APP下载

海南岛农牧生产体系磷元素流动时空变化特征

2019-03-29丁尚郭浩浩宋晨阳刁晓平赵洪伟

中国农业科学 2019年5期
关键词:磷素海南岛利用率

丁尚,郭浩浩,宋晨阳,刁晓平,赵洪伟,



海南岛农牧生产体系磷元素流动时空变化特征

丁尚1,郭浩浩1,宋晨阳1,刁晓平2,赵洪伟1,2

(1海南大学热带农林学院,海口 570228;2海南大学南海海洋资源利用国家重点实验室,海口 570228)

【目的】通过对1987—2016年海南岛农牧生产体系磷元素流动时空特征及环境效应进行定量分析,研究其流动过程和规律,探讨农牧生产体系磷素的优化管理途径,为海南岛农牧业可持续发展提供科学依据。【方法】研究基于食物链养分流动模型(NUtrient flows in Food chains, Environment and Resources use,NUFER),通过统计数据、文献检索、实地调研,并结合Origin等软件,定量计算海南岛农牧生产体系的磷素输入、输出、利用率及其环境效应,并通过情景分析探索海南岛农牧生产体系磷素的可持续利用途径。【结果】30年间海南岛农田生产子系统磷素总投入量从21.34 Gg增至81.19 Gg,总输出量由6.20 Gg增至18.20 Gg,化肥作为该系统磷素主要来源,输入量由19.01 Gg增至79.23 Gg,作物产品作为农田磷素主要输出项,30年间由5.25 Gg增至15.48 Gg。动物生产子系统磷素总输入量由11.40 Gg增至15.31 Gg,总输出量由9.63 Gg增至11.90 Gg,其中外源饲料磷素输入量由1987年的10.97 Gg增至2016年的14.77 Gg,动物产品输出量30年间增长了4.95 Gg。秸秆还田量和作物饲用量分别增加了0.37和0.26 kg·hm-2,粪尿还田量则减少了0.80 kg·hm-2。空间分布上,澄迈、定安等地30年来磷素输入和输出量较高,五指山、琼中等地较低。就磷素损失情况来看,1987—2016年,海南岛单位耕地面积土壤磷盈余量由35.00 kg·hm-2增至147.40 kg·hm-2,2016年土壤磷素盈余量较大的是琼海、澄迈、保亭和临高,分别为372.79、279.82、194.14和181.09 kg·hm-2。磷的其他损失途径为土壤侵蚀、径流和淋洗,损失量在1.21—5.85 kg·hm-2。畜禽粪便单位耕地面积承载量维持在3.83—5.77 kg·hm-2。30年来,磷素利用率增长缓慢,其中农田生产子系统磷素利用率由13.01%增至13.86%,动物生产子系统磷素利用率由4.78%增至7.62%,农牧结合体系磷素利用率由10.78%增至13.09%。情景分析结果显示,保证农牧生产体系各子系统间的协调稳定发展以及通过科学的养分管理方式提高资源的循环利用率对促进海南岛农牧业发展意义重大。【结论】受农牧生产体系规模、区域发展以及管理方式等因素影响,海南岛农牧生产体系环境损失情况严重,磷素利用率较低,体系出现了较严重的分离。因此,在海南岛未来的农牧生产中,应优化技术手段和管理措施,如控制磷素的过量输入,减少粪尿的直接排放,提高秸秆和粪尿循环利用率。同时也应促进农田生产子系统与动物生产子系统间的协调关系,走农牧结合的可持续发展道路。

海南岛;农牧生产体系;磷素流动;时空变化特征;NUFER模型

0 引言

【研究意义】磷元素既是动植物生长所需重要营养元素,同时也是农牧业生产中的重要养分资源[1]。比起氮元素,生物圈中磷元素稀少,农业生产土壤磷素获取困难[2]。磷肥的使用保证了作物营养元素的供应,是粮食增产的重要保障[3]。但随着磷肥的不合理施用,大量的磷素累积于土壤中,造成了资源浪费和环境污染等问题[4-5],畜牧业生产中,畜禽粪尿的排放也造成了一定的环境问题[6]。因此,在农牧业发展过程中,需实现对磷素的优化管理。海南自1988年建省办经济特区以来,农牧业已取得长足发展,农业现代化水平不断提高,但同时也出现了农牧发展不均衡,农牧生产体系结合不紧密等现象。因而了解该区域农牧生产体系磷素流动规律,对提高体系磷循环、优化区域养分资源配置和促进海南岛农牧业可持续发展具有重要意义。【前人研究进展】目前,针对养分流动及其平衡管理问题国内外学者已有相关研究。Senthilkumar等[7]利用物质流分析的方法,以法国为研究区域,量化了区域尺度上土壤磷流动和磷预算对农业生产系统的依赖程度;van Dijk等[8]则进一步分析了欧盟国家的磷流动,通过考虑具体国家相关数据和历史背景,研究包括了“作物生产-动物生产-食品加工-非食品生产-消费”等5大部分,为解决“phosphorous challenges”问题提供了科学的解决方案。在畜禽养殖中的氮磷流动研究上,LIANG等[9]通过优化畜禽粪尿在不同区域间的运输,提高了农牧结合的紧密程度;Ma等[10]则基于物质流分析的方法构建了中国食物链养分流动模型(NUtrient flows in Food chains, Environment and Resources use,NUFER),用于分析评价区域氮磷养分在生产和消费环节的利用率和损失状况。随后,Bai等[11]利用NUFER模型,定量分析了全国尺度粮食生产和消费链中磷的使用和损失情况,发现了磷的使用与GDP变化间的非线性关系以及与蔬菜、水果、动物来源之间的线性关系,并采用情景分析探讨了至2030年实现更加可持续的磷利用途径。在区域尺度上,张华芳等[12]以河北省为研究对象,对农牧生产体系磷素流动特征及其环境效应进行了详细分析;张建杰等[13]则使用NUFER模型与ArcGIS相结合,从时空维度分析了2011年山西省11个地/市农牧生产体系磷元素流动特征及环境风险,提出应进一步加强农牧耦合程度、提高有机废弃物的循环利用效率以实现区域间养分的高效利用。这些研究通过引入方法或模型,使得食物链和农牧生产体系的养分流动规律更加清晰,同时也为养分管理提供了科学依据。【本研究切入点】目前,对海南地区农牧生产体系的研究较少,关于体系的磷素输入输出量核算、磷素利用率、体系的结合程度以及环境效应等方面的研究尚不明确。【拟解决的关键问题】基于NUFER模型,通过数据核算与实地调研,分析1987—2016年间海南热带特色农牧生产体系磷素流动、利用率和环境排放特征,明确不同区域间养分流动差异,以期为海南岛农牧业生产乃至热带地区磷素流动管理提供科学参考。

