APP下载

广义Sasa-Satsuma 呈在半直线上的初边值问题

2019-10-28董凤娇胡贝贝

董凤娇 胡贝贝

摘要:本文基于Fokas统一变换方法分析了广义Sasa-Satsuma方程在半直线上的初边值问题.假设广义S asa-Satsuma方程的解u(x,t)存在,证明了其初边值问题的解可用复谱参数λ平面上的3×3矩阵Riemann-Hilbert问题的形式解唯一表示.

关键词:Riemann-Hilbert问题; 广义Sasa-Satsuma方程; 初边值问题; Fokas统一变换

中图分类号:0175.29

文献标志码:A

DOI: 10.3969/j.issn.1000-5641.2019.04.004

0 引言

自Gardner, Green,Kruskal,Miura发现了反散射变换以来,一直到20世纪90年代,反散射变换几乎只是用来分析纯初值问题,但是在现实自然界中,越来越多的自然现象需要考虑边值条件,这样就自然地需要考虑初边值问题来取代初值问题.1997年,Fokas[1]基于反散射变换的思想首次提出了统一变换方法,很好地求解了可积方程的初边值问题.在过去的20年里,该方法已经用来分析了一些具有2x2矩阵Lax对的重要可积方程的初边值问题[2-5].就像全直线上的反散射方法一样,Fokas方法也是将初边值问题的解表示成相应的Riemann-Hilbert问题的解.2012年,Lenells[6]首次将此方法推广到3x3矩阵可积方程,并且研究了Degasperis-Procesi方程在半直线上的初边值问题[7]在这之后,越来越多的学者开始关注Riemann-Hilbert問题,使得许多与高阶矩阵谱问题相关的可积方程初边值问题得以研究,比如,Novikov方程[8]、Sasa-Stsuma方程[9]、耦合NLS方程等[11-12],作者在这方面也做了一些工作[13-16].

众所周知,非线性薛定谔方程

4 结论

在本文中,我们构造了一个新的双模耦合KdV方程,一方面,通过简化的Hirota方法和Cole-Hopf变换,对于特殊的α、β值可得到该方程的孤子解,但对于一般的α、β值,孤子解是否存在,我们还不能确定.另一方面,通过不同的函数展开法,对于一般的α、β值,我们得到了该方程的其他精确解.

[参考文献]

[1]KORSUNSKY s V Soliton solutions for a second-order KdV equation[J]Phys Lett A,1994, 185: 174-176

[2]LEE c T.LIU J L.LEE c c.et al The second-order KdV equation and its soliton-like solution[J]ModernPhysics Letters B,2009. 23:1771-1780

[3]LEE c c,LEE c T,LIU J L,et al Quasi-solitons of the two-mode Korteweg-de Vries equation[J]Eur Phys JAppl Phys, 2010,52:11301

[4]LEE c T Some notes on a two-mode Korteweg-de Vries equation[J]Phys Scr. 2010,81:065006

[5]LEE c T.LIU J L A Hamiltonian model and soliton phenomenon for a two-mode KdV equation[J]Rocky Mtith, 2011, 41:1273-1289

[6]LEE C T, LEE C C. On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system [J].Waves in Random and Complex Media, 2013, 23: 56-76.

[7] LEE C T. LEE C C. Analysis of solitonic phenomenon for a two-mode KdV equation [J]. Physics of WavePhenomena, 2014, 22: 69-80.

[8] LEE C T, LEE C C. On the study of a nonlinear higher order dispersive wave equation: Its mathematical physicalstructure and anomaly soliton phenomena [J]. Waves in Random and Complex Media, 2015, 25: 197-222.

[9]LEE C T, LEE C C. Symbolic computation on a second-order KdV equation [J]. Journal of Symbolic Computa-tion, 2016, 74: 70-95.

[10] WAZWAZ A M. Multiple soliton solutions and other exact solutions for a two-mode KdV equation [J]. MathMethods Appl Sci, 2017, 40: 2277-2283.

