工时要合理控制注浆管的提升速度,不断缩短粉砂层注水时间,保持注浆压力的稳定性,防止粉砂出现较大变形,在满足铁路路基加固施工要求的同时,减小路基隆起量[5]。

3.3.2 降低孔隙水压力。为了降低孔隙水压力的影响,在旋喷桩接近铁路一侧,施工人员可以设置一排钢管,以此作为泄压孔,钢管之间的距离不宜超过1 m,钢管壁之间的距离为50 mm,同时在钢管壁表面设置[Φ]20 mm小孔,在钢管内部填入砂土。高压旋喷施工期间,钢管起到良好的阻挡作用,能够避免高压喷射注浆对铁路地基底部产生较大冲击,同时孔隙水压力会通过钢管中小孔逐渐消散,少量泥沙可以从孔中流出,避免对铁路路基产生冲击,防止铁路路基出现大面积隆起。

另外,施工人员要调整高压喷射注浆施工范围,尽可能在铁路外侧施工。结合相关理论得知,减小孔体周围压力,能够提升铁路地基稳定性,避免出现大面积挤压。对于其他原因引起的铁路路基隆起,施工人员可以调整高压喷射注浆施工参数,也可以将原有的二重管施工方法改成单管施工,有效减小气压力对铁路路基产生的不利影响[6]。

对于施工单位来讲,做好铁路路基沉降观测特别重要。施工人员要根据铁路运行情况,确定工作基点桩位并埋设,如果工作基点桩埋设位置不准确,会对后续观测结果产生影响,降低铁路路基加固效果。在确定工作基点桩位的过程中,观测人员要结合观测对象的结构特点和分布范围,找到铁路基坑隆起分布规律,在铁路路基隆起量较大的位置,可以适当增加施工控制点的数量,保证各项观测数据更加准确。

在地表水观测过程中,观测人员要在边桩周围设置观测点。对于观测人员来讲,在高压喷射注浆加固前,要对该地区的地质与水文情况进行全方面勘测,为后续的监控量测提供有力支持,进而更好地确定施工参数,减小高压喷射注浆施工对铁路路基的影响[7]。在此工程项目中,观测人员可以结合各个工段的具体情况,详细分析各施工参数,并在路堤两侧埋设边桩,从而更加准确地观测铁路路基隆起量与位移量。

3.2.3 高压喷射注浆加固注意事项。第一,在开挖工作面之前,要保持施工场地平整,并做好场地清理工作。第二,工作沟开挖结束后,在挡墙两侧,设置控制点,并结合控制点具体位置,放出孔位,在实际注浆施工前,还要标明孔号[8]。第三,施工人员要进行试桩,根据设计要求,有序开展试桩工作,进而更好地确定高压喷射注浆施工参数,如注浆压力与水灰比等,更好地保证高压喷射注浆质量,防止铁路路基出现较大隆起。第四,在成孔钻进过程中,如果遇到地下障碍,施工人员禁止强行钻进,探明障碍物后,方可继续注浆施工。第五,高压喷射注浆施工采用的水泥浆液要充分搅拌,搅拌均匀后才能进行喷射施工,施工人员要随用随搅拌,严禁出现灰水离析现象,浆液初凝之前全部用完,避免石块或杂物落入浆液中[9]。注浆施工期间,密切关注铁路路基隆起情况,及时调整注浆压力。

3.2.4 采取有效的质量控制措施。在此工程项目中,施工单位要在施工现场成立QC质量管理小组,针对高压喷射注浆施工现场所出现的问题,采用QC管理方法,找到工程施工质量问题的产生原因,并制定解决方案,及时改正。针对影响工程施工质量的部位或重要工序位置,要设置适量的控制点。

施工现场内部的各项电气设备和电气施工机械设备要采取安全的接零保护措施。一些大型施工机械设备无法进行接零保护,需要进行接地保护。在各个供电回路中,要在其首末端位置重复接地。若施工线路过长,要适当增加重复接地点。施工现场配电箱上部要设置防雨棚[10]。

3.3 施工效果分析

第一,工程施工期间,高压喷射注浆引起铁路路基隆起的原理与注水膨胀原理相同,膨胀变形量主要由应力变小与孔隙水压力增大等两方面原因引起,由于孔隙水压力的逐渐增大,土骨架瞬间膨胀,产生较大应力。另外,土体颗粒的黏性流动率与孔隙水流动率下降,也容易引发铁路路基隆起。

第二,铁路路基隆起,和高压喷射注浆施工过程中桩体周围所产生的挤压应力有一定联系。因为桩体周围产生较大的挤压应力,该应力明显大于土体自身所承受的孔隙水压力,使得土体对铁路路基产生较大的冲击破坏,铁路路基底部出现隆起。施工单位除了要控制高压喷射注浆压力,还要合理选择施工参数,并结合高压喷射注浆隆起量,适当降低高压喷射注浆施工效率,调整各项施工参数,以显著减少铁路路基隆起量[11]。

第三,施工人员要适当降低施工速度,不断减少粉砂层施工时间,优化高压喷射注浆施工工艺,更好地保证工程施工质量。

4 结语

本文从多个角度介绍了铁路路基隆起原因,并提出降低注浆压力、降低孔隙水压力等对策,以期显著提升铁路路基的安全性,避免铁路路基出现较大沉降。此铁路路基加固期间采用上述措施,工程施工效率得到提升,铁路路基隆起量得到有效控制,经专业检验机构检测,工程质量达标,铁路路基隆起量满足规定要求,因此可以为类似工程项目提供一定参考。

参考文献:

[1]夏种康.陇海线路巉口镇K1642+680~+800段袖阀管注浆加固性能研究[J].价值工程,2020(3):155-158.

[2]李士中.合肥地区新建盾构隧道下穿铁路路基段地层预加固措施研究[J].铁道建筑,2019(12):60-64.

[3]顧绍付,刘维正,石志国,等.在役高速公路深厚软基滑移病害微型桩处治分析[J].土木与环境工程学报,2019(6):43-51.

[4]李正涛,马相峰,吴金霖,等.三洞近接下穿铁路路基影响分析与施工关键技术研究[J].铁道建筑技术,2019(5):122-127.

[5]乔正正.青藏铁路西格二线路基沉降(冻胀)病害治理研究与技术分析[J].甘肃科技,2019(22):121-123.

[6]付铭川,陈伟志,黄百川,陈秀涓.基于袖阀管注浆法的铁路路基过渡段沉降超限整治[J].路基工程,2019(5):213-218.

[7]桂怀武.邻近营业线岩溶注浆施工质量及安全控制措施[J].交通世界,2019(29):31-32.

[8]刘冰玉.聚酯纤维改性复合水泥基-水玻璃注浆材料试验及应用研究[J].市政技术,2019(5):252-255.

[9]党海明.青藏铁路察尔汗盐湖路基黏土注浆施工技术研究[J].青海科技,2019(4):27-31.

[10]夏冉.早强发泡水泥注浆在高填方路基桥头沉降处治中的应用[J].城市建设理论研究,2019(23):47.

[11]孔德锦.钢花管注浆法在粤北山区高速公路煤系地层软基处治中的应用[J].工程建设与设计,2019(14):171-172.

猜你喜欢

铁路
中国铁路之父
Xi’s remarks draw blueprint for China-Laos relations
A Short History of Transportation
《百年京张》
海底铁路
2017年铁路暑运创新高
中国的人均铁路还不及这一根烟卷长!