APP下载

解析输电线路雷害原因及防雷措施

2019-09-10孙文凯

科学导报·学术 2019年27期
关键词:防雷措施输电线路

孙文凯

摘 要:近年来,随着自然环境不断被破坏,每年雷暴日的数量在不断增加,使得输电线路的安全隐患也越来越多,越来越严重。为改变现状,应首先确定引起输电线路雷害故障的雷击性质,对其雷害原因进行细致的分析,并采取可靠有效的防雷保护措施,以保证电网设备的安全。

关键词:输电线路;雷害原因解析;防雷措施

1输电线路防雷工作的必要性

雷击问题不仅会影响到输电线路的安全性,同时还会破坏线路中已有电力设备,给输电单位造成直接的经济损失。在初期的输电线路工程建设活动中,建设方必须满足绝缘性方面的技术要求。当前的变电所在输电生产的过程中也发挥重大作用,保护不到位也会受到雷击影响,输电线路的整体安全性不能被保障,为了提升供电企业的信誉度,长期提供稳定的输电服务,必须针对雷击等恶性事件,强化防雷系统,减少雷雨天气给输电线路的恶劣影响。输电线路是电力系统运行的主动脉,起着连接用户与变电站的作用,输电线路的运行状态对于供电可靠性与安全性有着直接的影响。一般情况下,输电线路都架设在空旷的野外区域,有着纵横交错、走线长的特征,因此,在遇到雷雨天气后,输电线路很容易遭到雷击的影响,一旦发生雷击,输电线路就会出现保护跳闸,这就会影响整个电力系统的安全运行。

2输电线路的雷害原因

影响输电线路雷害的原因有很多,为充分掌握输电线路遭受雷害的情况,必须要结合现场环境因素对其进行综合分析,通过仔细检查雷击事故现场以及模拟实验,准确判断其故障跳闸性质。输电线路遭受雷击的主要原因有以下几个方面:线路绝缘子放电电压超过正常值的一半;雷电流强度过强;杆塔的接地电阻异常;以及无标准架空地线。对于雷击导致的输电线路跳闸故障又可分为绕击和反击两种,一般绕击式跳闸发生概率较大,同时输电线路雷击事故还和其所处的具体地理位置也有关联,不同的地形、天气等环境因素对雷击故障造成的影响都有不同程度的差异。由于天空中雷云放电导致过电压的形成,使得输电线路周围容易出现雷击现象,大气过电压是以输电线路杆塔为放电通道,然后击穿线路绝缘层,雷电造成大气过电压又分为两种,分别是感应雷过电压和直击雷过电压。从接地方面考虑雷击,可以发现因为放电泄流需要通道,再加上大地能感应雷云中的异种电荷,因此接地装置的完善和雷击事故的发生有直接的关系。输电线路一般承受的感应雷过电压极限是400kV,而当线路过电压小于35kV时,又会对绝缘层造成一定的伤害,只有超过100kV时,才不会影响其绝缘带的安全工作状况,故超过100kV的输电线路雷害原因主要来自于直击雷。输电线路的杆塔高度和避雷线对边导线的保护角也是造成其雷害事故的重要原因,而山区输电线路的安全隐患问题更严重,山区地形复杂,使得输电线路的架设存在跨度大、高差大等问题,同时由于山区地貌的特殊,经常出现多云多雨天气,种种原因都导致山区雷电绕击发生概率较大,根据统计山区地区雷电绕击发生概率是平原地区的三倍左右。

3输电线路的防雷措施

3.1架设避雷线

在输电线路施工过程中,要架设避雷线用于保护输电线路的安全运行。避雷线是最为基本和重要的防雷保护措施,具备防雷效果好、适用于输电线路防雷保护的特点,输电线路的电压越高,越能起到良好的防雷效果。避雷线主要对输电线路遭受直击雷有着明显的防护作用,在避雷线架设过程中,应减小避雷线对导线的保护角,以保证防雷效果。根据相关规定,220kV输电线路以及330-500kV超输电线应采用双避雷线,避雷线对边导线的保护角为20。同时,架设避雷线还能够减少输电线在雷电天气条件下的闪络次数,保证线路绝缘子串的稳定性,进一步避免输电线形成感应电压,保证导线运行稳定。

3.2架设避雷针

避雷针是有效的防雷措施,应将不同类型的避雷针架设到输电线的不同部位,以达到最佳的防雷效果。具体架设要求如下:(1)在输电线路的塔顶安装可控放电避雷针,用避雷针吸引直击雷,减少雷电绕击输电线路的情况发生;(2)在地线上安装防绕击避雷短针。雷电绕击根据输电线路档距可划分为不同安全等级的区域,距杆塔10-30m处为雷电绕击危险区域,要重点采取有效的防雷措施。若地线上架设的避雷针侧向断针长度超过临界电晕半径,则会使侧向断针产生上行先导,可增强地线的引雷能力,在发生雷击之前进行提前拦截,有效防范雷电绕击输电线路。

3.3降低杆塔的接地电阻

为了有效确保输电线路和固体结缘不会被雷击的击穿,可以通过减少杆塔的接地电阻来实现。随着杆塔接地电阻的不断降低,塔头电位下降很快,线路中的空气和绝缘就越不容易被击穿,设备的工作可靠性也就会越高。为了有效降低杆塔的电阻,需要根据杆塔设计的实际情况,掌握地网设计中需要达到的接地参数,并根据实际土壤电阻率来确定合适的接地电阻,并制定相关的施工方案和质量标准。只有杆塔的接地装置满足了设计的要求,才能有效提高设备的耐雷水平。在对旧电网的改造过程中,在完成新接地的改良工作后,应该新地网络和旧地网络有效连接起来,这样可以进一步降低接地电阻。当前在实际的接地设计中,经常会采用水平放射型接地、垂直接地、水平加垂直混合地网、水平网络接地等接地形式。在实际的应用过程中,深孔垂直接地的阻抗效果最好,如果施工条件满足,应该尽量采用这种地网形式,这样才能充分提高接地装置的散流效果,让接地保护装置可以充分发挥自身的作用。

3.4采用消弧線圈接地装置

消弧线圈接地系统的单相接地选线方法归纳起来主要有两类,一类是通过改变消弧线圈回路参数来获取接地故障特征的方法;另一类方法不通过改变消弧线圈回路参数,只依据单相接地时的自身接地故障特征。第一类方法应用得最多,它主要是线路单相接地时在消弧线圈旁并接电阻,以改变接地故障线路的零序电流,通过检测各线路零序电流的改变实现接地故障线路的选择。

4结语

综上所述,输电线路是电力系统的重要组成部分之一,其运行稳定与否直接关系到电网的运行可靠性。为保证输电线路的安全、稳定、可靠运行,应当对各种防雷技术措施进行综合运用,以此来增强线路的防雷水平。

参考文献

[1] 荣晨.高压输电线路综合防雷措施的分析与探讨[J].科学技术创新,2018(12):51-52.

猜你喜欢

防雷措施输电线路
分析配电线路运行检修技术及防雷措施
架空输电线路防雷措施的研究
配网设备雷击故障特征与防雷措施分析
输电线路运行事故及其解决对策
高压输电线路防雷接地技术与措施
110kV架空输电线路防雷措施研究
浅浅输电线路安全运行影响因素及保护措施