APP下载

激光技术制备刀具表面织构的研究进展

2018-10-14陈娟陶亮

河南科技 2018年32期

陈娟 陶亮

摘 要:表面织构能有效改善接触表面的摩擦性能。激光加工技术因具有速度快、精度高等优势,在刀具表面织构制备中广泛应用。基于此,本文主要介绍激光加工技术制备刀具表面织构的研究现状,并指出当前存在问题,以期为相关学者的研究提供参考。

关键词:织构刀具;激光加工;切削性能

中图分类号:TG356.16文献标识码:A文章编号:1003-5168(2018)32-0032-03

Research Progress of Tool Surface Texture Fabricated byLaser Processing

CHEN Juan1 TAO Liang2

(1.College of Chemistry and Materials Science, Guizhou Normal College,Guiyang Guizhou 550018;2.College of Mechanical Engineering, Guizhou Institute of Technology,Guiyang Guizhou 550003)

Abstract: Surface texture can effectively improve the friction properties of contact surfaces. Laser processing technology is widely used in the fabrication of tool surface texture due to its advantages of high speed and accuracy. Based on this, this paper mainly introduced the research status of laser processing technology to fabricate tool surface texture, and pointed out the existing problems, in order to provide reference for the relevant scholars.

Keywords: textured tools;laser processing;cuttingperformance

金屬切削加工是机械制造中最主要的加工方法,而切削刀具在切削过程中因受到高温、高压以及剧烈摩擦的作用会加速磨损,导致使用寿命降低。因此,降低切削过程中的摩擦效应、提升切削刀具耐磨性显得十分重要。

研究表明,摩擦面若形成表面织构,即具备合理的微凸和较窄凹槽等表面形貌,可有效改善接触表面的摩擦性能[1,2]。因此,在切削刀具中引入表面织构技术,能有效提升刀具切削性能,为刀具设计提供新的研究思路。

目前,刀具表面织构的加工方法主要有激光加工、电火花加工、光刻技术及磨削加工等。而激光加工技术因其速度快、精度高、功率密度大、非接触等优势,几乎可用于加工所有材料[3],因而被广泛应用于刀具表面织构制备中。

1 激光加工织构的尺寸类型

激光加工刀具织构的研究目前主要集中在山东大学、南京航空航天大学及日本大阪大学等高校。制备的刀具表面织构有微织构、纳织构以及微/纳复合织构三种类型。其中,微织构主要依靠纳秒激光加工,而纳织构则主要靠飞秒激光加工。目前,国内外科研机构在刀具微织构方面研究较多,而在纳织构和微/纳复合织构方面的研究则有所欠缺。

1.1 微织构激光加工现状

南京航空航天大学李亮团队[4-7]采用光纤激光器在聚晶金刚石、硬质合金刀具表面制备了各类微沟槽,研究了扫描速度、平均输出功率、脉冲频率等激光工艺参数对微沟槽形貌特征影响的基本规律。长春理工大学于化东团队[8-10]也开展了类似的研究,在硬质合金刀具上制备了多种形式的微坑、微槽织构,研究了激光加工参数对微织构形貌、尺寸的影响。

山东大学邓建新团队[11-15]利用纳秒激光技术在硬质合金、陶瓷刀具上加工了多种形式的微槽、微坑织构,并开展了相应的切削试验(见图1和图2)。印度理工学院[16,17]也在微织构提升高速钢钻头钻削性能方面做了大量研究,采用激光加工技术在钻头表面制备了各类微坑织构。

日本大阪大学[18,19]在微织构提升立方氮化硼刀具、硬质合金刀具的切削性能方向开展了大量研究,利用飞秒激光技术在刀具表面加工了各种微沟槽、微孔织构。

1.2 纳织构激光加工现状

山东大学邓建新团队[20-23]利用飞秒激光技术在硬质合金、陶瓷刀具表面加工出了纳米级微沟槽,研究了微织构对刀具切削性能的影响。

1.3 微/纳复合织构激光加工现状

微/纳复合织构的研究目前相对较少,主要集中在山东大学邓建新团队[24-26],该团队利用飞秒和纳秒激光技术分别在硬质合金刀具的前、后刀面制备了微/纳复合织构,并开展了相关的摩擦磨损和切削试验。