1 材料与方法

1.1 研究区概况

海南岛是我国第二大岛,位于东经108°37′E—111°03′E,北纬18°10′N—20°10′N,面积约3.39万平方公里。海南岛属热带季风气候,全年气候温和,典型土壤为砖红壤,是发展热带特色高效农业的宝地。1987—2016年,本地农牧业取得较快发展。2016年瓜果蔬菜产量为975.14万吨,主要热带作物产量为64.81万吨,农业总产值695.64亿元。截止2016年底,畜牧业总产值达267.10亿元,牲畜年出栏量638万头,家禽年出栏量15 315万只,其中肉蛋奶类总产量达81.41万吨[14]。

1.2 研究方法

NUFER模型适用于国家或区域尺度上养分流动研究,可以模拟“土壤-作物生产-畜禽生产-家庭消费”系统磷素流动过程和利用率[15]。本研究基于NUFER模型,以“土壤-作物-畜禽”为研究对象,定量海南岛农牧生产体系磷素流动时空变化特征(图1),研究单元为海南省18个市/县(三沙市除外)。

图1 农牧生产体系磷素流动模型

1.3 计算方法

农牧生产体系中,农田生产子系统磷素输入项包括化肥投入、粪尿还田、农田灌溉、干湿沉降等;输出项包括本地饲料供应、作物产品输出、土壤淋洗及径流侵蚀作用;动物生产子系统磷素输入项包括饲料投入(本地饲料投入及外源饲料投入),输出项包括动物主副产品输出,以及粪尿损失等。体系磷素循环包括秸秆还田、粪尿还田和本地饲料。

1.3.1 农田生产子系统磷流动项

输入项PIMPfarm=Pfer++Pirr+Pad;

输出项PEXPfarm=++Prel+Pfeedin。

式中,Pfer为化肥磷输入;为粪尿还田;Pirr为灌溉水磷输入;ad为干湿沉降磷输入。为主产品磷输出;为副产品磷输出;Prel为土壤径流、侵蚀、淋溶磷输出。

1.3.2 动物生产子系统磷流动项 输入项PIMPanimal=Pfeedimport+Pfeedin;输出项PEXPanimal=+Pful。式中,Pfeedimport为外源饲料磷输入;Pfeedin为本地饲料磷输入。为动物主副产品磷输出;Pful为粪尿磷输出。

1.3.3 农牧生产体系磷素评价指标 农田生产子系统磷利用率(PUEc)=作物主产品磷素量/农田子系统磷素总投入×100%;动物生产子系统磷利用率(PUEa)=动物主产品磷素量/动物子系统磷素总投入×100%;农牧结合系统磷素综合利用率(PUEc+a)=(作物主产品磷素量+动物主产品磷素量-作物主产品饲用量)/农牧系统磷素总投入×100%;土壤磷素盈余量=农田输入磷素量-农田输出磷素量;体系间磷循环量=秸秆还田磷素+本地饲料磷素+粪尿还田磷素。

1.4 数据来源

本文数据来源包括3个方面:本地数据、统计数据以及文献数据。

本地数据:本地数据包括热带地区单位面积干湿沉降磷量[16],基于MITERRA-EUROPE模型[17]的本地径流、侵蚀、淋溶因子,海南省畜牧技术推广总站提供的海南岛畜牧养殖基本信息,调研获得的作物种植、畜禽粪尿回收利用情况。

统计数据:本研究所需数据包括1987—2016年海南省各市/县耕地数量、主要农作物播种面积及产量、畜牧业生产情况等主要来源于海南省统计年鉴[14]。

文献数据:农田生产子系统中,主产品含磷比例来自《中国食物成分表》[18]和张少若等研究结果[19-22],草谷比、秸秆养分含量等参考李书田等[23]研究,南方地区单位灌溉面积磷含量参考鲁如坤等[24]研究结果,作物产品饲用比例、粪尿还田比例在结合调研和马林[25]研究成果上获得。动物生产子系统中,畜禽粪尿排泄量和含磷比例等来自王方浩等研究结果[6,26-27],动物活体各部分磷含量参考张建杰等[13]研究数据。

1.5 情景分析设计

有研究表明[28-29],在2005年的基础上,中国2030年植物性和动物性食品的总需求将分别增加25%和80%,其中玉米和大豆的产量将增加40%,其他作物产量将增加10%。在生态文明建设方面,预计到2030年,畜禽粪便资源化利用率达到90%,畜禽规模保持稳定增长[30]。《海南省现代农业“十三五”发展规划》(2016—2020)指出[31],家畜数量将缓慢增加,家禽数量将进一步提高,粪尿还田率达到75%,5年内化肥使用减少5%,结合当前海南省化肥使用过量的情况,2030年化肥施用量在2016年的基础上可减少20%—30%,秸秆还田利用率可达到85%以上。据此设计3种情景进行分析。

情景1(S1):到2030年,化肥施用量较2016年减少25%,根据近年畜禽养殖数量变化,在2016年的基础上,家畜按15%增长计算,家禽按50%增长计算,植物性食品按10%增长进行计算。