[11] LEE C T. LEE C C. LIU M L. Double-soliton and conservation law structures for a higher-order type ofKorteweg-de Vries equation [J] Physics Essays, 2015, 28: 633-638.

[12] ALQURAN M, JARRAH A. Jacobi elliptic function solutions for a two-mode KdV equation [J/OL]. Journal ofKing Saud University-Science, (2017-07-03) [2018-06-28l. http://dx.doi.org/10.1016/j.jksus.2017.06.010.

[13]XIAO Z J, TIAN B. ZHEN H L, et al. Multi-soliton solutions and Backlund transformation for a two-mode KdVequation in a fluid [J]. Waves in Random and Complex Media, 2017, 27: 1-14.

[14] WAZWAZ A M. A two-mode modified KdV equation with multiple soliton solutions [Jl Appl Math Lett, 2017,70: 1-6.

[15] WAZWAZ A M. A two-mode Burgers equation of weak shock waves in a fluid: Multiple kink solutions and otherexact solutions [J]. Int J Appl Comput Math, 2017, 3: 3977-3985.

[16] WAZWAZ A M. A study on a two-wave mode Kadomtsev-Petviashvili equation: Conditions for multiple solitonsolutions to exist [J] Math Methods Appl Sci, 2017, 40: 4128-4133.

[17] JARADAT H M. SYAM M, ALQURAN M. A two-mode coupled Korteweg-de Vries: Multiple-soliton solutionsand other exact solutions [J] Nonlinear Dyn, 2017, 90: 371-377.

[18] WAZWAZ A M. Two-mode fifth-order KdV equations: Necessary conditions for multiple-soliton solutions toexist [J] Nonlinear Dyn, 2017. 87: 1685-1691.

[19]WAZWAZ A M. Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order Burgers equation: Multiplekink solutions [J]. Alexandria Eng J, 2018, 57: 1971-1976.

[20] JARDAT H M. Two-mode coupled Burgers equation: Multiple-kink solutions and other exact solutions [J].Alexandria Eng J, 2018, 57: 2151-2155.

[21]SYAM M, JARADAT H M, ALQURAN M. A study on the two-mode coupled modified Korteweg-de Vries usingthe simplified bilinear and the trigonoruetric-function methods [J]. Nonlinear Dyn, 2017, 90: 1363-1371.

[22]WAZWAZ A M. Two wave mode higher-order modified KdV equations: Essential conditions for multiple solitonsolutions to exist [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27: 2223-2230.

[23] HEREMAN W, NUSEIR A. Symbolic methods to construct exact solutions of nonlinear partial differentialequations [J]. Mathematics and Computers in Simulation, 1997, 43: 13-27.

[24] WAZWAZ A M. Single and multiple-soliton solutions for the (2 + 1)-dimensional KdV equation [Jl Appl MathComput, 2008, 204: 20-26.

[25] ZUO J M, ZHANG Y M. The Hirota bilinear method for the coupled Burgers equation and the high-orderBoussinesq-Burgers equation [J]. Chin Phy B, 2011, 20: 010205.

[26] WAZWAZ A M. Multiple soliton solutions for the integrable couplings of the KdV and the KP equations [J].Open Physics, 2013. 11: 291-295.

[27]WAZWAZ A M. Multiple kink solutions for two coupled integrable (2 + 1)-dimensional systems [J]. Appl MathLett, 2016, 58: 1-6.

[28] YU F J. Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy [J]. Chin Phys B,2012, 21: 010201.

[29]MALFLIET W, HEREMAN W. The tanh method: I. Exact solutions of nonlinear evolution and wave equations[J]. Phys Scr, 1996, 54: 563-568.

[30]FAN E, HONA Y C. Generalized tanh method extended to special types of nonlinear equations [J]. Zeitschriftfur Naturforschung A, 2002, 57: 692-700.

[31]WAZWAZ A M. The tanh method for traveling wave solutions of nonlinear equations [J]. Appl Math and Comput,2004, 154: 713-723.

[32] LIU S, FU Z, LIU S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinearwave equations [J]. Phys Lett A, 2001, 289: 69-74.