APP下载

离散数学模型关联度检测方法研究

2020-04-22姚永辉陆雨

电脑知识与技术 2020年6期
关键词:关联度数学模型检测

姚永辉 陆雨

摘要:在大型工程计算分析当中,最难解决的是构建的计算数学模型与实际系统状态的关联问题,以及如何对离散数学模型进行修改。基于以上问题,设计离散数学模型关联度检测算法,构建出一个检测离散数学模型关联度的方法。通过对比实验证明,设计的检测方法能够更加精准的检测出离散数学模型的关联度,且通过检测方法对模型进行改进能够得出与实际系统关联度更高的最优模型。

关键词:离散;数学模型;关联度;检测

中图分类号:0158 文献标识码:A

文章编号:1009-3044(2020)06-0261-03

将一个实际的问题转化为数学模型得到相应的理论方程时,其主要的目的是为了让理论数学模型可以对实际问题进行具体的分析以及运算。离散数学模型的构建是在某一特定的前提条件下提出的,且在构建过程中不考虑其非线性问题的存在,仅仅利用线性完成对模型的构建。伴随着现代化科学技术的发展,人们对于客观事实的计算能力已经得到了质的飞跃,因此具备了构建离散数学模型的能力,并且能够通过数学模型做到对实际系统的模拟,以此可以在最大限度上,满足实际工程中的应用需求。

1检测算法设计

1.1相空间重构算法设计

在力学当中,相空间是一种抽象的数学空间。在动力系统当中,相空间是由一组一阶方程构成,系统中每一个分量的改变都会与其他分量产生相互的作用。在对离散数学模型的关联度进行检测时,最重要的一步是将检测数据转换为状态矢量,即相空间重构。选择同一时间间隔对数据进行采样其时间序列可表示为:

公式(1)中,x(t)表示为在t时刻,数学模型的动态学性能;e表示为数学模型嵌入空间的维数;τ表示为数学模型的延迟时间。通过公式(1)的计算,可建立由相空间RE到对应的Re的映射。通过对相空间重构的结果进行分析,可以看出在数学模型中保留了其中原有的动力学性质以及几何性质。因此可以说明,相空间的重构是时间序列当中的基础。相空间重构的方法有很多,本文选用一种延迟坐标的方法对相空间进行重构。其重构的主要因素是利用对数学模型延迟时间r和嵌入维数e两个因素决定。选取延迟坐标完成对数学模型的重构,嵌入维数e表示为能够完成在状态转移过程中构成的最小吸引子的维数大小。在进行实际检测的过程当中,周围环境产生的噪声会对重构结果造成一定的影响,而时序中的噪声水平越高越会对重构效果造成更大的影响。假设d表示为生成时序向量X(t)数学模型的一个分维数,在重构环境中存在噪声的情况下,要保证重构的相空间e满足e≥2d+l,该公式表示为嵌入维数大于吸引子维数适当的整数。因此通过上文研究,从数学角度上,证明了状态空间重构的有效性。

1.2动力系统算法设计

2离散数学模型关联度检测方法设计

2.1相空间重构参数设定

通过对离散数学模型进行上述计算得出相应的响应数据,再将其与实际的结构数据对比,构建一个新的相空间,从而获取到两个序列结构的向量,通过对动力信息的数据进行提取以及对离散数学模型与实际结构进行关联度分析,从而完成对离散型数学模型关联度的检测。数学模型数据序列的主要特征包括:在同一个动力系统当中,数据序列的响应能够代表一个动力系统在某一特定的状态,从理论角度分析该状态属于一个无穷的序列,但在实际检测的过程中数据序列的数目是有限的。同时,该数据序列与数学模型的离散程度有着密切的联系;其次,在数据序列当中,其本身隐藏着一个与该动力系统具有密切联系的信息,并且在信息当中还含有大量的噪声影响因素;在数学模型当中的向量与从数据序列中选择的起始点有关,因此需要添加一步位移运算将其消除。

对于一个数学模型的时间序列a1,a2,a3,…,an+(e-1)通过重构相空间算法,计算出引人恰当的嵌入维数和时间延迟,构成一个完整的矩阵或向量。其表达式为:

公式(2)中,A表示为构造向量;e表示为嵌入维数;τ表示为时间延迟。通过该表达式对被检测的数据固定时间进行延迟,从而构成一个多维度状态的空间。通过不断的重复提取出在不同时刻下各个延迟量,从而產生对e维相空间相点的变化轨迹。对数学模型的数据序列进行关联度检测方法流程设计图,如图1所示。

在对数学模型进行瞬态激励作用下,动态响应的是数学模型整体的动态信息,因此维数要尽可能选用数值较大的,才能保证恢复其实际的动力系统信息,同时也可以有效保证数据模型数据的噪声干扰以及结构系统动力学信号完整。

2.2有限元结构动力分析方法设计

有限元结构的基本前提是将连续的求解域进行离散处理,从而构成一个有限个数单元的组合体。通过构建的组合体,可以对数据模型的区域进行求解。而另一种方法,是利用每一个单元中的假设近似函数,将其表示为全部待求解的未知函数。离散数学模型的有限元分析可分为如下几个步骤:

第一步,对数据模型中的连续区域进行离散处理;

第二步,根据数据模型中的数据样本构造一个适当的插值函数;

第三步,构建一个具有单元特性的矩阵,一个具有数学模型整体特性的矩阵;

第四步,将整个数学模型的运行方程导出,其方程可表示为:

方程(3)中,[M]表示为质量矩阵;[c]表示为阻尼矩阵;[K]表示为刚度矩阵;[P(t)]表示为整个数学模型的运行模式;

第五步,通过计算,求出数学模型的运行方程。

2.3有限元结构动力分析具体流程

利用有限元结构动力分析方法对数学模型中的有限元动力响应进行求解,求解方法如下所示:

在进行求解前,首先要在程序中构建一个全新的文件,并将其对应的初始参数设置为0,从而为后续的计算保留出足够的计算空间和存储空间。

步骤1:在处理分析程序的初始模块中,计算出数学模型中所有的有限单元,同时预设计算过程中的相关参数,再利用有限元结构动力分析软件中的建模工具,构建一个与其相符的数学模型,对于造成数学模型影响不大的条件,例如载荷、约束等,进行适当的简化。以所需分析的问题作为基础,选取合适的网格划分方法,对该数学模型进行划分处理,在完成一系列操作后,退出该模块;

猜你喜欢

关联度数学模型检测
AHP法短跑数学模型分析
活用数学模型,理解排列组合
“不等式”检测题
“一元一次不等式”检测题
“一元一次不等式组”检测题
基于灰色关联度的水质评价分析
对一个数学模型的思考
基于灰关联度的锂电池组SOH评价方法研究
基于灰色关联度的公交线网模糊评价
古塔形变的数学模型