情景2(S2):到2030年,化肥施用量较2016年减少25%,依据Chen等[28]的预测,在2005年的基础上,植物性食品增加25%,动物性食品增加80%。结合海南发展实际,家畜规模按35%增长计算,家禽规模按85%增长计算,畜禽粪便资源化利用率达到90%(其中粪尿还田部分为75%)。

情景3(S3):根据《海南省现代农业“十三五”发展规划》中各项指标进行农牧业生产,2030年农牧规模与2020年保持一致。在此基础上秸秆还田、作物饲用和粪尿还田比例上升10%。

2 结果

2.1 海南岛农田、动物生产子系统30年间磷素流动变化

1987—2016年,海南岛农田生产子系统磷素输入、输出量增长较快(图2-A、2-B),总输入量由21.34 Gg增至81.19 Gg,2016年较1987年增长了2.80倍。其中化肥一直是农田生产子系统磷素输入的重要来源,1987年,其磷素输入量为19.01 Gg,占农田总投入量的89.08%,到2016年,化肥磷素投入量为79.23 Gg,占农田总投入的97.59%。有机肥料投入30年间维持在2.70—4.28 Gg,在农田生产子系统中始终占据较小比例。从磷素输出量来看,农田生产子系统输出总量由1987年的6.20 Gg增至2016年的18.20 Gg,作物产品作为农田磷素主要输出项,30年间由5.25 Gg增至15.48 Gg,较30年前增长了1.95倍。径流、侵蚀和淋溶损失量较小,总损失量由0.52 Gg增至2.18 Gg,维持在农田生产子系统磷素总输出的8.39%—11.98%。对于动物生产子系统(图2-C、2-D),磷素输入主要分为两个阶段,第一阶段为快速增长阶段(1987—2005),磷素总投入由11.40 Gg增至19.92 Gg;第二阶段为减产后缓慢增加阶段(2006—2016),磷素总输入量由13.17 Gg增至15.31 Gg。其中外源饲料为动物生产子系统磷素输入主要来源,30年间由10.97 Gg增至14.77 Gg,维持在系统磷素总投入的95.35%以上。从输出项来看,动物生产子系统输出总量由1987年的9.63 Gg增至2016年的11.90 Gg。其中畜禽粪尿量变化缓慢,30年间维持在3.34—5.81 Gg,而动物产品磷素输出量由1987年的5.65 Gg增至2005年的10.60 Gg,近年保持在8.00 Gg左右。

2.2 海南岛农田、动物生产子系统磷素流动空间变化

1987—2016年,海南岛农田生产子系统不同区域间差异较大(图3-A),系统磷总输入量增长最快的是澄迈,30年间增加了7.65 Gg,其次为琼海、乐东,分别增加了7.41、5.58 Gg,五指山增长最慢,仅增长了0.15 Gg。从输入项构成看,澄迈、琼海等地30年间化肥磷素输入量增长较快,分别增加了8.22、8.05 Gg,五指山、保亭等地增长缓慢,增值分别为0.36、1.28 Gg。沉降、灌溉和有机肥料的磷素输入30年间无明显变化。农田生产子系统磷素总输出量增长最快的为澄迈,增长1.49 Gg,保亭较1987年降低0.32 Gg。从输出项构成看,各地作物产品磷素输出量增长均较为缓慢,且大多低于1.00 Gg,其中澄迈增长最快,为1.26 Gg,保亭较1987年略有降低,减少0.30 Gg。到2016年,各地径流、侵蚀和淋溶损失均在0.30 Gg以下,损失量较小。对于动物生产子系统(图3-B),澄迈30年间磷素总输入增长最多,为0.78 Gg,东方较1987年减少0.22 Gg。从输入项构成看,1987—2016年,各市/县外源饲料磷素输入量变化在0.79 Gg以下,2016年外源需求量较高的有儋州(1.84 Gg)、澄迈(1.52 Gg)、海口(1.45 Gg)。本地饲料磷素输入量较1987年略有降低。动物生产子系统磷素总输出量30年间变化不大,从输出项构成看,2016年儋州动物产品磷素输出量最多,五指山最少。动物粪尿磷素产生量较高的为儋州、乐东和定安,较低的为五指山、白沙和琼中。

图2 海南岛农田(A、B)、动物(C、D)生产子系统30年间磷素流动变化

图3 海南岛农田(A)、动物(B)生产子系统磷素流动空间变化

2.3 海南岛农牧生产体系磷素损失时空分布特征

由于土壤对磷素吸附能力较强[32],导致磷在土壤中的移动性较差。农田生产子系统中,磷素主要通过积累在土壤中难以循环利用而损失。1987—2016年单位耕地面积土壤磷素盈余量快速增长,30年间由35.00 kg·hm-2增至147.40 kg·hm-2(图4)。2016年土壤磷素盈余量较大的为琼海、澄迈、保亭和临高,分别为372.79、279.82、194.14和181.09 kg·hm-2(图5)。磷的其他损失途径为土壤侵蚀、径流和淋洗,30年间损失量在1.21—5.85 kg·hm-2。在动物生产子系统中,磷素主要通过粪尿的直接排放而损失,畜禽粪便单位耕地面积承载量由1987年的3.83 kg·hm-2增至2005年的5.77 kg·hm-2,此后呈减少趋势,到2016年仅为3.77 kg·hm-2(图4)。空间分布上,2016年各市/县粪尿损失量较大的为五指山、保亭、陵水等地(图5)。