日本大阪大学[27]也开展了类似的研究,采用飞秒激光技术在硬质合金铣刀片表面加工了微/纳复合织构,有效提升了刀具抗磨性能(见图3)。

2 刀具表面织构形貌与分布特征

目前,激光技术制备的织构形貌以微坑、微凸点、微沟槽以及各类混合形貌织构为主,其中又以微沟槽织构最为常见。而织构的分布特征又以直线分布、椭圆分布、波纹形分布等为主。

2.1 微坑和微凸点织构

Tatsuya Sugihara等[19]利用飞秒激光器在硬质合金刀具前刀面制备了不同分布形式的微坑阵列,微坑深5μm,宽30μm。

Fang Zhenglong等[28]在刀具后刀面制备了微坑、微凸点、微沟槽等不同分布形式的微织构(宽50μm,制备微坑和微凸点的深度分别为10μm和20μm),如图4所示。

2.2 微溝槽织构

Hao Xiuqing等[6]使用光纤激光器在金刚石刀具上制备了具有亲/疏水性的垂直复合微沟槽,亲水性沟槽的深度和宽度分别为10μm和60μm[图5(a)]。

Sarvesh Kumar Mishra等[29]利用纳秒激光技术在硬质合金刀片上加工了波纹形微沟槽,深度为25μm,单边长150μm,沟槽夹角为70°[图5(b)]。

Xing Youqiang等[26]在陶瓷刀具前刀面制备了平行主切削刃、垂直主切削刃以及波纹形三种直线微沟槽(宽40~50μm,深45~50μm),且同时在每种织构刀具钝圆半径区域均用飞秒激光技术制备了纳织构(宽350~400nm,深120~150nm)。

Deng Jianxin等[15]在硬质合金前刀面上制备了椭圆形微沟槽,平行于主切削刃微沟槽以及直线沟槽,沟槽宽50μm,深200μm(见图6)。

2.3 混合织构

Sun Jialin等[11]利用Nd:YAG激光器在硬质合金刀具前刀面制备了微沟槽、微凸点以及微沟槽/微凸点混合织构(宽度与直径均为40μm,深50μm),如图7所示。

3 结语

刀具表面织构由于具有存储润滑油、减小刀-屑接触面积等优点,对提高工件切削效率、提升产品质量有着重要意义。目前,刀具表面织构研究主要集中在微织构方面,在纳织构及微/纳复合织构方面的研究还有所欠缺。因此,今后可加大对纳织构、微/纳复合织构的研究力度,以更有效地提升织构刀具切削性能。

参考文献:

[1]林乃明,谢瑞珍,邹娇娟,等.表面织构改善钛合金摩擦学性能的研究进展[J].稀有金属材料与工程,2018(8):2592-2599.

[2]鹿重阳,杨学锋,王守仁,等.三角沟槽形织构化硬质合金工作表面动压润滑及减摩特性[J].摩擦学学报,2018(5):537-546.

[3]杨奇彪,陈中培,陈列,等.纳秒激光加工微凹坑对YG3表面浸润性的影响[J].中国表面工程,2018(3):1-8.

[4]苏永生,李亮,高洪,等.超硬刀具激光表面织构化及织构形貌控制[J].激光与光电子学进展,2017(12):286-292.

[5]苏永生,李亮,王建彬,等.超硬织构化刀具高速切削钛合金试验研究[J].表面技术,2018(2):249-254.

[6]Hao X, Cui W, Li L, et al. Cutting performance of textured polycrystalline diamond tools with composite lyophilic/lyophobic wettabilities[J]. Journal of Materials Processing Technology, 2018(260):1-8.

[7]Su Y, Li Z, Li L, et al. Cutting performance of micro-textured polycrystalline diamond tool in dry cutting[J]. Journal of Manufacturing Processes, 2017(27):1-7.

