APP下载

基于ABAQUS的破损船舶静稳性曲线直接计算法研究

2020-01-03 10:07:30 中国水运 2020年12期

令波 张正艺 解德

摘 要:本文提出了一种基于ABAQUS的破损船舶静稳性曲线的直接计算方法。以典型趸船为例进行,计算了其第一类破舱的情况,并与解析方法所得结果进行比较,验证了该方法的可行性和准确性。

关键词:ABAQUS;破损船舶;稳性曲线;直接计算法

船舶在使用过程中可能会发生事故而导致船体的破损进水。所谓抗沉性,是指船舶在一舱或者多舱破损进水后仍能保持一定浮性和稳性的能力[1]。如果船舶不具备足够的抗沉性,就会导致灾难性的后果[2]。因此,国际社会制定了各类法规和技术规范对船舶的抗沉性提出了具体要求。其中的典型代表为国际海事组织制定的《国际海上人命安全公约(International Convention for the Safety of Life at Sea,SOLAS)》 [3-4]。对破损船舶稳性曲线的计算,则是对船舶进行抗沉性分析的基础。

不同于传统的以阿基米德原理为基础的基于等效体积的计算方法,本文提出了一种从浮力产生的本质出发基于静水压力的表面积分来计算。以ABAQUS为分析工具,计算了趸船的第一类破舱时船舶稳性曲线。并与解析方法所得结果进行了比较,验证了该方法的可行性和准确性,为进一发展和应用这种方法奠定基础。

1直接计算方法

图1给出了破损船舶稳性曲线直接计算方法示意图。首先,通过采用刚体单元对目标船体进行建模。然后,在刚体模型的参考点/等效重心上施加船体的等效重力。最后,放开z方向上的自由度,旋转刚体模型,可以获得不同倾斜角时的参考点上的支反力矩,该力矩大小与不同倾斜角时的回复力矩大小相等。

通过直接计算法计算破损船体的稳性曲线时,有两种思路,即增加重量法和损失浮力法。

重量增加法认为:破损后的船体进水是在船体上增加等效液体货物(密度与破舱水相同),参见图1(a)。此时,倾角    对应的破损船体上的等效重力           ,等效重心位置            以及回复力矩              按下式求解:

2计算算例与计算结果

本文以一个趸船上单个舱室破舱后,破损船舶的横倾静稳性曲线计算为例,来验证本文所提出的直接计算法的准确性。

该趸船为一长方体,其所处的坐标系和破损舱室在趸船上所处的位置参见图2,趸船和破损舱室的主尺度参见表1。趸船未破损时的重心位置为(60m, 0m, 5m),破舱水密度=1026.05 kg/3,重力加速度g=9.8/,初始水线高为5m。

如图3所示,模型由刚体单元组成,采用ABAQUS中的R3D4刚体单元建模。在参考点上施加等效重力,在水线以下的刚体外表面施加静水压力,约束参考点除了z方向以外的所有自由度,以便模型寻找平衡位置。让有限元模型绕x轴旋转来模拟趸船的横倾。在本例中,共横倾90度,横倾过程被分为18步,每一步均达到了静力平衡。通过有限元分析得到的刚体单元参考点处绕x轴方向的支反力矩即为所求的横倾回复力矩。

本文分别通过基于增加重量法的直接计算法和基于损失浮力法的直接计算法来获取趸船破损后的静稳性曲线,并与解析解的进行了比较,参见图4。解析解的相关计算公式参见参考文献[6]。结果显示:①基于增加重量法和基于损失浮力法的直接计算法的计算结果完全吻合,证明了基于两种计算思路的直接计算法得到的计算结果是一致的;②基于直接计算法的计算结果和解析解完全吻合,证明了直接计算法的准确性和可行性。

3结论

本文提出了一种基于ABAQUS的破损船舶静稳性曲线的直接计算法,并通过一艘典型趸船破损后的静稳性曲线分析展示了直接计算法的计算过程,验证了该方法的准确性,得出主要结论如下:①本文提出的直接计算法是可以用来计算破损船舶的静稳性曲线的;②本文提出的直接计算法具备较高的精度;③無论是基于增加重量法的直接计算法还是基于损失浮力法的直接计算法,都能够得到准确的破损后船舶的静稳性曲线。

参考文献:

[1] 盛振邦,刘应中. 船舶原理,上海交通大学出版社,2004.

[2] Pekka Ruponen, Teemu Manderbacka, Daniel Lindroth, On the calculation of the righting lever curve for a damaged ship, Ocean Engineering, 2018 (149): 313-324.

[3] A Francescutto, A D Papanikolaou, Buoyancy, stability, and subdivision: from archimedes to SOLAS 2009 and the way ahead, Proc. IME M J. Eng. Marit. Environ. 2011(225):17–32.

[4] International convention for the safety of life at sea, International maritime organization,2001.

[5] 杨槱. 船舶静力学, 科学教育编辑室,1963.

[6] Biran, A., Pulido, R.L., 2013. Ship Hydrostatics and Stability. Butterworth-heinemann