图4 1987—2016年海南岛农牧生产体系磷素损失变化特征

图5 2016年海南岛农牧生产体系磷素损失空间变化特征

2.4 农牧生产体系磷素循环及利用率

农牧生产体系间磷素循环大致分为3个阶段(图6-A),第一阶段为1987—1998年,单位耕地面积磷素循环量从7.83 kg·hm-2增至11.80 kg·hm-2,第二阶段为1999—2004年,保持在11.00 kg·hm-2左右,第三阶段为2005—2016年,磷素循环量由10.03 kg·hm-2减至7.72 kg·hm-2。秸秆还田和本地饲料量呈现较小增幅,粪尿还田磷量则由1987年的5.36 kg·hm-2降至2016年的4.56 kg·hm-2。30年来,农田生产子系统磷素利用率由13.01%增至13.86%,动物生产子系统磷素利用率由4.78%增至7.62%,农牧生产体系磷素利用率缓慢增长,由1987年的10.78%增至2016年的13.09%(图6-B)。空间分布上(图7-A、7-B),2016年五指山、陵水、屯昌等地磷素循环量相对较高,分别为19.48、12.93和12.46 kg·hm-2。农牧生产体系磷素利用率昌江最高,为23.41%,临高最低,仅为7.37%。

图6 海南岛农牧生产体系磷素循环量(A)和利用率(B)变化

2.5 基于情景设计下的海南岛2030年磷素流动

2016年海南岛农牧生产体系磷素主要输入量(磷肥和外源饲料)为94.00 Gg,单位耕地面积磷素损失量(径流、淋溶、侵蚀损失以及土壤磷盈余和粪尿损失)为156.27 kg·hm-2,动植物产品量为23.82 Gg,磷素利用率为13.09%。如图8所示,在减少化肥施用和维持农牧业稳定增长的情况下(S1),2030年海南岛农牧生产体系磷素主要输入量将达77.14 Gg,较2016年减少16.86 Gg,单位耕地面积磷素损失量为107.43 kg·hm-2,动植物产品磷素输出量将达到27.20 Gg,磷素利用率为17.68%。当减少化肥施用,并较快发展畜牧业和提高畜禽粪尿利用率时(S2),磷素主要输入量为78.76 Gg,单位耕地面积磷素损失量为123.46 kg·hm-2,动植物产品磷素输出量将达到21.54 Gg,磷素利用率为11.36%。当减缓发展速度,着力于提高各项效率时(S3),到2030年,农牧生产体系磷素主要输入量为85.40 Gg,单位耕地面积磷素损失量为126.78 kg·hm-2,动植物产品磷素输出量将达到27.07 Gg,磷素利用率为15.29%。

3 讨论

3.1 海南岛农牧生产体系磷素流动时间变化特征

1987—2016年,海南岛农田生产子系统磷素输入量持续增长,化肥磷素输入量在总输入中的比例始终在89.08%以上,高于我国其他地区[13,15]。究其原因,由于热带区域自然条件,农田复种指数高,可一年四季进行农业耕作,磷肥不断投入以供作物养分需求。同时,海南岛土壤平均pH约为5[33],对磷元素吸附能力较强[34],致使磷素利用率较低,磷肥投入量不断增加。在高磷肥投入条件下,海南岛土壤磷素盈余量快速增长,2016年海南岛单位耕地面积土壤磷素盈余量为147.40 kg·hm-2,这与陈敏鹏等[35]报道的基于全国尺度的土壤表观氮磷平衡清单相符(海南大部分区域位于100—300 kg·hm-2),但远高于欧盟1990—1991年农场水平磷素盈余量标准19.5 kg·hm-2[36]。对于动物生产子系统,畜禽规模在1987—2005年保持快速增长,由于2005年9月台风“达维”的影响,省内养殖业受损严重,加上10月我国部分地区相继发生高致病性禽流感疫情,本地控制畜禽养殖规模,从2006年开始,畜牧业规模大为缩减,近年来缓慢上升[37]。从输入项看,动物生产子系统外源饲料依赖比例较大,主要由于本地多发展热带经济作物,粮食作物种植比例较低,致使本地饲料供给始终维持在较低水平。就畜禽粪尿输出而言,海南岛畜禽粪尿磷素损失比例30年间一直在40%以上,这是由于海南岛畜禽养殖规模化程度较低且粪尿处理技术较为落后[31]。2016年海南岛畜禽粪尿磷素的平均单位耕地面积承载量为3.77 kg·hm-2,低于Oenema等[38]提出的土壤粪肥施磷量的限值35 kg·hm-2,主要因为本地畜禽养殖规模相对较小,粪尿产生总量较低,因此,海南岛粪肥施磷量还具有较大的提升空间,同时意味着化肥磷素施用量具有较大的减量空间。

图7 2016年海南岛农牧生产体系磷素循环量(A)和利用率(B)空间变化特征

当前,海南岛农牧生产体系分离较严重,主要由于畜禽养殖集约化程度的提高和畜禽粪尿资源化利用效率降低,同时体系间磷素利用较低也是农牧生产体系分离的重要原因。30年来,农牧生产体系磷素循环大致可以分为3个阶段。1998年以前,海南岛种植业、养殖业发展较快,农牧生产体系间磷素循环量稳步上升,1998—2004年间,畜牧业发展缓慢增长,种植业规模略有下降,体系磷素循环量保持稳定。2004年以后,受农牧生产体系集约化程度、畜牧业规模、种植业发展等因素制约,农牧生产体系分离加剧。2016年海南岛农田生产、动物生产和农牧生产体系磷素利用率分别为13.86%、7.62%和13.09%,均低于2010年全国平均水平(分别为37%、17%和30.3%)[11],从农田生产子系统来看,可能与海南岛土壤pH较低导致作物对磷素吸收效率较低和较大的磷肥施用量有关。从动物生产子系统来看,主要限制因素是饲料生产体系磷素投入量高和养殖体系粪尿还田利用率低,海南岛畜禽养殖规模化程度不高也是导致磷素利用率低的重要原因,柏兆海[39]研究表明,专业养殖户和大型规模化养殖体系将表现出更高的养分利用效率。就农牧生产体系而言,受农田和动物生产子系统的规模和磷素利用率的影响,农牧生产体系磷素利用率也保持较低水平。本研究结果显示,与我国其他地区农牧生产体系磷素利用率与农田生产子系统差异较大不同[12-13,15],海南岛两者磷素利用率相近,这是因为农牧生产体系主要输出项目来自农田生产子系统。由此反映出海南岛农牧生产体系各子系统发展不合理现状,2016年作物主产品磷素输出量为11.26 Gg,而动物主产品磷素输出量仅为1.17 Gg。从规模上来看,以北京市为例[15],海南岛耕地面积4 273 km2,约为北京的2倍,但在畜禽养殖上,2016年海南岛畜禽数量约为900万头当量猪,略高于北京市的数量。农牧业的不均衡发展导致诸如土壤粪肥施磷量较低,化肥施用量较高,土壤磷素盈余量过大等问题。因而,促进海南岛农牧生产各个子系统间协调稳定发展对今后海南岛农牧业生产具有重要意义。