[8]于占江,蔡倩倩,王星星,等.微织构车刀制备与SUS304钢高速微车削试验[J].中国表面工程,2016(6):1-7.

[9]蔡倩倩,于占江,杜强,等.车刀表面微孔织构耐磨性能分析[J].工具技术,2018(3):95-97.

[10]蔡倩倩,于占江,杜强,等.微坑织构车刀正交切削钛合金试验的研究[J].工具技术,2018(5):47-50.

[11]Sun J, Zhou Y, Deng J, et al. Effect of hybrid texture combining micro-pits and micro-grooves on cutting performance of WC/Co-based tools[J]. The International Journal of Advanced Manufacturing Technology, 2016(9-12):3383-3394.

[12] Zhang K, Deng J, Lei S, et al. Effect of micro/nano-textures and burnished MoS2 addition on the tribological properties of PVD TiAlN coatings against AISI 316 stainless steel[J]. Surface and Coatings Technology, 2016(291):382-395.

[13]Xing Y, Deng J, Wang X, et al. Effect of laser surface textures combined with multi-solid lubricant coatings on the tribological properties of Al2O3/TiCceramic[J]. Wear, 2015(342): 1-12.

[14]Zhang K, Deng J, Xing Y, et al. Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions[J]. Applied Surface Science, 2015(326):107-118.

[15]Jianxin D,Ze W,Yunsong L, et al. Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J]. International Journal of Refractory Metals and Hard Materials,2012(1):164-172.

[16]Niketh S, Samuel G L. Drilling performance of micro textured tools under dry, wet and MQL condition[J]. Journal of Manufacturing Processes,2018(32):254-268.

[17]Niketh S, Samuel G L. Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy[J]. Journal of Cleaner Production, 2017(167):253-270.

[18]Sugihara T, Nishimoto Y,Enomoto T. Development of a novel cubic boron nitride cutting tool with a textured flank face for high-speed machining of Inconel 718[J]. Precision Engineering, 2017(48):75-82.

[19]Sugihara T,Enomoto T. Performance of cutting tools with dimple textured surfaces:a comparative study of different texture patterns[J]. Precision Engineering,2017(49):52-60.

[20]Zhang K, Deng J, Ding Z, et al. Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings[J]. Journal of Manufacturing Processes,2017(30):492-501.

[21]Deng J,Lian Y, Wu Z, et al. Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J]. Surface and Coatings Technology, 2013(222):135-143.

[22]Xing Y, Deng J, Zhou Y, et al. Fabrication and tribological properties of Al2O3/TiC ceramic with nano-textures and WS2/Zr soft-coatings[J]. Surface and Coatings Technology, 2014(258):699-710.

[23]Lian Y, Deng J, Yan G, et al. Preparation of tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool and its cutting performance[J]. The International Journal of Advanced Manufacturing Technology,2013(9-12):2033-2042.

[24]Zhang K, Deng J,Guo X, et al. Study on the adhesion and tribological behavior of PVD TiAlN coatings with a multi-scale textured substrate surface[J]. International Journal of Refractory Metals and Hard Materials,2018(72):292-305.

[25]Zhang K, Deng J, Sun J, et al. Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting[J]. Applied Surface Science,2015(355):602-614.

[26]Xing Y, Deng J, Zhao J, et al. Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel[J]. International Journal of Refractory Metals and Hard Materials,2014(43):46-58.

[27]Sugihara T,Enomoto T. Development of a cutting tool with a nano/micro-textured surface—Improvement of anti-adhesive effect by considering the texture patterns[J]. Precision Engineering,2009(4):425-429.

[28]Fang Z,Obikawa T. Cooling performance of micro-texture at the tool flank face under high pressure jet coolant assistance[J]. Precision Engineering, 2017(49): 41-51.

[29]Mishra S K, Ghosh S,Aravindan S. Characterization and machining performance of laser-textured chevron shaped tools coated with AlTiN and AlCrNcoatings[J]. Surface and Coatings Technology, 2018(334):344-356.