图8 不同情景下磷素主要输入量(A)、产品输出量(B)、磷素损失量(C)和磷素利用率(D)比较

3.2 海南岛农牧生产体系磷素流动空间变化特征

海南岛农田生产子系统磷素输入和输出量空间分布特征具体表现为南北高、中部低,这与海南岛区域间地理特征、农业发展水平以及耕地面积等因素的差异有关。海南岛地势四周相对低平,中间高耸,呈穹隆山地形,因而在南北地区农业生产条件较为优越,中部地区多发展槟榔、橡胶等种植业。同时,如海口、文昌、临高、儋州等地农业耕地面积较大,农田生产子系统磷素流动量也较高。而三亚、陵水等地为南繁育种科研基地,农业现代化水平相对较高,在水稻、瓜菜等种苗培育上具有较大优势。本研究发现,三亚耕地面积约为海口的1/3,2016年磷肥输入量为海口的1/2,但作物产品磷素输出量与海口相近,同时,2016年三亚农田生产子系统磷素利用率为23.64%,高于海口的12.31%,可见较高的农业现代化程度有利于提高农牧生产体系磷素流动效率。

为优化资源配置,海南岛划分为“琼北、琼南、琼中、琼东和琼西”5个发展区域[31],近年琼北地区主要发展生猪,鸡、鹅等规模化养殖,琼南和琼中地区多发展种植业,琼东地区近年来调减猪牛羊的养殖规模,导致琼海、万宁动物生产子系统磷素流动量降低。琼西地区正加快建设畜禽养殖规模化基地,因而儋州和东方等地动物生产子系统磷素流动量逐步提高。受区域划分影响,海南岛动物生产子系统磷素流动空间分布特征为西部和北部较高,东部和南部较低。

3.3 3种情景下农牧生产体系磷素流动分析

通过减少磷肥的施用量,土壤磷盈余量将得到较大的降低,但在畜牧业快速发展过程中,畜禽粪尿的无序排放也会导致单位耕地面积磷素损失量的较快增加。S1情景下的农牧生产体系磷素利用率最高,2030年较2016年将增长4.59%,其原因是除了控制磷肥施用量外,动植物产品磷素输出量在3个情景中也最多,说明保证农田生产和动物生产子系统协调稳定发展将会给农牧生产体系带来较大收益。由于近年海南岛作物生产增长速度高于Chen等[28]预测结果,在S2情景下,依照Chen等预测的作物增长速度,海南农田生产子系统至2030年将表现出缓慢增长。即使期间动物生产子系统得到较快发展,结果农牧生产体系产品输出量和磷素利用率在3种情境下仍为最低,其主要原因是农田生产子系统体系较为庞大,作物产品输出量比重较大,一旦减缓农田生产子系统发展,对农牧生产体系产品总输出量影响较大,同时,较低的主产品输出量水平会导致磷素利用率的降低。在S3情景下,2030年农牧生产体系主要磷素输入量较2016年仅减少8.60 Gg,主要由于《海南省现代农业“十三五”发展规划》对磷肥的输入要求控制在2016年的85%左右,鉴于海南岛施肥过量现状,磷肥输入量仍有下降的潜力。同时,通过提高秸秆和粪尿还田以及作物产品饲用比例,可较好地提高农牧耦合程度。

由情景分析看出,S1情景下农牧生产体系管理方式是最优的,由S3可以看出,通过科学的养分管理方式提高资源的循环利用率对促进海南岛农牧业绿色发展意义重大。而在S2情景下,仅仅考虑动物生产子系统单个系统的发展,对农牧生产体系整体养分流动效率的提高是不利的。

3.4 海南岛农牧生产体系磷素流动管理的相关建议

针对海南岛当前农牧生产过程中存在的问题,提出以下优化途径:(1)优化农牧业布局。农牧生产体系由分散式家庭种养模式到可持续集约化管理。在规模化管理过程中,采用合理的种植技术和饲养管理方式[40-41],从优化选种到产品管理,逐步提高作物和动物产品产量。并结合区域发展,建立种养结合生产基地;(2)合理施用肥料。对于农牧业养分管理,首要是减少化肥的施用[42],当前海南岛磷肥施用过量问题突出,为保证磷肥合理施用,应结合海南实际情况,合理划分施肥类型区,推广测土施肥技术,建设测土配方施肥体系[31]。并推广优质商品有机肥料、高效缓释肥料、生物肥料、水溶性肥料等新型肥料;(3)改善畜禽粪尿管理。改善畜禽粪尿管理符合农牧结合的核心要求[43],首先应按照“废弃物+清洁能源+有机肥”三位一体技术路线,改造完善规模畜禽场基础条件。实行畜禽养殖全链条管理,从圈舍饲养到粪尿储存运输建立粪尿收集装置和网管运输装置,同时推广多原料全混式发酵、全自动高温好氧发酵等技术。通过畜禽粪尿的科学管理,以达到减少粪便损失和增加畜禽粪尿还田施用率的目的[44];(4)应加强管理并出台相关政策。管理上需从源头减少磷素的投入,控制化肥和外源饲料的使用量。政策上则要借鉴国内外相关成果,政府对化肥的使用、粪尿的运输管理等应进行具体指导[45]。同时,应加大针对农业面源污染防治的财政投入,以推动相关技术和设施的落实。

4 结论

1987—2016年海南岛农牧生产体系取得较快发展,磷素总输入与总输出量不断上升,受区域农业发展水平、地理环境和农业发展规划等因素影响,不同区域间养分流动差异较大。当前农田生产子系统主要依赖化肥磷素输入,随着磷肥输入量的快速增长,土壤磷素盈余量也不断上升。动物生产子系统主要依赖外源饲料磷素输入,30年间外源输入量从10.97 Gg增至14.77 Gg,维持在饲料总投入的95.45%—96.80%。与全国平均水平相比,海南岛农牧生产体系环境损失情况较为严重,磷素利用率较低,农牧生产体系出现了较严重的分离。

传统的粗放式农牧业生产方式已经无法满足海南当下发展的需要,在未来应进一步优化农牧业布局,推广种养结合生产模式,加强对畜禽粪尿的管理。通过合理的技术手段和管理方式,在保证农田生产子系统与动物生产子系统协同增长的前提下,实现海南岛农牧生产体系的绿色协调发展。

[1] 马文奇, 张福锁. 食物链养分管理——中国可持续发展面临的挑战. 科技导报, 2008, 26(1): 68-73.

MA W Q, ZHANG F S. Nutrient management in human food chain: A challenge for sustainable development of China., 2008, 26(1): 68-73. (in Chinese)

[2] SMIL V. Phosphorus in the environment: Natural flows and human interferences., 2000, 25: 53-88.

[3] RAMAEKERS L, REMANS R, RAO I M, BLAIR W M, VANDERLEYDEN J. Strategies for improving phosphorus acquisition efficiency of crop plants., 2010, 117(2/3): 169-176.

[4] CHEN M, CHEN J, SUN F. Agricultural phosphorus flow and its environmental impacts in China., 2008, 405(1/3): 140-152.

[5] CONLEY D J, PAERL H W, HOWARTH R W, BOESCH D F, SEITZINGER S P, HAVENS K E, LANCELOT C, LIKENS G E. Controlling eutrophication: Nitrogen and phosphorus., 2009, 323(5917): 1014-1015.

[6] 王方浩, 马文奇, 窦争霞, 马林, 刘小利, 许俊香, 张福锁. 中国畜禽粪便产生量估算及环境效应. 中国环境科学, 2006, 26(5): 614-617.

WANG F H, MA W Q, DOU Z X, MA L, LIU X L, XU J X, ZHANG F S. The estimation of the production amount of animal manure and its environmental effect in China., 2006, 26(5): 614-617. (in Chinese)

[7] SENTHILKUMAR K, NESME T, MOLIER A, PELLERIN S. Regional-scale phosphorus flows and budgets within France: The importance of agricultural production systems., 2012, 92(2): 145-159.

[8] VAN DIJK K C, LESSCHEN J P, OENEMA O. Phosphorus flows and balances of the European Union Member States., 2016, 542(Pt B): 1078-1093.

[9] LIANG L, NAGUMO T, HATANO R. Nitrogen flow in the rural ecosystem of Mikasa City in Hokkaido, Japan., 2006, 16(2): 264-272.

[10] MA L, MA W Q, VELTHOF G L, WANG F H, QIN W, ZHANG F S, OENEMA O. Modeling nutrient flows in the food chain of China., 2010, 39(4): 1279-1289.

[11] BAI Z H, MA L, MA W Q, QIN W, VELTHOF G L, OENEMA O, ZHANG F S. Changes in phosphorus use and losses in the food chain of China during 1950-2010 and forecasts for 2030., 2016, 104(3): 361-372.

[12] 张华芳, 高肖贤, 侯勇, 任月同, 马文奇. 河北省农牧体系磷素流动及其环境效应. 河北农业大学学报, 2013, 36(2): 17-22.

ZHANG H F, GAO X X, HOU Y, REN Y T, MA W Q. Phosphorus flow in agro-livestock system and its environmental effect of Hebei Province., 2013, 36(2): 17-22. (in Chinese)

[13] 张建杰, 郭彩霞, 张一弓, 张强. 山西省农牧生产体系磷流动空间变异特征. 中国生态农业学报, 2016, 24(5): 553-562.

ZHANG J J, GUO C X, ZHANG Y G, ZHANG Q. Spatial characteristics of phosphorus flow in crop-livestock production systems in Shanxi, China., 2016, 24(5): 553-562. (in Chinese)

[14] 海南省统计局. 海南统计年鉴(1988-2017). 北京: 中国统计出版社.

Hainan Statistical Bureau.(). Beijing: China Statistics Press. (in Chinese)

[15] 魏莎, 柏兆海, 吴迪梅, 江荣风, 夏立江, 马林. 北京“土壤-饲料-奶牛”系统氮磷流动及环境损失时空特征. 中国生态农业学报, 2017, 25(3): 316-327.

WEI S, BAI Z H, WU D M, JIANG R F, XIA L J, MA L. Temporal and spatial characteristics of nitrogen and phosphorus cycling and environmental losses in the “soil-feed-dairy” production system in Beijing., 2017, 25(3): 316-327. (in Chinese)

[16] 漆智平. 热带土壤学. 北京: 中国农业大学出版社, 2007: 46-48.

QI Z P.. Beijing: China Agricultural University Press, 2007: 46-48. (in Chinese)

[17] VELTHOF G L, OUDENDAG D, WITZKE H P, ASMAN W A, KLIMONT Z, OENEMA O. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE., 2009, 38(2): 402-417.

[18] 杨月欣, 王光亚, 潘兴昌. 中国食物成分表. 2版. 北京: 北京大学医学出版社, 2009.

YANG Y X, WANG G Y, PAN X C... Beijing: Peking University Medical Press, 2009. (in Chinese)

[19] 张少若, 梁继兴, 余让水, 陆行正. 我国热带作物营养诊断研究工作的进展. 热带作物研究, 1996(2): 60-70.

ZHANG S R, LIANG J X, YU R S, LU X Z. Advances in nutritional diagnosis of tropical crops in China., 1996(2): 60-70. (in Chinese)

[20] 范兴安. 芝麻不同生育时期植株营养吸收与土壤养分的动态变化. 河南农业科学, 1998(12): 11-13.

FAN X A. Dynamic changes of nutrient uptake and soil nutrients in sesame at different growth stages., 1998(12): 11-13. (in Chinese)

[21] 陆若辉, 李有香, 徐群英, 孔樟良. 6种经济作物生物体养分含量分析. 浙江农业科学, 2017, 58(4): 621-622, 625.

LU R H, LI Y X, XU Q Y, KONG Z L. Analysis of nutrient contents of 6 kinds of cash crops., 2017, 58(4): 621-622, 625. (in Chinese)

[22] 陆行正, 何向东. 橡胶树的营养诊断指导施肥. 热带作物学报, 1982, 3(1): 27-39.

LU X Z, HE X D. Fertilizer application based on nutrient diagnosis of rubber tree., 1982, 3(1): 27-39. (in Chinese)

[23] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20): 4207-4229.

LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China., 2011, 44(20): 4207-4229. (in Chinese)

[24] 鲁如坤, 刘鸿翔, 闻大中, 钦绳武, 郑剑英, 王周琼. 我国典型地区农业生态系统养分循环和平衡研究Ⅱ. 农田养分收入参数. 土壤通报, 1996, 27(4): 151-154.

LU R K, LIU H X, WEN D Z, QIN S W, ZHENG J Y, WANG Z Q. Study on nutrient cycling and balance of agro-ecosystem in typical areas of China Ⅱ. Farmland nutrient income parameters., 1996, 27(4): 151-154. (in Chinese)

[25] 马林. 中国食物链氮素流动规律及调控策略[D]. 保定: 河北农业大学, 2009.

MA L. Mechanism and regulatory strategies of nitrogen flow in food chain of China[D]. Baoding: Hebei Agricultural University, 2009. (in Chinese)

[26] 刘永丰. 海南省畜禽养殖环境预警研究[D]. 长沙: 湖南农业大学, 2013.

LIU Y F. The research of environmental alarm of livestock and poultry breeding in Hainan Province[D]. Changsha: Hunan Agricultural University, 2013. (in Chinese)

[27] MA L, VELTHOF G L, WANG F H, QIN W, ZHANG W F, LIU Z, ZHANG Y, WEI J, LESSCHEN J P, MA W Q, OENEMA O, ZHANG F S. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005., 2012, 434: 51-61.

[28] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs., 2014, 514(7523): 486-489.

[29] MA L, WANG F H, ZHANG W J, MA W Q, VELTHOF G, QIN W, OENEMA O, ZHANG F S. Environmental assessment of management options for nutrient flows in the food chain in China.,2013,47(13): 7260-7268.

[30] 中华人民共和国农业农村部. 全国农业可持续发展规划(2015-2030年). 农计发[2015]145号.

Ministry of Agriculture and Rural Affairs of the People’s Republic of China(). Njf 145 [2015]. (in Chinese)

[31] 海南省农业厅. 海南省现代农业“十三五”发展规划. 2016.

Hainan Provincial Department of Agriculture.. 2016. (in Chinese)

[32] 王昶, 吕晓翠, 贾青竹, 徐永为. 土壤对磷的吸附效果研究. 天津科技大学学报, 2010, 25(3): 34-38.

WANG C, Lü X C, JIA Q Z, XU Y W. Study on phosphorus adsorption of several soils., 2010, 25(3): 34-38. (in Chinese)

[33] 侯立恒, 王熊飞, 王汀忠, 龙笛笛. 海南省耕地有机质和pH值变化分析. 农业科技通讯, 2018(1): 120-123.

HOU L H, WANG X F, WANG T Z, LONG D D. Change analysis of organic matter and pH value of cultivated land in Hainan Province., 2018(1): 120-123. (in Chinese)

[34] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review., 2001, 237(2): 173-195. (in Chinese)

[35] 陈敏鹏, 陈吉宁. 中国区域土壤表观氮磷平衡清单及政策建议. 环境科学, 2007, 28(6): 1305-1310.

CHEN M P, CHEN J N. Inventory of regional surface nutrient balance and policy recommendations in China., 2007, 28(6): 1305-1310. (in Chinese)

[36] OSEI E, LAKSHMINARAYAN P G, NEIBERGS J S, BOUZAHER A, JOHNSON S R. Livestock and the environment: a national pilot project. the policy space, economic model, and environmental model linkages., 1995, 30: 141-151.

[37] 中国畜牧兽医年鉴编辑委员会. 中国畜牧兽医年鉴. 北京: 中国农业出版社, 2005-2006.

Editorial Committee of China Animal Husbandry and Veterinary Yearbook..Beijing: China Agriculture Press, 2005-2006. (in Chinese)

[38] OENEMA O, VAN LIERE L, PLETTE S, PRINS T, VAN Zeijts H, Schoumans O. Environmental effects of manure policy options in the Netherlands., 2004, 49(3): 101-108.

[39] 柏兆海. 我国主要畜禽养殖体系资源需求、氮磷利用和损失研究[D]. 北京: 中国农业大学, 2015.

BAI Z H. The resources requirement, nitrogen and phosphorus use and losses in the main livestock production system in China[D]. Beijing: China Agricultural University, 2015. (in Chinese)

[40] LENIS N P, JONGBLOED A W. New technologies in low pollution swine diets: Diet manipulation and use of synthetic amino acids, phytase and phase feeding for reduction of nitrogen and phosphorus excretion and ammonia emissions., 1999, 12(2): 305-327.

[41] 张福锁, 马文奇, 陈新平. 养分资源综合管理理论与技术概论. 北京: 中国农业大学出版社, 2006.

ZHANG F S, MA W Q, CHEN X P.. Beijing: China Agricultural University Press, 2006. (in Chinese)

[42] ZHU Z L, CHEN D L. Nitrogen fertilizer use in China – Contributions to food production, impacts on the environment and best management strategies., 2002, 63(2/3): 117-127.

[43] 马林, 马文奇, 张福锁. 农牧系统养分管理. 中国农业科学, 2018, 51(3): 401-405.

MA L, MA W Q, ZHANG F S. Nutrient management in soil-crop-animal production system., 2018, 51(3): 401-405. (in Chinese)

[44] OENEMA O, OUDENDAG D, VELTHOF G L. Nutrient losses from manure management in the European Union., 2007, 112(3): 261-272.

[45] OENEMA O. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture., 2004, 82(Suppl.): E196-206.

temporal and spatial variation characteristics of phosphorus element flows in the crop-livestock production system of Hainan island

DING Shang1, GUO Haohao1, SONG Chenyang1, DIAO Xiaoping2, ZHAO Hongwei1, 2

(1Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228;2State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228)

【Objective】 The objective of this study is to analyze the temporal and spatial characteristics of phosphorus flows and its environmental effects in the crop-livestock production system of Hainan island from 1987 to 2016, research its flow process and discipline, discuss the optimized management approach of phosphorus in the crop-livestock production system, and to provide a scientific basis for the development of farming and animal husbandry in Hainan island.【Method】The study was based on the NUFER model (NUtrient flows in Food chains, Environment and the Resources use). data statistics, literature search and field investigation as well as the software such as Origin were used to calculate phosphorus input, output, efficiency and environmental effects of the crop-livestock production system in Hainan island. Potentially sustainable phosphorus utilization approaches were explored through scenario analysis of the crop-livestock production system.【Result】In the past 30 years, the total input of phosphorus in the farming subsystem of Hainan island increased from 21.34 to 81.19 Gg, and the total output increased from 6.20 to 18.20 Gg. As the main source of phosphorus in the system, the input of chemical fertilizer increased from 19.01 to 79.23 Gg. crop products as the main export of farmland phosphorus, and from 5.25 Gg to 15.48 Gg in 30 years. The total input of phosphorus in the animal production subsystem increased from 11.40 to 15.31 Gg, and the total output increased from 9.63 to 11.90 Gg, in which the input of imported feed phosphorus increased from 10.97 Gg in 1987 to 14.77 Gg in 2016, and the output of animal products increased by 4.95 Gg in 30 years. The amount of crop straw to the field and the local feed increased by 0.37 and 0.26 kg·hm-2, respectively, while the amount of manure to the field decreased by 0.80 kg·hm-2. In terms of spatial distribution, the input and output amounts of phosphorus in Chengmai and Dingan were relatively higher in the past 30 years, while those in Wuzhishan and Qiongzhong were relatively lower.In terms of phosphorus loss, the amount of soil phosphorus surplus per unit cultivated land of Hainan island increased from 35.00 to 147.40 kg·hm-2in 1987-2016. In 2016, the amount of soil phosphorus surplus of Qionghai, Chengmai, Baoting and Lin’gao was relatively higher, which was 372.79, 279.82, 194.14 and 181.09 kg·hm-2, respectively. The other loss ways of phosphorus were soil erosion, runoff and leaching, the loss amounts were from 1.21 to 5.85 kg·hm-2. The carrying capacity of livestock and poultry manure of cultivated area was maintained at 3.83-5.77 kg·hm-2. In the past 30 years, phosphorus use efficiency in the farming production subsystem increased from 13.01% to 13.86%,phosphorus use efficiency in the animal production subsystem increased from 4.78% to 7.62%, and phosphorus use efficiency in the crop-livestock production system increased from 10.78% to 13.09%. The result of scenario analysis showed that it was of great significance to promote the coordinated development between the farming production subsystem and the animal production subsystem of Hainan island and to improve the recycling utilization rate of resources through scientific nutrient management.【Conclusion】Affected by the scale of the crop-livestock production system, regional development and management mode, the environmental loss of the crop-livestock production system was serious, the phosphorus use efficiency was relatively low, and the system was seriously separated in Hainan island. Therefore, in the future crop-livestock production in Hainan island, technical means and management measures should be optimized, such as controlling excessive input of phosphorus, reducing the direct discharge of manure, and improving the phosphorus cycle efficiency of straw and manure. At the same time, the coordination relationship between the farming production subsystem and the animal production subsystem should be promoted, and the sustainable development road of combination of farming and animal husbandry should be carried out.

Hainan Island; crop-livestock production system; phosphorus flows; temporal and spatial variation characteristics; NUFER model

10.3864/j.issn.0578-1752.2019.05.008

2018-08-25;

2018-11-09

海南省重大科技项目(ZDKJ2017002)、海南省自然科学基金(417053,317302)

丁尚,E-mail:Dshainu@163.com。通信作者赵洪伟,E-mail:hwzhao@hainu.edu.cn

(责任编辑 岳梅)

猜你喜欢

磷素海南岛利用率
一季度我国煤炭开采和洗选业产能利用率为74.9%
土壤磷素活化剂在夏玉米上的田间试验效应分析报告
氮肥用量对不同氮高效玉米品种产量和磷素吸收利用的影响
施氮对胡麻磷素营养状况的影响
磷素添加对土壤水分一维垂直入渗特性的影响
2020年煤炭采选业产能利用率为69.8% 同比下降0.8%
中国游客的海岛旅游需求时空特征分析——以济州岛和海南岛为例
基于气候季节划分的海南岛气候康养特征探析
海南人为什么说福建话
2020年三季度煤炭开采和洗选业产能利用率为71.2%